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Preface

The aim of thisbook is to describe the basic geometric methods of differential
topology. It is intended for students with a basic knowledge of analysis and
general topology.

We prove embedding, isotopy and transversality theorems, and discuss, as
important techniques, Sard’s theorem, partitions of unity, dynamical systems,
and (following the example of Serge Lang) sprays. We also consider connected
sums, tubular neighbourhoods, collars and the glueing together of manifolds
with boundary along the boundary.

We have ourselves learned much from the writings of Milnor, as has nearly
every young topologist today, and there are traces of this in the text. We have
also from time to time drawn on Serge Lang’s exemplary exposition [3] - to
studiously avoid doing this would certainly not benefit any book about dif-
ferential topology.

The numerous exercises at the end of each chapter are not always easy for
a beginner; they are not used in the text.

We do not discuss analysis on manifolds (Stokes’ theorem), Morse theory,
the algebraic topology of manifolds or bordism theory. However, we hope
that our book will provide a solid basis for a closer acquaintance with these
more advanced topics of differential topology.

Regensburg, Pentecost 1973 Theodor Brocker, Klaus Janich
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Manifolds and differentiable
structures

A manifold is a topological space which ‘locally resembles’ R", the Euclidean
space of real n-tuples x = (xy, . . ., x,,) with the usual topology. Such spaces
result in general, as we shall later see, as solution spaces of non-linear systems
of equations, and many of the concepts of general topology have developed

out of the study of these special spaces. The precise explanation is as follows:

(1.1) Definition. An n-dimensional topological manifold M™ is a
Hausdorff topological space with a countable basis for the topology, which is
locally homeomorphic to R™. The last condition means that, for each point
p €M, there exists an open neighbourhood U of p and a homeomorphism

h:U-U'
onto an open set U' C R" (Fig. 1).

. U'c R

Fig. 1

The requirement that the space must be Hausdorff does not follow from
the local condition as one might believe. As a counterexample one takes the
real line R, together with an additional point p, see Fig. 2, and defines the
topology on M = R U {p} by saying that R is open and that the neighbour-
hoods of p are the sets (U — {0}) U {p}, where U is a neighbourhood of 0 ER.
Examples of topological manifolds (see Fig. 3) are:

1



2 Introduction to differential topology

°p

-~ : —R

Fig. 2

N’

Fig. 3

every open subset of a Euclidean space;
the n-sphere $" = {x ER"*!| |x| = 1};

the torus or surface of an inner tube (1.8).

(1.2) Definition. If M" is a topological manifold and h: U~ U' a
homeomorphism of an open subset U C M onto the open subset U’ C R",
then & is a chart of M and U is the associated chart domain. A collection of
charts {h,| o € A} with domains U, is called an atlas for M if U, 4 U, = M.

Given two charts, both homeomorphisms 4, A are defined on the inter-
section of their domains U g:= U, N Ug and one thereby obtains the chart
transformation /o as a homeomorphism between open subsets of R by
means of the commutative diagram:

/\

U,2h,(Uy,) o hp(U,p) = Uy

in which Ay is defined as hg - iy, see Fig. 4.

Occasionally, we shall find it useful to include the domain of definition of
a map, particularly of a chart, in the notation, and thus we shall write (&, U)
for a map h: U~ U'. If one were to consider the whole manifold as being
formed by a glueing process from the chart domains, which one knows as well
as one knows the open subsets of Euclidean space, then it is precisely the
chart transformations which show how different chart domains are to be
glued together. If, apart from the topological, one wishes to extend additional
properties from open subsets of Euclidean space to manifolds by means of a
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Fig. 4

suitable atlas, one must ensure that the definitions are independent of the
particular choice of charts in the atlas, or that the property under consider-
ation is independent of the chart transformations.

(1.3) Definition. An atlas of a manifold is called differentiable, if
all its chart transformations are differentiable.

We shall always consider a differentiable mapping between open subsets of
R” to be a C™-mapping, that is, a mapping whose various (higher) partial
derivatives exist and are continuous. Because, for the chart transformations
hag (wherever the respective maps are defined), it is clear that

hoo = 1d, hgy *hog = hay,
it follows that
h;}; = hga-

Therefore, the inverses of the chart transformations are also differentiable,
and the chart transformations are diffeomorphisms.

If Wis a differentiable atlas on the manifold M, then the atlas D =D(N)
contains precisely those charts for which every chart transformation with a
chart from U is differentiable. The atlas D is then differentiable as well, since
one can locally write a chart transformation kg, in ® as a composition
hgy = ha~y ° hgo of chart transformations for a chart 1, €U, and differen-
tiability is a local property. As an element in the family of differentiable
atlases, the atlas D can obviously not be enlarged by the addition of further
charts, and it is the largest differentiable atlas which contains 2. Thus each
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differentiable atlas unequivocally determines a maximal differentiable atlas
D(A), so that A CD(A); and D(A) = D(B) if and only if the atlas A U Bis
differentiable. We formulate:

(1.4) Definition. A differentiable structure on a topological mani-
fold is a maximal differentiable atlas. A differentiable manifold is a topologi-
cal manifold, together with a differentiable structure.

In order to specify a differentiable structure on a manifold, one must
specify a differentiable atlas and, in general, one will clearly not choose the
maximal one, but preferably one as small as possible.

Henceforth we shall implicitly assume that all charts and atlases of a differ-
entiable manifold with a differentiable structure D are contained in D. In the
notation, as usual, we employ the abbreviated form M, and not (M, D) for a
differentiable manifold.

(1.5) Examples. (a) If U C R" is an open subset, then the atlas

{Idy}, which only contains the single chart Id: U~ U, defines the usual
differentiable structure. Furthermore, every homeomorphism #: U~ U
defines a differentiable atlas {#}, which gives the same differentiable struc-
ture if and only if 4 is a diffeomorphism. On an open subset of R", one can
therefore easily describe various differentiable structures for n > 0. However,
as we shall yet see, using such atlases with only one chart #: U - U, one does
not obtain substantially different differentiable manifolds.

(b) The sphere " = {x €ER" "] |x|:=/(x? + ... +x2,,) = 1} possesses
a differentiable atlas whose differentiable structure we shall always consider
as introducing the standard structure on S™. The chart domains are the sets

Upj = {x €ES™[ (— 1Yx,,> 0},
the charts are
hgj: Ukj—>l3" (the open solid ball)
X (X150, X1y Xpa1s -« >Xns1), se€ Fig. 5,

so that the chart hy,; forgets the kth coordinate. It is easy to verify that thls
atlas is differentiable, since the map Agj: D"~ 8™ has the kth coordinate
(missing in DY (- 1)’(1 — 24 kx?)Y?, which is clearly a differentiable func-
tion on D" in the usual sense; and hy.j results by restricting a differentiable
mapping R**! > R".

(c) The real projective space RP" is the quotient space of the sphere S
under the equivalence relation defined by x ~ —x. A point p ERP" is
described by

= [x] = [x0,--hx,] = [ X0, ..., —Xpnl, i x} =1,

and the equivalence relation identifies precisely the subsets Uy, o and Uy, ¢ of
the sphere. Therefore, the subsets
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Uz0
AR A J U2
h21l
X1
%2
Xo
Fig. 5
U, = {[x] €RP"| x;, # O}
are open in RP", and one has charts
hp: U, > D™ [Xo, - oo X P X Xl (X0 o o v s Xoo 1y XRags e v v 5 Xn)

for a differentiable atlas.

The projective spaces are examples of differentiable manifolds which arise
naturally as abstract manifolds and not as subsets of Euclidean space. And,
initially, it is not obvious that a projective space is homeomorphic to a subset
of Euclidean space. One also obtains the topological manifold RP" when one
identifies antipodal boundary points of the ball D" = {x € R"| |x| < 1}, that
is, forms the quotient for the equivalence relation ‘x ~—x for [x| = 1".In
this way, one can visualise the projective plane RP? as the result from glueing
together a Mobius band B and a disc A U C along their common boundary S?,
as in Fig. 6.

(d) An open subset of a differentiable manifold possesses a natural struc-
ture as a differentiable manifold.

Fig. 6
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Differentiable manifolds will be the subject of this book, more precisely,
the category of differentiable manifolds. Its ‘objects’ are differentiable mani-
folds; its ‘morphisms’ are the differentiable mappings which we now define.

(1.6) Definition. A continuous mapping f: M —> N between differ-
entiable manifolds is termed differentiable at the point p € M if for some
(and therefore for every) chart h: U>U',pE€Uand k: V> V', f(p)EV
of M and N respectively, the composition k - f - h™! is differentiable at the
point 4(p) € U'. Note that this mapping is defined in the neighbourhood
h(f'V N U) of h(p), see Fig. 7. The mapping f is termed differentiable if it
is differentiable at every point p € M. In other words: one knows when one
can call a mapping between chart domains of M and /V differentiable, because
these are identified by the charts with open subsets of Euclidean space, and
locally a continuous mapping is always written as a mapping between chart
domains. Independence from the particular choice of chart depends upon the
fact that the chart transformations are differentiable.

kf(p)
V'eR"

Fig. 7

Remark and notation. The identity mapping of a differentiable
manifold is differentiable; the composition of differentiable mappings is
differentiable. One assumes both these assertions in saying that differen-
tiable manifolds and mappings form a category, the differentiable category
which will be written C” for short.

