Vertex Cloud Technical Documentation (For
VTXCLOUD v4.0 and higher for Vertex v2)

Vertex Cloud Technical Documentation

Included Libraries

Data Areas
Files
Source Physical Files

Binding Directories

Subprocedures

Control Values
Sample Programs

Included Libraries

The VTXCLOUDA4 library includes some dependent libraries that are used in the processes.
The main pieces of these libraries are included in the VTXCLOUDA4 library itself to make delivery
easier. Those libraries are as follows:

GETURI (yearly license fee) - This is a product from BVSTools.com that is used to make
HTTP/S calls to web APIs, make RESTful requests, etc. The VTXCLOUD4 library has
its own version installed directly in the VTXCLOUDA4 library.

NOTE: This version includes v12.00 or up for GETURI. In this version of GETURI the
hashtags (#) are removed from the beginning of the GETURI function names. For
example, #geturi_setValue() is now geturi_setValue().

YAJL (open source) - This is a JSON generator/parser that is used for requesting and
renewing OAuth 2.0 tokens. It may also be used in your own applications.
https://www.scottklement.com/yajl

Data Areas

Files

VCID - A numeric data area used to generate unique IDs for naming files, processes,
etc.

VERSION - The version of the VTXCLOUDA4 library

GU”* - These are data areas used by GETURI.

VCCTLPF - Control File
This file is used to store control values for processing. There are some values initially
set up that should not be removed or modified. But, you can feel free to add any new

https://www.scottklement.com/yajl/

control values for your own applications and use the #vc_getControlValue() function to
retrieve it's value.

The values for CLIENTID and CLIENTSECRET should be updated with information from
your own Vertex account.

File Name VCCTLPF
Library VTXCLOUD
Format Descr
Format Name . . . RVCCTL
File Type PF Unique Keys - N

Field Name FMT Start Lngth Dec Key Field Description
VCKEY A 1 20 Control Key
VCVALUE A 21 1024 Control Value

VCO001PF - Vertex Cloud Main Account File
This file is used to store Vertex Cloud users (client ids), tokens, refresh tokens and other
information related to the client id.

This is the file that is updated when a new client idis added or a token is refreshed. This
file should not be altered manually unless you want to force a refresh of a token. In that
case it is best to make the expiration date in the past so that on the next use of the
account the token will be automatically refreshed.

File Name VCOOl1lPF
Library VTXCLOUD
Format Descr
Format Name . . . RVCTO0O01
File Type PF Unique Keys - N

Field Name FMT Start Lngth Dec Key Field Description

VCUSER A 1 256 User

VCACSTK A 257 2048 Access Token

VCKTYPE A 2305 32 Token Type

VCKEXP Z 2337 26 Token Expire TimeStamp
VCTIME Z 2363 26 Last Activity TimeStamp

Source Physical Files

QCOPYSRC - This file contains all of the /copy members used in the Vertex Cloud
applications as well as GETURI and YAJL.

QRPGLESRC - This file contains the main processing programs as well as sample
programs.

Binding Directories

The VTXCLOUDA4 library contains a binding directory named VTXCLOUD. This binding
directory is used when compiling programs and creating service programs.

This binding directory contains links to the Vertex Cloud functions as well as YAJL.

Subprocedures

The Vertex Cloud system includes a service program named F.VTXCLOUD. This service
program contains some of the base functions used when working with the Vertex Cloud HTTP
APIs.

The source physical file member VTXCLOUD4/QCOPYSRC member PVTXCLOUD contains
the prototype definitions and descriptions for available functions.

The main function that will be used in your applications will be the #vc_getToken() function,
which is used to retrieve (and renew if expired) the OAuth 2.0 token used in HTTPS requests to
the Vertex Cloud API library.

Control Values

The VTXCLOUDA4 library contains control values used for processing in the VCCTLPF file.
These are important for processing and should only be updated if any endpoints or URLs
change.

They can also be updated when setting SANDBOX vs LIVE values.

e CLIENTID - This is the client ID for your application. You will need to update this before
running any applications.

e CLIENTSECRET - This is the client secret for your application. You will need to update
this before running any applications.

e TOKENURL - This is the URL to retrieve a token during the OAuth 2.0 process.
(auth.vertexsmb.com/identity/connect/token)

e APIBASEURL - This is the base URL used when contacting the Vertex Cloud systems
and their APIs. (restconnect.vertexsmb.com/vertex-restapi)
APISCOPE - This is the scope used when requesting OAuth 2.0 tokens. (calc-rest-api)
GRANTTYPE - This is the grant type used when requesting OAuth 2.0 tokens.
(client_credentials)

e DATAPATH - This is the default path to where data files will be placed.
(/vertexCloud/data)

e DEBUGPATH - This is the default path to where debug files will be placed.
(/vertexCloud/debug)

e OUTOUTPATH - This is the default path to where output files from API call responses
are palced. (/vertexCloud/output)

e SALEURL - This is the URL used (in conjunction with APIBASEURL) to make a request
to the Sale API.

e ADDRESSLOOKUPURL - This is the URL used (in conjunction with APIBASEURL) for
address lookups.

e PURCHASEURL - This is the URL used (in conjunction with APIBASEURL) for
purchase orders.

e DEBUG - Turn debug on (*YES) or off (*NO).

Sample Programs
There are two sample programs in QRPGLESRC.

GETTOKEN is a sample program showing how to retrieve a token. This really won't be used
much. It's just an example.

CALCTAX is a program that will make a request to calculate estimated tax. The JSON file
containing the data we are sending to Vertex Cloud is in the IFS in /vertexCloud/data in a file
named sale_sample.json. This is the exact file that Vertex Cloud uses in their example in the
documentation.

PURCHASE is a sample program used to make a purchase order request.
TAXLOOKUP is a sample program used to retrieve tax information for an address.

These programs are used to show how to send JSON to the API. There is no JSON parsing in
the program, but the data returned from the request will be stored in the IFS in
/vertexCloud/output with a unique file name. The HTTP headers are also returned into their
own separate file with the ".hdr" extension. There is a sample in the directory already.

As far as retrieving and refreshing tokens, that is all taken care of automatically in this case by
the #vc_getToken () ILE function included in the F.VTXCLOUD service program.. You just
need to be sure to supply the appropriate id and password in the control file.

The client ID and client secret are stored in a control file (VCCTLPF) as described in the
documentation.

If the client ID and/or client secret need to be different in some cases you can either set up new
control values for a new set of client ID/Secret or hard-code them in the application.

Example as it is in the sample program:
clientID = #vc getControlValue ('CLIENTID');

clientSecret = #vc getControlValue ('CLIENTSECRET');
grantType = #vc getControlValue ('GRANTTYPE') ;

rc = #vc getToken(clientID:clientSecret:grantType:token:errorMsg);
Example using different control values (the control values in this example would need to be set
up in the VCCTLPF file):

clientID = #vc_getControlValue('NEWCLIENTID');

clientSecret = #vc getControlValue ('NEWCLIENTSECRET');

rc = #vc _getToken(clientID:clientSecret:grantType:token:errorMsg);
Example using static values:

clientID = 'STATICID';

clientSecret = 'STATICSECRET';

rc = #vc getToken(clientID:clientSecret:grantType:token:errorMsg);