Correspondingly, let
C~(M,N) = the set of differentiable maps M - N

C°WM) = CM,R).
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The composition of differentiable maps is therefore a map

C"M,N)x C7(L, M) C™(L,N), (f,e)»f-¢g.

Many concepts arise in a category in a purely formal way; they are formu-
lated using the maps of the category and their composition, as, for example,
isomorphism, sum, and product.

(1.7) Definition. A diffeomorphism is an invertible differentiable
map.

‘Invertible’, it is worth noting, means invertible in the differentiable cat-
egory, therefore f: M - N is a diffeomorphism if there is a differentiable map
& N—->M,sothat f -g=1dy and g - f= Idy,. This means, in other words:
fis bijective and, also, f~* is differentiable. We denote diffeomorphisms by
‘=’; they form the isomorphisms of the differentiable category.

A differentiable homeomorphism need not be a diffeomorphism, as is
shown by the map R—> R, x b x°.

For example, in (1.5(a)) we have introduced, in general, many distinct
differentiable structures on an open subset U C R”™, but the differentiable
manifolds U with atlas {Id},and U with atlas {1}, are of course diffeomorphic;
h: U~ U'is a diffeomorphism (U, {1}) - (U, {Id}) of the second onto the
first. Thus, both manifolds are essentially the same in so far as their differ-
ential topology is concerned.

In contrast, the problem of constructing two distinct differentiable struc-
tures on a topological manifold, so that the resulting differentiable manifolds
are not diffeomorphic, is very deep indeed. For example, the topological
7-sphere possesses exactly 15 mutually distinct non-diffeomorphic structures
as a differentiable manifold. These are precisely 15 mutually distinct differ-
entiable manifolds which are, however, all homeomorphic to the sphere S’
(Kervaire & Milnor, 1963). Such results are far beyond the scope of this book.

Every chart h: U~ U’ of M is a diffeomorphism between U and U’,
where U’ carries the standard structure as an open subset of R” (1.5(d)),
and the differentiable structure of M consists precisely of the set of all
diffeomorphisms of open subsets of M with open subsets of R”.

The function ¢ = tan ((w/2)¢) defines a diffeomorphism (— 1, 1) - R.
Differential topology deals with those properties which remain constant
under the action of diffeomorphisms. For local considerations, one can there-
fore always assume that one is dealing with an open subset of R”; instead of

a function f on U, one considers f - A~ on U’; instead of an open subset

V C U, the subset 2(V) C U'; and so forth. Since images in R" are given by
their coordinates, one also often describes a chart of M around p in terms
of a local coordinate system. The chart A: U - U’ is written in components
ash = (hy,...,h,), where the coordinate functions ;: U — R are differ-
entiable functions; by translation in R", one can further assume that a(p) =
0=(0,...,0) for afixed point p € U. Thus, in a neighbourhood U of p,
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after the introduction of a coordinate system, every point is uniquely deter-
mined by the values of the coordinate functions. Thus, for each point in U,
one can assign coordinates

(xlr' ~'sxn)

0,...,0) = coordinates of p.

with

A function on U is thus differentiable if and only if it is differentiable as a
function of the coordinates in the usual meaning of the differential calculus.
In the differentiable category there are sums and products:

(1.8) Definition. The disjoint union of two n-dimensional differ-
entiable manifolds M,, M, is, in a natural way, a differentiable manifold
expressed by M; + M, , see Fig. 8. The topology is determined by the fact
that both manifolds M,, M, are open subsets of M; + M, ,and a differentiable
atlas is the union of atlases of both manifolds.

The manifold M, + M, is called the (differentiable) sum of M, and M,.
One has canonical inclusions

iV:Mp")Ml +M2

as open subsets. A map f: M; + M, - N is then clearly differentiable if and
only if both restrictions f - i, are differentiable;in other words one has a
canonical bijection

C™M, + My, N) > C™M, N) x C"M,N), f> (f = ir,f - i2)

for every differentiable manifold N (universal property of the sum).

e e

M+ My

Fig. 8

Dually, one constructs the Cartesian product M, x M, of two differentiable
manifolds M,, M, of dimensions n, k, and gives this the structure of a (n + k)-
dimensional differentiable manifold which is called the (differentiable Jproduct
of My and M, . If h,: U, - U, are charts of the differentiable structure of M,
then '

_ hixhy: Uyx Uy > Upx Uy CR"x R* = R"**
is a chart of M; x M, , and the set of all these charts defines the differentiable
structure for M; x M, (see Fig. 9). (M, = M, = 8", with (p, q) a general point
in the product.) One has canonical projections p,: My x M, > M,
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Q 0

gl x g - torus

(Dq)

Fig. 9

and, analogously to the sum, a canonical bijection
C™(NV, M, x My) > C™(N, M) x C"(N, M), f (1 -f,p2°f)

for every differentiable manifold NV (universal property of the product). The
last remark states that a map into the product is differentiable if and only if
both its components f,, = p,, - f are differentiable;locally one maps into a
chart domain U, x U, , and the composition with a chart

hixhy,:UyxU,»> U x Uy CR"*

is then differentiable if and only if both its components are differentiable.
" Less canonical and, therefore, not so uniformly defined in the literature, is
the concept of submanifold.

(1.9) Definition. A subset N C M™** is called an n-dimensional
differentiable submanifold of M if, for every point p € N, there exists a chart
around p

h:U_)U'CRni-k — Rank
so that
ANOU) = U'NR"

where we consider R” as R" x 0 C R” x R¥.

u M U

' /

U'n’(lR“xo)

Fig. 10
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The number k = dim M — dim N is called the codimension of the sub-
manifold. In short one says: locally the submanifold N lies in M as R" lies
in R"*k,

The definition is justified by the remark that there is a canonical differen-
tiable structure on V. From a chart £, as in definition (1.9), one obtains a
chart A" = h{UNN - U' NR", and the set of all these charts is a differen-
tiable atlas for &V, see Fig. 10.

(1.10) Definition. A differentiable map f: N = M is called an
embedding if f(N) C M is a differentiable submanifold, and f: N - f(N) is
a diffeomorphism.

If N and M have the same dimension, then f(N) is open in M, as definition
(1.9) unmistakably shows, and the inclusion of an open subset is also an
embedding. Otherwise, it is necessary that dim N < dim M. Every point
p €M defines an embedding

i,: N>MxN, qb(p,q)

so that p, - i, = Idy and, similarly, every point p € M defines a projection
Tpi M+ N> M, so that m, - i; = 1dy,. The second factor, of course, behaves
quite analogously; if p €M and g € N, then i, (V) and i, (M) meet precisely in
the point (p, g) EM x N, see Fig. 11.

Mx N
ip
—
-—
P2
N
P
; M
P
Fig. 11

(1.11) Exercises

1 Show that every (differentiable) manifold possesses a countable
(differentiable) atlas.

2 Show that the sphere S™ possesses a differentiable atlas with pre-
cisely two charts. Also, one with only one chart?

3 Describe the chart transformation for the atlas of RP” in (1.5(c)),
and show that it is differentiable.
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Let M be a differentiable manifold and 7: M - M a fixed point free
involution, that is, 7 is a diffeomorphism with 7 - 7 = Id,, and

7(x) # x for all x.

Show that the quotient space M/, which is obtained from M by
identification of points corresponding to each other under 7, is a
topological manifold which possesses exactly one differentiable
structure with respect to which the projection M - M/t is locally
diffeomorphic.

Show that RP! = §!.

Provide the surface of a cube {x € R"*!| max {|x;[} = 1} with the
structure of a differentiable manifold.

Let M be a differentiable manifold and f: N & M a homeomorphism.
Prove that NV possesses exactly one structure as a differentiable mani-
fold, so that f'is diffeomorphic.

Provide the complex projective space CP” with the structure of a
2n-dimensional differentiable manifold. This space is defined as
follows: on the complex vector space C"*, one has the equivalence
relation x ~ y < there is a number A € C, X\ # 0, so that Ax = y.
The quotient space (C™*! — {0})/~ is defined to be CP".

Prove that if M is a non-empty, n-dimensional manifold and k <n,
then there is an embedding R¥ > M.

Let NV be a compact, M a connected manifold, both of dimension »
and non-empty. Let f: N - M be an embedding. Show that fis a
diffeomorphism.

Show that §™ is a submanifold of R**!,

Describe an embedding §' x S = R*® by means of elementary
functions.

Show that the composition of two embeddings is again an embedding
and that the Cartesian product f; X fo: Ny X N, > My x M,, of two~
embeddings f, f5, is again an embedding.

Show that if the n-dimensional manifold M is a product of spheres,
then there exists an embedding M - R"*1,

Hint: describe an embedding " x R~ R"*! and use 13.

The points of CP* (see 8) are described by the homogeneous co-
ordinates x = [x,, . . . , X ] = class of (xo, . . . , x3) under ~. Show
that the mapping

f:CP™ x CP" »Cpmn+m+n

(x’y)"’[xoyo,xoyla .- -,xvyu, .. -axmyn]

is an embedding. Show the same for the real projective spaces.

16 Let M(m x n) be the vector space of real (m x n)-matrices, and

M,.(m x n) the subset of matrices of rank ». Then M,(m x n) is a
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submanifold of M(m x n) of codimension (n —r) * (m —r), for

r <min {m, n}.

Hint: a typical chart domain around a point of M,(m x n) is given by
the set U C M(m x n) of matrices of the form

’(A AB

) , AEM(rxr), det(4)#0.

D DB + C
Such a matrix lies in M,.(m x n) if and only if C = 0.

17 The inclusion R**! C R"*? induces an embedding RP" C RP"*!
and RP**! —RP" = R"*!,

18 Let R**! = {(x,a,, - - ., an-1)1x,a; € R}. The set of points such
that x" +a,,_,x" ! + ...+ ao = 0 is a submanifold of codimension
1 of R"**! and is diffeomorphic to R™.

19 The set C(M) is an algebra under the natural addition and multipli-
cation of functions. A differentiable mapping f: M - N defines an
algebra homomorphism

)~ Cen, oo f

with the functorial properties: Idy, = 1d;(f- g)* =g* - ™.
20 Notation asin 19. For a point p €M let

M, = {p€C 0N ¢(p) = 0}.
Show:

(a) M,, is a maximal ideal of C*(M).
(b) If M is compact and M € C~(M) is a maximal ideal, then there
exists some p € M such that M=M,,.
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Tangent space

Problems in differential topology often divide into a local and a global part;
in this section we begin explaining basic local concepts.

The dominating concept of local theory is that of the tangent space at a
point p €M of a manifold. Let us assume that the manifold is embedded in
Euclidean space R", then it is quite obvious that to every point p € M there is
assigned a certain linear subspace of R", the space of tangent vectors of M at
p, the velocity vectors of possible movements on M. Thus the sphere S™ is
embedded in R"*! as §” = {x €R™*!| x| = 1}, and the tangent space at the
point x €S" is the set of vectors {v € R"*'|(v,x ) = 0}, see Fig. 12. Since,
in general, such an embedding is not canonically given, we must describe the
tangent space by the intrinsic properties of the manifold.

tangent space
< (displaced parallel)

Fig. 12

For local considerations it is clear that one takes into account not just
maps f: M - N defined on all of M, but also those maps which are defined
only in a neighbourhood of p € M. Two such maps can be looked upon as
equal if they agree in a (perhaps smaller) neighbourhood. Thus on the set of
differentiable maps

{f1f: U~>N, for a neighbourhood U of p EM }
we construct the following equivalence relation:

13
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f~ g ¢ there is a neighbourhood V of p, so that f |V =g | V.

(2.1) Definition. An equivalence class for this relation is called the
erm of a map M > N at p. We denote such a germ, represented by f, as
f: (M,p)~>N and also = (M, p)~> (N, q), if f(p) = q. Given germs (M, p) 7
W, q) = (L, r), one obtains a composition g - f: (M, p)— (L, r) as the germ of
the composmon of suitable representatives. A function germ is a differenti-
able germ (M, p) ~ R. The set of all function germs around p € M is written

as &(p).

Thus &(p) has the structure of a real algebra: addition and multiplication
are defined by the corresponding operations on representatives. A differenti-
able germ f: (M, p) > (N, q) defines by composition a homomorphism of
algebras

[ &q)~> &), ¢ ¢-f,
and one has the functorial properties
=1d; (g of) = freg*.
From the functorial properties it follows in particular that an invertible germ
f relative to composition induces an isomorphism f *:
fefl=Td=f"".f* = Id
If, therefore,p €M " then one can find a chart 4 about p, which defines an
invertible germ A: (M, p)~ (R", 0), and therefore an isomorphism
h*: &, &p); &, = set of germs (R", 0)~> R.
The study of the algebras &(p) can thus be limited to the typical examples
&n.
Since we have thus far directed our attention to the local, we now turn to
tangent spaces. There are three prevailing equivalent definitions, each of

which has its advantages, and we wish to learn to move freely among them:
the definitions

(A) the algebraist’s
(Ph) the physicist’s
(G) the geometer’s

(2.2) The algebraist’s definition. The tangent space Tp,M of the dif-
ferentiable manifold M at point p is the real vector space of the derivations of
&(p). A derivation of &(p)is a linear map X: &(p) — R which satisfies the
product rule

X(@¥) = X(@):9¥(p)+ o(p)- X(¥).

A differentiable germ f: (M, p) > (V, q), for example one associated
with a differentiable map f: M - N, induces the algebra homomorphism
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7 &(@)~> &(p)and thereby the linear tangent map (the differential) of f at
p:
Tpf: TpM—>TyN

XX f*

One immediately checks, that a linear combination of derivations is again a
derivation, that these thus form a vector space. From the product rule it
follows that X (1) = X(1) + X (1), therefore X (1) = 0 for the constant func-
tion with value 1, thus, because of linearity, X (¢) = 0 also for every constant
¢. The definition of the differential implies that for a germ ¢: (V, q) ~ R:

T, fX)$) = X -F*(9) = X(@-f).

From this, or from the functorial properties of *, it follows that for a compo-
sition (M, p) = (N, q) 2 (L, r), one has the functorial property T,(§ * f) =
Tq& - Tp f for the tangential map. One reads directly from the definition that
the tangential map is linear.

Now if : (V, p) > (R™, 0) is the germ of a chart, then the induced map
h*: &, ~ &(p)is an isomorphism, as is the tangential map Tph: Tp N =
ToR". In order to describe the latter vector space the following is useful:

(2.3) Lemma. Let U be an open ball around the origin of R" or R"
itself, and f: U —~ R a differentiable function, then there exist differentiable
functions f1, . . ., fn: U= R, so that

) = fO+ 2 xfo()-
Proof.

—10) =], & dt =3 x| d
) =10) =, G f@xn . txa)dt = Y ox [ Doflexs, . txa)dt,

where D,, denotes the partial derivative with respect to the vth variable. There-
fore, set

o) = j: D, f(txy, ... . txp)dt. 0

Among the derivations — as the name implies — of the algebra &, are the
partial derivatives, which we usually write in the old fashioned way:
0]

- 0
— &> R, ¢p— .
Pl L ¢ ax,,¢(0)
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Consequence. The d/dx,,v=1,...,n, form a basis of the vector
space ToR" of the derivations of &,.

Proof. If the derivation Z]_, a,(3/9x,) = O then, in particular, one
obtains for X, the uth coordinate function: a,, = E'J:,a,,(ax“/ax,,) = Q for
all u. Therefore the 8/dx,, are linearly independent.

Now let X € To(R™), X (X,) =: a,, then we shall show that:

a .

X =
Z T

IfwesetY = X — E,?:la,,(a/ax,,), then Y is a derivation and, by construc-
tion, Y(%,) = O for every coordinate function. If f € &, is an arbitrary func-
tion germ, we then write, by lemma (2.3), 7= f(0) + Z,_, %,*f, and obtain

Y(F) = Y(7(0) + Zl Y (%) -£,(0) = 0. O

At this point, note that the tangent space at a point of an n-dimensional
differentiable manifold has the vector space dimension 7, so that the dimen-
sion is indeed unequivocally defined. It is not so easy to see this in the
topological case, but it is nonetheless true.

After introducing local coordinates (x, . . . ,x,) about a point p EN" we
can explicitly describe the vectors in T,V as linear combinations of the
d/ox;. If f: (N, p)~ (M™, q) is a differentiable germ, and if we also con-
struct local coordinates (¥, . . . , Ym) around g, then f is written as a germ
(R™,0) > (R™, 0), which we shall also simply denote by f:

(N.p) 7 (M.q)

||

(R",0) 7 (R",0)
The tangential map T, f is computed as follows: If ¢ € &,,, then following»

definition (2.2) and the chain rule,

-2 67 2 (0.
Tof( )(¢) o, @) g oy, @ 5, @

therefore

3\ _ m o
Tof (6x> B ,21 ax,( )ay,
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The matrix

_ %
br= (axi)

is called the Jacobi matrix. We can therefore compute the differential of fin
matrix notation thus: if v =  4,(8/dx;), then T, f(v) = Z by(9/0y;), where

b = Dfo'd.
We summarise all this as:

(2.4) Theorem. If one introduces local coordinates (x4, . . . ,xy,)
and (v, ...,ym)around p EN" and g EM™ respectively, then the deriv-
ations 8/0x;, d/dy; form vector space bases of T, N and TqM respectively,
and the tangential map of a germ [- (N, p) > (M, q) with respect to these
bases is given by

Dfy: R® > R™, O

The definition of the algebraist is the easiest to apply. However, it is rather
abstract (and also unsuitable, when one considers infinite dimensional mani-
folds, or just finitely often differentiable ones).

Physicists proceed from the coordinate dependent version of theorem
(2.4). One hears descriptions such as: ‘A contravariant vector or tensor of the
first order is a real n-tuple which transforms according to the Jacobi matrix’.
This we interpret as follows: if 1, k: (V, p) > (R", 0) are germs of charts,
then the chart transformation g == & -4~': (R”, 0) > (R", 0) is an invertible
differentiable germ. The various invertible germs (R", 0) = (R", 0), that is, all
possible chart transformations, form a group @ under composition ‘-’, and
thus for two chart germs /1, k there is exactly one g € &, so that g <k = k. To
every g € ¢ we assign the Jacobi matrix at the origin Dgq and, as in the differ-
ential calculus, the product of the matrices is then associated with the compo-
sition of the maps; in particular, one has a homomorphism of groups

¢->GL@n,R), g+ Dg,
from ¢ into the linear group of invertible matrices.

(2.5) The physicist’s definition. A tangent vector at the point
p € N" is a rule assigning to each chart germ /: (V, p) = (R", 0) a vector
v=(7y,...,0,) € R", so that the vector Dg,* v corresponds to the chart
germ g -h, see Fig. 13.

Thus if we denote by K, the set of chart germs
h: (V,p)~ (R",0),
the physicist’s tangent space T, (V)py, equals the set of maps
v: Kp > R",
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V N
0
I
r change of
0 charts

R Dgo v R"
) _
Dao
—

Fig. 13

for which
v(g+h) = Dgyv(h)forallg € Z.

These maps form a vector space because Dg, is a linear map. For a fixed chart
h, clearly one can arbitrarily choose the vector v € R™, and the choice of all
other chart germs is fixed by this: the vector space Tp(V)py, is isomorphic to
R". An isomorphism is given by the choice of a local coordinate system. The
canonical isomorphism

TpN > Tp(NV)pn

with the algebraically defined tangent space (2.2), given the chart 2 =

(14, . . ., hy): (V,p) > (R, 0) assigns to the derivation X € T, N the vector
X(hy), . ..,X(h,)) € R™. The components of this vector are precisely the
coefficients of X with respect to the basis of T}, NV in (2.4); through identifi-
cation they are transformed by the Jacobi matrix because the basis in (2.4) is
mapped by the transposed Jacobi matrix.

The differential is, given local coordinate systems about the image and pre-
image points, described by the Jacobi matrix, as in (2.4), although formally
this is rather awkward to write down because of the many coordinate systems.

The definition of the geometer is the most intuitive one; it is derived from
the concept that the tangent vectors are velocity vectors of paths through the
point p at this point. Everything is of course again considered locally near the
point.

(2.6) The geometer’s definition. On the set W, of germs of
differentiable maps
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w:(R,0)~> @V, p)

(that is, the germs of paths passing through p) we formulate the equivalence
relation w ~ 7: < for every function germ f € &(p), (d/dr)f - w(0) =
(d/dt)f - 9(0). An equivalence class [w], for this relation, is a tangent vector
to the point p, see Fig. 14.

Fig. 14

Two path germs define the same tangent vector if and only if they define
the same “differentiation of functions in the direction of the curve’. To every
equivalence class [w] there is, in this way uniquely associated, the derivation
X of &(p):

_ d -
Xy(f) = afW(O)

This association defines an injective map
Wp/~=Tp(N)g=>TpN, [w]rX,

of the set of equivalence classes of path germs into the tangent space. This
map is also surjective since, if (in local coordinates) w(¢) = (ta,, . . ., ta,),
then X,, = 27, 4,(3/dx,). Indeed, one only needs to check an equality of
derivations X, = X, on the coordinate functions of a local coordinate system
(the values are precisely the coefficients with respect to the basis 3/0x,).
Hence one can also say: w ~ v if and only if for a local coordinate system
(d/de)w;(0) = (d/dt)v;(0) fori=1,...,n.

In this definition the tangent map is also very clear: a germ f: (V, p) >
(M, q) induces the map

Tp(N)g > TqM)g, [w]r [f-w],see Fig. 15.

The fact that this definition is compatible with the earlier definition (2.2)is
shown by the equation ’

Xr® = 5 690) = Xu@1) = Tof(Xu)O)
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Fig. 15

From now on we shall make no distinction between the different definitions
of the tangent space. Our intuition follows the geometrical definition; explicit
computations, where necessary, use the coordinate description (2.4).

A finite dimensional real vector space V is a différentiable manifold. A
choice of basis determines an isomorphism ¥ = R", which one can take as a
chart for an atlas. Because linear maps of R" are differentiable, the differenti-
able structure defined in this way is independent of the basis. The tangent
space T, V is canonically isomorphic to ¥ for each point p € V. One can
describe the isomorphism thus: the curve w,: £ b p + tv through p corre-
sponds to the vector v €V, and [w,] is the associated tangent vector (geo-
meter’s language). Naturally, if M has dimension 7, the tangent space Tp M is
always isomorphic to R" but, in general, there is no canonical, in some way
preferred, isomorphism. This we shall see even more clearly in the next
section.

(2.7) Exercises

1 Show that m(p) := {p € &(p)| ¢(p) = 0} is the only maximal ideal
of &(p).

2 Show that if p €M™ and n # 0, then the ideal m(p) in exercise 1 is
not the only ideal # 0, &(p) of &(p).

3 Show that if f: M~ N is an embedding and f(p) = ¢, then the map
f*: &@q) > &(p) is surjective and T, (f) injective.

4 Show that the maximal ideal m,, C &, is generated by the germs
X1, ...,X%Xp of the coordinate functions.

5 Show that if m,, C &, is the maximal ideal, then mX is the ideal of
the germs £, for which all partial derivatives of order < k vanish at
the origin.

6 Show that the Taylor series at the point zero defines a homomorphism
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&> R[[xy,...,xn]] into the ring of formal power series in
variables. The kernel of this homomorphism ism ;= Ny o mE
(see 5). _

Following the notation of 4: &, /m,, = R; consequently m,,/m2 =
R"™. Show that a germ f: (R", 0) > (R™, 0) induces f*: &,, > &,,
f*m,, Cm,, and so one obtains a linear map

My m
[HRRT =R 2 =R,
mm mn

This is given by the matrix ‘Df,.

Show that if the map f: $™ - R is differentiable, then there are two
different points p,q €S", so that Tp,(f) and T,(f) are both 0.
LetM={x ER"|x} =x}+x3+...+x2andx,>0},n>1.
Show that M is not a differentiable submanifold of R”.

Let f: R™ — R* be a differentiable map, so that for every real num-
ber ¢ one has f(¢+x) = ¢+ f(x). Show that f is linear.

Let f: R™ - R*, £(0) = 0 be a differentiable map, and let fi(x) =
t~'f(¢x). Show that f;(x), if extended to ¢ = 0 by Df,, depends
differentiably on ¢, x.

Let f: R - R be a differentiable function for which £(0) = f'(0) =
.. =f"D(0) =0, and £ (0) > 0. Show that there exists an
invertible germ 4: (R, 0) - (R, 0), so that f-# = %",
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Vector bundles

Through the construction of tangent spaces there is a vector space associated
to every point of a manifold. In general, in differential topology and in
topology, there is often occasion to attach a vector space to every point of

a manifold or of a topological space, so that one has not just one single vector
space, but rather a whole ‘bundle’ of vector spaces, as in Fig. 16.

topological space

A

vector spaces

Fig. 16

(3.1) Definition. A (n-dimensional real topological) vector bundle
is a triple (£, m, X), where w: £ — X is a continuous surjective map, every
E,:= m7'(x) has the structure of an n-dimensional real vector space such that:

Axiom of local trivielity. Every point of X has a neighbourhood U,
for which there exists a homeomorphism

fia ' (U)->UxR"
such that forevery x € U
fo= FIE: Ex> {x} xR
is a vector space isomorphism, see Fig. 17.

Notation. (E,n,X)is called a vector bundle over X; E is called the
total space; E, the fibre; X the base; and n the projection of the bundle.
Instead of (£, n, X) one usually writes E for short.

22
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x(U) UxR"

NS

m\_/

Fig. 17
(3.2) Definition. (f, U) as in the axiom of local triviality is called a

bundle chart. A bundle over X is called trivial if it has a bundle chart (f, X).

The vector bundles over a fixed space X form in a natural manner the
objects of a category. The corresponding ‘morphisms’ are the so-called
‘bundle homomorphisms’, which we shall now define.

(3.3) Definition. £ and £’ are vector bundles over X. A continuous

map f: E ~ E' is called a bundle homomorphism if

ELFE
X

is commutative and every f,: E, = Ey, is linear.

(3.4) Definition. If E' is an n-dimensional vector bundle over X and
E'C E is a subset, so that around every point in X there is a bundle chart
(f, U) with

f@U)NE"Y = UxRFCUXR",

- then (E', m| E’, X) is in a natural manner a vector bundle over X and is called
a k-dimensional subbundle of E, see Fig. 18.

For example if f: £ — F'is a bundle homomorphism of constant rank
rkf, = const, then

kernel f:= U kernel f,

xe&X

is a subbundle of £ and
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TR

Ex 2 E}
lx

/___\X
X
Fig. 18

image 1= leJX image f,
X

is a subbundle of F. This is obvious because we have

(3.5) Rank theorem for bundle homomorphisms. Let f: £ — Fbe a
bundle homomorphism of constant rank rkf, = k, of vector bundles over X,
then around every point x € X there are bundle charts (¢, U) for £ and
(Y, U) for F, such that forevery u € Uone has (¢ < f-¢7}),(¢*, ..., v™) =
@, ...,v%,0,...,0).

E\U—— F|U

¢¢ v

UxR™ ——UxR", (u,(@,...,o7™) b @, @, ...,0",
0,...,0).

Proof. First we may look at f on arbitrary charts and therefore
w.l.o.g. suppose that fis a bundle homomorphism U x R™ - U x R",
(u,v) = (u, f,(v)).Here f, = (£, ..., f1):R™ > R" is a linear map of rank
k, which may be described by a matrix (depending on u), and w.l.o.g. (after a
suitable permutation of coordinates in R™ and R™) the submatrix of the first
k rows and columns of the particular matrix f, is non singular. But then the
bundle homomorphism

¢: UxR™ > UxR™, ¢,(v) = (fa(0), ..., 2@, 0", ... ,o™)

is isomorphic on the fibre over u = x, and therefore w.l.0.g. isomorphic on
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every fibre (if the determinant of ¢, does not vanish at the point u = x, it
does not vanish at nearby points either). Using this bundle homomorphism as
a new chart for U x R™, we must look at f - ¢! and obtain

(Foo v @ 0% gl @), . . ., 2u()).

Since this still has rank k, the last n—k components g°*', ... g" (for given
u € U) in fact only depend on the first X components (', . . ., v*) of v;in
matrix notation:

f °¢_1 u =

So we may also write
(Foo vk @, ..., 0% gk 0 ., 0%), . gl (@, ..., vP)).

But then on the other side we have the chart ¢: U x R™ - UxR", ¢, (w) =
W W WRT =i L wR), L w =gl wR)), and

WefoMH@=@",...,v"%0,...,0). |

Having thus refreshed ourselves in the oasis of a proof, we now turn again
into the desert of definitions. First, we must mention another viewpoint from
which we may consider bundles as being contained within other bundles.

(3.6) Definition. If (F, n, X) is a vector bundle and X, C X, then
(m™1(X,), w71 (X,), X,) is a vector bundle over X,, which is usually written
as E'| X, and is called the restriction of E to X, see Fig. 19.

(3.7) Definition (‘section’). By a section of a vector bundle (£, m, X)
we mean a continuous map o: X > E with o(x) €E,, for allx € X. For
example, every vector bundle has a ‘zero-section’

X~ F
x b 0€E,, see Fig. 20.

(3.8) Note that if o: X - F'is a section, then 0: X > g(X) is a
homeomorphism.
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Fig. 19 X—-E
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image of the zero-section

image of a section
with two ‘zeros’

e

Fig. 20

In particular therefore, one can without harm identify the image of the
zero-section with the base space X itself since via the zero-section one has a

canonical homeomorphism.

From one vector bundle one can ‘induce’ new vector bundles. Suppose we
are given an n-dimensional vector bundle £ over Y and a continuous map

fiX->Y:
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E
Ly

X -

Thus we obtain the induced bundle f*E over X by attaching the fibre Ey,
to every x € X. This may be described as:

(3.9) Definition. Let (E, 7, Y) be a vector bundle over Y and
f: X — Y be continuous. Let us consider the graph of f and the canonical
homeomorphism graph (f) 5 X, see Fig. 21. Then by the composition

J*E:=(X xE)|Graph(f)c X xE
!
f*n \ Graph(f)cXxY

!
X

we define a vector bundle (f*E, f *n, X), which is called the bundle induced
by f.

Y /—*/k’ graph (f)

Fig. 21

(3.10) Note that the total space of £*E is {(x, €)Im(e) = f(x)} C
X x E. This space is also called the fibre product of f and .

The map f*E — F given by the projection X x E ~ F maps every fibre of
f¥E linearly and isomorphically to a fibre of E. Such maps are called bundle
maps. As a notion, including bundle homomorphisms and bundle maps as
special cases, one also considers the quite general linear maps which are only
required to map fibres linearly to fibres:

(3.11) Definition. If E, F respectively, are vector bundles over X, Y
respectively, and f: X = Y is continuous, then a continuous map f: £ > F'is
called a linear map over fif f maps every fibre E, linearly into Fy,):
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If these maps are isomorphisms £, = Fy(y as well, then fis called a bundle
map over f.

The reason for explaining, just here, the terminology of bundle homo-
morphisms, bundie maps, and linear maps is that the construction of the
induced bundle shows how one can write every linear map as the compo-
sition of a bundle homomorphism and a bundle map:

_ (3.12) Note thatif ¢: £~ Fis a linear map of vector bundles over f
and if f: f*F - F is the canonical bundle map, then there is one and only one
bundle homomorphism 4: E - f*Fso that ¢ =f -h:

ES *FLF
x Ly,

namely, h(v) = (7(v), $(v)) € X x E. This is called the universal property of
the induced bundle.

Up to now we have only considered ‘topological’ vector bundles. We now
wish to introduce the concept of differentiable vector bundle over a
differentiable manifold. In order to do this we must first discuss the concept
of the bundle atlas.

(3.13) Definition. Let (E, 7, X) be an n-dimensional vector bundle.
A set {(fa, Uy)la € A} of bundle charts is called a bundle atlas for E, if
Uge 4 Us = X. The continuous mappings given by overlapping of the bundle
charts

U, NUg > GL(n,R)
x b fﬂx °f01-3i
are called the transition functions of the atlas, see Fig. 22.

(3.14) Definition. A bundle atlas for a vector bundle over a differ-
entiable manifold is differentiable if all its transition functions are differen-
tiable. A differentiable vector bundle is a pair (£,%B) consisting of a vector
bundle E over M and a maximal differentiable bundle atlas B for E.

(3.15) Note that the total space of a k-dimensional differentiable
vector bundle over an n-dimensional manifold M is naturally an (n + k)-
dimensional differentiable manifold.
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Uee

Us
]Rn Rn

Fig. 22

Remark. The definitions and statements made up to now about
topological vector bundles apply in an obvious manner to differentiable
vector bundles.

We often encounter differentiable and topological vector bundles in a form
in which one could perhaps call them ‘pre-vector bundles’. Given are the usual
defining terms

E - total space
m  projection
X Dbase

B bundle atlas

with the sole omission that the topology on E is not yet defined. F' appears,
for the present, simply as the union of the (disjoint!) vector spaces
E, = m7'(x). However, one can construct this topology in a canonical way
and thereby obtain a real vector bundle.

As we obtain very many of our geometrically relevant vector bundles by
these means, we shall make the notion of a ‘pre-vector bundle’ more precise:

(3.16) Definition. An n-dimensional pre-vector bundle is a quad-
ruple (E, m, X, B) consisting of a set (1) E, a topological space X, a surjective
mapping m: E - X with a vector space structure on every E,:= 7 }(x), and a
‘pre-bundle atlas’ B, that is, a set {(f,, Uy)|a € A}, where {U,|a € 4} is an
open covering of X and

for TN (Ua) = Uy x R”

a bijective map which maps the fibre E, linearly and isomorphically onto
{x} x R" for every x € U, in such a way that all the transition functions
Uy N Ug ~> GL(n,R) of Bare continuous.
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(3.17) First, note that if (E, m, X, B) is a pre-vector bundle, then
there is exactly one topology on E, relative to which (£, n, X) is a vector
bundle and Bis a bundle atlas thereof.

(3.18) Second, note that if M is a differentiable manifold and
(E, m,M,B) is differentiable pre-vector bundle, that is, if all the transition
functions of B are differentiable, then by the maximal extension B of B we
clearly have a differentiable vector bundle (£, B) over M.

Our first application, for whose sake alone the whole sequence of defi-
nitions would have been worthwhile, is the construction of the tangent
bundle.

(3.19) Definition (tangent bundle). Let M be a differentiable
n-dimensional manifold and ¥ be a differentiable atlas of M. Then we are
given a differentiable pre-vector bundle (TM, n, M,B) as follows:

M= UpenyT,M

m: canonically (7,,M — p)
B=  {(flr, A,

fr: Y (U)~> U xR"
Xbpx@,...,v,)

where

is given by the ‘physical’ coordinates v; = X(#;) of X € T,M with respect to
(h, U), see (2.5) and Fig. 23.

The differentiable n-dimensional vector bundle TM over M given in this
way, which is clearly independent of the choice of atlas, is called the tangent
bundle of M.

pxR"

oM /] UxR"

\

h(U)lcR"
Fig. 23
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(3.20) Definition. Let M be a differentiable manifold. By a (differ-
entiable) vector field on M one understands a (differentiable) section
M- T™M
of the tangent bundle.

(3.21) Definition. If f: M — N is a differentiable map, then the
differentials

Tof: oM~ TyoN
defines a differentiable map

Tf: TM >IN
(as one can see from (2.4)), which is called the differential of f.

(3.22) Note that the differential is a ‘linear map of vector bundles’.
As remarked earlier (3.12), there is one and only one bundle homomorphism
TM — f*TN, so that the diagram

™ I TN

\ /

J*TN

commuctes.

(3.23) Exercises
1 Let U be a topological space and f: U~ M(n x k, R) a mapping into
the space of real (n x k)-matrices. Show that the map given by f

F:UxRF>R"
U, x) & flu)x

is continuous if and only if fis continuous. Show also that if Uis a
manifold then F is differentiable if and only if f is differentiable.

Remark. We have already made implicit use of this statement in the
text.

2 Let (E,m, X) be a vector bundle over a connected space X, let
f: E - E by a bundle homomorphism and f - f = f. Show that f has
constant rank.

3 Let (E,w, X) be a vector bundle over a connected space X and
f1 E— E abundle homomorphism with f - f = Idj. Show that
Fix (f):= {v EE|f(v) = v} is a subbundle of E.

4 Let £ be a vector bundle over X, let X, C X be a subspace and
i: Xy C X the inclusion. Show that i*E and E'| X, are naturally
isomorphic.
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Show that if (£, w, X) is a trivial vector bundle, then every induced
bundle f*E (for f: Y — X) is also trivial.

Let (E, m, X) be a vector bundle and my:= 7 |E — {zero-section}.
Construct a nowhere vanishing ‘canonical’ section of 73E.

Show that a vector bundle is trivial if and only if it possesses a bundle
atlas, all of whose transition functions are mapsinto {Id} C GL(n, R).
Over RP" = 8"/~ let us consider the 1-dimensional subbundle

Mai= {([x], M) 1x ES", A ER}

of RP" x R"*!, (Why is it a subbundle?) Prove that forn > 1,7, is
non-trivial.

Hint: consider n,, — {zero-section}.

Prove that every 1-dimensional vector bundle over S is either trivial
or isomorphic to the bundle

m
1
S!'~RP!

The surface 7, is also called the (unbounded) M6bius band (see

Fig. 6 and Fig. 24).

Prove: if one removes a point from RP**!, then one obtains a mani-
fold which is diffeomorphic to the total space of 1,,:

RP**! —pran,

Hint:wlog. pt=1]0,...,0, 1].\

Let n > 1. Show that there exist precisely two isomorphism types
of n-dimensional vector bundles over S (see exercise 9).

Show that TS = 5! x R. ,

Show that the tangent bundle of S? possesses an atlas with two
bundie charts.

Let M be connected. Show that a differentiable map f: M~ N,
whose differential Tf is everywhere zero, must be constant.
Show that if f: M - N is an embedding, then sois Tf: TM - TN.
Construct a vector field on S? which has exactly two zero points.
Construct a vector field on S? which has exactly one zero point.
Let M C R" be a submanifold. Show that

™™ = {(x,v) EMxR"|v € T.M CR"}.
Show that the submanifold of C**!
E = {(zo,...,z,)EC" |22 + ... +22 =1}

is diffeomorphic to the total space of the tangent bundle of the
unit sphere ™.
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Linear algebra for vector bundles

The algebraic operations which one employs in linear algebra for vector
spaces and homomorphisms can usually also be given a meaning on vector
bundles and bundle homomorphisms, by operating in the fibres at every
point of the base, as one has learned to do in linear algebra. For example,
one constructs the direct sum E @ F (the so-called ‘Whitney sum’) of two
vector bundles £ and F over X, by using the direct sum £, ® F, as fibre of
E @ F at every pointx € X, etc.

Of course, we must explain more precisely the bundle structure of the
families of vector spaces, which arise in this way.

(4.1) Definition as typical example. Let £ and F be vector bundles
over X with bundle atlases W and B. Then a pre-vector bundle £ ® F is given
in the following manner:

EeF= U E.oF,

xeX

projection: canonical
atlas: {poy, UNVIe,0)EA, (Y, V)EB}

where ¢ ® | is to be understood in the following way:

Ox @Y
E.0F, —> {x}xR" e R*.
The vector bundle £ @ F associated with this pre-vector bundle is called the
Whitney sum of E and F.

(4.2) Supplement. If f: E— E'and g: F > F' are bundle homo-
morphisms, then a bundle homomorphism f@ g: E® F— E'® F' is defined in
a canonical manner.

'(4;3} Note that if E and F are differentiable, then in a natural
manner so is E'® F;if fand g are differentiable, then sois f® g.

(4.4) Further examples. Analogously, one transfers other notions
of linear algebra ‘fibrewise’ to the category of topological, respectively differ-
. entiable vector bundles over X. Thus, for example, one obtains:

33
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(i) tensor product E® F,
(ii) quotient bundle E/F (when F is a subbundle of F),
(iii) dual bundie E*,
(iv) homomorphism bundle Hom (E, F),
(v) bundle Alt*(E) of alternating k-forms,
(vi) bundle AE of k-fold exterior powers,

for vector bundles £, F over X and, in a natural manner also, the relevant
bundle homomorphisms.

Remark. One must note carefully that some of the functors of linear
algebra, which have here been carried over to bundles, are contravariant. For
example, Hom in the first variable : bundle homomorphisms f: 4 = B and
g: F - F' induce a bundle homomorphism

Hom (f, g): Hom (B, F) - Hom (4, F"),
namely, by
- F
|s

Loy

~
n—

Correspondingly, the bundle charts of Hom (£, F) are obtained from bundle
charts (¢, U) of E and (¢, V) of fin the form

Hom (¢, ¥): Hom (E, F)[UNV = (UNV) x Hom (R", R*)
=UNV)xR™,

The term orientation requires careful consideration. Naturally, one orients
a vector bundle by orienting each fibre, and in such a way that, for an
arbitrary continuous path in the base, the orientation does not suddenly
Yump’.
(4.5) Definition (orientation of a vector bundle). Let £ be an
n-dimensional vector bundle over X. A family

0 = {Ox}xEX

of orientations 0, of the fibres F, is called an orientation of E if about
every point of X there is a bundle chart (f, U) for E, so that by means of
fut E, = R" the orientation o, for every u € U is transferred to the same
fixed orientation of R".

Whereas up to now we have been able to transfer the constructions of
linear algebra simply by way of fibres or by way of charts to vector bundles,
we now for the first time come upon a global phenomenon: for one vector
space, one fibre, we can always choose an orientation, but the whole bundle
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need not be orientable. If one were to orient a specific fibre F,, then this
orientation simply extends through the charts (f, U) in (4.5) to the fibres
over points in the neighbourhood U of x.

If, however, one attempts to orient all of £ in this way, by passing from
chart to chart, then one notices with certain bundles that, at some point,
this procedure has to lead to a jump in the orientation, as illustrated by
Fig. 24. However, one must at times also pose questions of orientation for
non-orientable bundles (for example in the proof of non-orientability or
whether one may apply a certain known theorem for orientable bundles to
non-orientable bundles also), and for this it is very useful to employ the
concept of orientation cover, which is defined for every bundle.

first oriented

Fig. 24

(4.6) Definition and notation. Let (E, m, X) be an n-dimensional
vector bundle and A"F the 1-dimensional nth exterior power bundle. If one
defines an equivalence relation in A"E — {zero-section}by x ~y ¢y = Ax
for some A > 0 and introduces the quotient topology on the set X(£) of
equivalence classes, then the canonical projection

X(E)

|

X

is a two leaved covering of X and is called the orientation cover of E, see
Fig. 25.

The relation known from linear algebra between orientation and n-fold
exterior product (two bases (vy, ..., v,)and (wy, . .., w,) have the same
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X (E)

-—
BN

Fig. 25
some ori/entation of Ey
m . ?
/ X 7
Ex opposite orientation
of Ey
Fig. 26

orientation if and only if v; A ... A D, and wy A . . . A wy, differ only by
some positive factor) shows immediately that )?(E), as a set, is canonically
the same as the set of all orientations of all fibres, and #7*(x) consists of the
two orientations of £, see Fig. 26. One may also think of X(E ) in this
way ; the description as

(A"E — zero-section)/~
has the technical advantage of immediately giving the topology on )?(E).

(4.7) Note that E is orientable if and only if X(E) is a trivial cover,
that is, isomorphic to X x Z,. An orientation of £ is then to be thought of as
a section X —O—>X(E) (continuous mapping with 7 - ¢ = Idy).

(4.8) Note that the cover X(E) is also canonically isomorphic (that
is, could also have been described as) (A"E * — zero-section)/~ and to
(Alt"E — zero-section)/~.
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(4.9) Definition (orientation of a manifold). By an orientation of a
manifold M, one means an orientation of the tangent bundle 7M.

Another concept taken from linear algebra, the carrying over of which to
vector bundles requires some attention, is that of scalar product.
If V'is a real vector space then, as is known, one can consider the bilinear

forms
VxV >R

as the elements of (V ® V)*. If £ is a vector bundle over X then, by (4.4), the
bundle (F ® E)* is defined and we come to:

(4.10) Definition (scalar product, Riemannian metric). If (F, 7, X)
is a vector bundle then, by a scalar product or a Riemannian metric for E, we
mean a continuous section

s: X~ (E®E)*

such that for every x € X the bilinear form determined by this
E.xE, >R
(v, w) b (v, w),

is symmetric and positive definite. The metric is differentiable if X is a
manifold and £ and s are differentiable.

(4.11) Remark. If the vector bundle E is equipped with a
Riemannian metric and F C E is a subvector bundle, then

Ft= U Fi
x€EX

is also a subvector bundle.

Proof. If (f, U) is a bundle chart of E, which represents F|U as
UxRFx0)CUxR" and ifv,, ..., v, are sections of £|U, which under
f correspond to the canonical basis vectors of R", then one obtains by means
of the Schmidt orthogonalisation process sections v}, . . ., v;, of E|U, which
form an orthonormal basis of £, for every x € U, and in such a way that
vi(x), . . . , U} (x) precisely span F, and v}, (%), . . . , V), (x) span Fy.

Therefore,

fEIlU > UxR"
PREZE) R S W 63 BN 20 VIS W |

defines a bundle chart, which represents F|U as U x R* and F*|U as the
complementary U x R" %, (]

Since f' is obviously orthogonal in every fibre, we can note the following
as a subsiduary of the proof:
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(4.12) Note that every vector bundle with a Riemannian metric
possesses a bundle atlas consisting of fibrewise orthogonal bundle charts.
In particular, the transition functions of such an atlas are maps into O(n) C
GL(n, R).

(4.13) Note that if E is equipped with a Riemannian metric and
F C F is a subbundle, then the composition

F'CE— EJF

Proj.
is a bundle isomorphism F* = E/F; one can thus consider £/F simply as F L

For dimensional reasons one has only to consider that the kernel of this
composition vanishes. For every fibre this means F’ i NF,=0.

This clear presentation of the quotient bundle as an orthogonal comple-
ment should, in particular, be kept in mind when considering the normal
bundle of a submanifold.

(4.14) Definition (normal bundle). If M is a differentiable mani-
fold and X C M is a submanifold, then ‘normal X’

LX:= (TM|X)/TX
is called the normal bundle of X in M, see Fig. 27.

Fig. 27

(4.15) Definition (Riemannian manifold). A manifold M, whose
tangent bundle has a differentiable scalar product, is called a Riemannian
manifold (‘a Riemannian manifold is a pair (M, <,>), consisting . . .").
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(4.16) Note that if M is a Riemannian manifold and X C M a sub-
manifold, then the normal bundle of X in M is canonically isomorphic to
(TX)", see Fig. 28.

Fig. 28

Now we come to the important question of the existence of Riemannian
metrics on vector bundles. Let (F, m, X) be a vector bundle. We look for a
section

s: X > (E®E)*,

so that every s(x) is symmetric and positive definite. It is, of course, quite
easy to find such a section for E|U for every bundle chart (f, U) of E, we
need only to begin with the usual scalar product in R®; F|U= U xR". If
we do this for every chart of a bundle atlas, then we come to the following
situation: We have ‘local’ sections (illustrated in Fig. 29):

ﬂ’

L X

bundle (E® E)*

| |

Fig. 29

However, we are looking for a global section (illustrated in Fig. 30):



40 Introduction to differential topology

symmetric, positive
AT definite

Fig. 30

One often faces such a problem in topology, and it can be quite difficult or
insoluble (orientation!). However, there is help at hand if the property
required of the vectors s(x) is a ‘convex’ property, that is if, with s,(x) and
$,(x) also, all

(1 =1)51(0x) + £52(x)
have this property for ¢ € [0, 1]:

fibre, here equal to (E, ® E)*

Fig. 31

Symmetry and positive definiteness (see Fig. 31) are such convex properties.

The technical tool, with which one stitches together locally given sections
to form a global section — something which the differential topologist must
always have at hand - is a partition of unity:
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(4.17) Definition. Let X be a topological space. A family {To}qea
of continuous functions

7o X = [0, 1]

is called a partition of unity if every point in X has a neighbourhood in which
only finitely many of the 7, are different from zero and for all x € X we have

Y Talx) = 1.
aEA
(4.18) Definition. Such a partition of unity is said to be subordinate
to a given covering of X if for every a the support of 7, (that is, Supp 74:=
{x € X|7,(x) # 0}) is entirely contained in one of the covering subsets.

(4.19) Theorem quoted from general topology (see [8], p. 171;
for manifolds see Chapter 7.): If X is paracompact, then for every open cover
there exists a subordinate partition of unity.

(4.20) Corollary. If £ is a vector bundle over a paracompact space
(e.g. a manifold), then one can equip E with a Riemannian metric.

Proof. Let U be an atlas for E and {7,}4< 4 2 partition of unity
subordinate to {U}( . yeu- For every a we choose a bundle chart (f, Us),
so that Supp 7, C Uy, and a Riemannian metric s, for E|U,. Then 745, is a
continuous section of (E ® E)* defined on all of X, if one understands 7,5
as being given by the zero section outside the support of 7, see Fig. 32.

Sex
(EeE)*
T So
-
Fig. 32
Then si= X, = 4 ToSq is clearly a Riemannian metric for X. O

(4.12) Remark. On differentiable manifolds there is even a differ-
entiable subordinate partition of unity for every open covering, that is, the
To can be chosen to be differentiable, and consequently every differentiable
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vector bundle also has a differentiable Riemannian metric. Because of the
great importance of differentiable partitions of unity in differential topology,
we do not wish to close our treatment of them with this remark. Their
existence will be proved in detail in Chapter 7 and, until then, we shall
refrain from making use of them.

10

11

12

13

(4.22) Exercises
Show how the bundle homomorphisms

fiE~>F

can be considered as sections in £*® F = Hom (£, F).

Prove that if £, ® E', = E3 and if two of the vector bundles E; are
orientable, then the third is orientable as well.

Let £ be an orientable vector bundle and F C E a subbundle. Show
that E/F is orientable if and only if F is orientable.

Prove that a vector bundle is orientable if and only if it possesses

a bundle atlas, all of whose transition functions are maps in
GL*(n,R):= {4 € GL(n,R)|det 4 > 0}.

Let F be a vector bundle. Show that F @ E is orientable.

Let (E, m, X) be a vector bundle and #: X(E) — X its orientation
cover. Show that 7 *E possesses a (canonical) orientation,

By the orientation cover M — M of a manifold M, one means the
orientation cover of M. Show that the manifold M is orientable.
Show that RP” is orientable for odd values of # and non-orientable
for even values of n.

Show that for every submanifold M C R" the Whitney sum

TMe 1M

of the tangent bundle and the normal bundle is trivial.

A vector bundle is stably trivial if its Whitney sum with a suitable
trivial bundle is trivial. Show that TS" is stably trivial.

Let M be a manifold and Ay, the diagonal in M x M:

Appi= {(x,x) EM x M |x € M}.

Show that Ay, is a submanifold of M x M, for which the tangent
bundle and normal bundle are isomorphic: TAy; = LAy,

Show that if (£, w, X) is a trivial bundle with a Riemannian metric,
then there is a bundle isomorphism

E = X xR",

which is an isometry in every fibre.

Let £ be a vector bundle over X and ¥ a bundle atlas for E, all of
whose transition functions are maps into O(r) C GL(n, R). Show
that there is precisely one Riemannian metric (,) on £, such that
all charts of A are isometries on the fibres.
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14 Let X be a space (e.g. a manifold), on which there is a partition of
unity subordinate to every open covering. Show that for every ‘line
bundle’ (that is, 1-dimensional vector bundle) L over X,L ® L is
trivial.

15 Show that a product of two non-empty differentiable manifolds
M x N is orientable if and only if both factors M, N are orientable.

16 Let T= {(z, w) ECxC|lz| = |w| = 1} be the torus,and 7: T~> T
the involution 1(z, w) = (— z, ). Using (1.11) exercise 4, give M/t
the structure of a differentiable manifold. It is called the ‘Klein
bottle’. Is it orientable?
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Local and tangential properties

For the local study of manifolds it is, above all, important to see whether

a germ f: (M, p) =~ (N, q) is invertible, that is, whether a mapping maps a
neighbourhood of p diffeomorphically onto a neighbourhood of g. The
functorial property shows that for such a germ the differential 7, f: T,M —
T4N is an isomorphism and the differential calculus shows that this condition
is sufficient.

(5.1) Inverse function theorem. A differentiable germ is invertible
if and only if its differential is an isomorphism.

_ If we introduce charts k: (M, p) > (R™, 0) and k: (V, ) ~ (R", 0), then
finduces the germ

g =k-f-h:(R™,0)~>(R",0).

The differential is then a linear map R™ — R", which, by (2.4), is described
by the Jacobi matrix at the origin Dg, . If this is invertible (the differential
an isomorphism, in particular m = n), then some representative g of g is
invertible in some neighbourhood, that is, & and hence also f are invertible
(see Lang [2], chapter 17, section 3, pp. 349).

In a yet more general situation a germ is described by its differential:

(5.2) Definition. The rank of a differentiable map f: M > N at
the point p € M (the rank of the germ f: (M, p) = N) is the number

rkpf =rkT,f.

(5.3) Remark. The rank of a map is lower semi-continuous. If
rkpf =r, then there is a neighbourhood U of p, so that vk, f>r forall g € U.

Proof. After choosing charts, one must show that the rank of a
Jacobi matrix Df cannot decrease locally around p € V C R™. The com-
ponents of this matrix describe a differentiable map:

. of;
Df:V->R™'" gt (EL(Q)) .
X

44
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Because rk, f = r, there is a (r x r)-submatrix of Df,, (w.l.o.g., consisting of
the first r rows and columns), whose determinant does not vanish at the
point p, that is, the map

e RTT R

p > Dfpy ——— submatrix —> determinant

neither vanishes at the point p, nor in a neighbourhood U of p; the rank
cannot decrease there. g

Of course, arbitrarily close to p, the rank can be greater than rk,f,
example:
f:R-> R, x b x?
has the differential Df, = 2x # 0 for x # 0.
If a germ f: (M, p) > (V, q) is described for suitable charts around p and

q by a linear map, that is, if there is a linear map g: R™ = R" and charts
h, k, so that the following diagram commutes,

(M,p) —— (N.q)
h k

(R",0) —— (R".0),

then the differential 7} is given by the Jacobi matrix, and the Jacobi matrix
Dg of the linear map g: x > y with

Yi = Z aijXj
J

is (0y;/0x;) = (a;;), therefore constant. Thus the rank of a representative f is
locally constant, that is, the same as the rank of the matrix (a;;). This con-
dition on the rank is not only necessary, but — as we shall soon see — also
sufficient for describing the germ f by the differential 7,,f = g, subject to the
choice of suitable charts.

By suitable choice of bases, a linear map of rank r can always be taken as

g R™ -»> R™, X1 e X)) (X0, %,0,...,0).

We wish to say that a germ has constant rank if it possesses a represen-
tative with constant rank.

(5.4) Rank theorem (Fig. 33). If f: (M, p) > (N, q) is a germ of
constant r:z_mk r, then there are charts h around p and k around q, so that
thegerm k- f-h™': (R™, 0) > (R", 0) is represented by the map

X1, X)) P (X, ...,%,,0,...,0).
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_ __._TO___ —_ o - R’

(X) yons Xpp) s (%%, 0,..,0)

Fig. 33

Proof We may immediately assume f: (R™, 0) > (R", 0); we then
find an (r x r)-submatrix of Df, which is regular at the origin, and after
exchanging coordinates in R™ and R" we obtain a matrix

ofi

, I1<i,j<r
ax}‘

which is regular at the origin.
Let #: (R™, 0) > (R™, 0) be represented by the map
h: (xh e axm) g (fl(x)7 .. ,fr(x)axr+la .. :xm):

then the Jacobi matrix of A has the form

ooy |}

Dh= 1 0
0 m—r
0. :

1

det(D hy) = det( f,/¢ x;(0)),

r;<r

Thus, by the inverse function theorem, 4 is an invertible germ and the diagram

(R".0) —— (R",0) Xpeer s X = (1 (00 £y(6))

N

(R™.,0) (1000 L) X e X
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shows that the germ g = f- k™! is represented by the map
(5'5) (Z], e ’Zm) g (Zla e ’Zr’gr+1(z): (AL 5gn(z))‘

The Jacobi matrix of g therefore has the form

Dg =

? A(z) > n—r,

Al2)=(Cg/cz)).

Transformation in the pre-image space leads this far, and we have only made
use of the fact that rkof =>r.

But now since rk(f) = rk(g) = rk(Dg) = r in a neighbourhood of the
origin, in this neighbourhood we must have A(z) = 0, therefore

ag;
() a_?zo for r+1<i<n, r+1<j<m.
i

Let the germ k: (R, 0) - (R", 0) be represented in the image space by a map
(yl>-°'ayn) s (yls"'ayr:

yr+l_gr+1(yla .. 7yr>0, LR 30)3 .. ,ynmgn(yl, LRI >yr,0a' . 30))'
The Jacobi matrix of k has the form

and thus k is invertible and &k <A ™! = k - g is represented by the composition
(Zl, e ,Zm) T (Zla LIRS ,Z,.,g,..,_l(Z), e sgn(z))

i? (Zly e ,Zr,grﬂ(z)_grﬂ(zly s Zp, O: R a0)3 e

&:(2) —g.21,...,2,,0,...,0)).

If we now restrict ourselves to a cube neighbourhood |z;| < e for sufficiently
small €, then '
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g,-(zl, e ,Z,,)—g,-(zl,. . ,Zr,O, e ,O) = 0, r+1<i<n
on account of (*), thus & - g is represented by

(Zly"'yzm)H(Zb--"zr,O,---aO)‘ D

The rank theorem, in other words the inverse function theorem, dominates
the elementary geometry of differentiable maps.

If rk, f is maximal, that is, the same as the dimension of M or V, then the
rank is locally constant (5.3), and the rank theorem is applicable.

(5.6) Definition. A differentiable map f: M —> N is called:
a submersion if rk,f = dimN,

an immersion it rk,f = dimM,

for all p €EM. A point p € M is regular if the differential T}, f is surjective. A
point ¢ €N is a regular value of fif every point of f™'(q) is regular. Instead of
‘non-regular’ one can also say singular or critical.

Note in particular that a point g € N is a regular value, if /™ (q) = @, that
is, if it is not a value.
The map f'is then a submersion if and only if every point p € M is regular,
or every g € N is a regular value.

The statement that f'is an immersion means that the differential 7f is
injective at every point p € M. Then by the rank theorem, locally in specific
coordinates, f has the form

Gery e X)) P XX, 0, ..., 0).

In particular, every point of M possesses a neighbourhood which is embedded
by f. However, f need not be injective, see Fig. 34, and even if f'is injective,
£ need not be an embedding by definition (1.10). The obvious counter-
example is illustrated in Fig. 35.

(=X

Fig. 34
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f (R) is not a manifold

_________

Fig. 35

If, however, M is compact, f: M - N an immersion and injective, then f is an
embedding; more generally:

(5.7) Theorem. Let f: M~ N be an injective immersion and
f: M-~ f(M) be a homeomorphism where f(M) C N carries the subspace
topology. Then fis an embedding.

Proof. If p € M and f(p) = g € N, the rank theorem yields charts
h:U->UCR™andk: V- V' CR™ xR® around p and q, so that finduces
the map

f=k-f-n': xb(x0).

U is then chosen so small that f'is defined on all of U’, and U’'x B C V" for
some neighbourhood B of 0 in R®. Then let V be so shrunk that U'x B = V",
Since f is a homeomorphism, U = f ™' W for some open neighbourhood

W of g, and for the chart k":= k|(V N W) we have K'(f(M) NV N W) =

R™ N k'(V O W). Therefore, f(M) is a submanifold of N and f: M - f(M) is
both locally invertible and bijective and is therefore a diffeomorphism.

Fig. 36 illustrates this proof. |

M
U - ‘////,//////%//// ‘
lh
¥
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For an immersion f: M — N, as well as for an embedding, one can define a
normal bundle. Since by definition (5.6), the map Tf: TM - TN maps every
fibre injectively, the induced homomorphism (3.12)

h:TM ~ f*TN
- of vector bundles over M is injective, and the quotient bundle

(5.8) f*TN/n(TM)
is called the normal bundle of f.

(5.9) Lemma. If q is a regular value of the differentiable map
M n+k > N™ then f'(q) is a differentiable submanifold of M with co-

dimension n.

Proof. If f(p) = q, then by (5.3) the rank of faround p is locally
constant because it cannot become larger than n. Therefore, using the rank
theorem, one can introduce local coordinate systems around p and q so that,
with respect to these coordinates in a neighbourhood U of p, f is given by

(xl,...,x,,.,.k) > (xl,...,xn),

p=(0,...,0), qg=(,...,0).
Then f~'(g) N U=R* N U CR"** N U; thus f~(q) is a submanifold of
dimension k. O

This lemma is the most important tool in showing that a subset of a
differentiable manifold is a submanifold, or in constructing manifolds. For
example, the contour lines of a (geographical) map are submanifolds, just
so long as the height is regular, see Fig. 37. By way of illustration we give
the following:

(5.10) Application. The set O(n) of real orthogonal (n X n)-matrices
is a submanifold of R" ", the set of all matrices, of dimension % *n +(n —1).

ﬁ‘ height
critical value

regular value
critical value

Fig. 37
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Proof. A matrix A € R""" is orthogonal if and only if ‘44 is the
identity matrix £. In any case, 44 is symmetric. Therefore, O(n) is the pre-
image of E under the map

R > 8, A+ 44

into the set S of symmetric matrices (§ = R z%"*1)),
In calculating the differential of f we consider the mapping of the paths
w(A) = A4 + X\ - B through the point 4 with f(4) = E"

f(A+2AB) = E+\(4B + 'BA) + \*- 'BB.

Thus, T4 (f) (R" ") contains precisely all matrices of the form (4B + ‘BA),
where ‘A4 = F and B €R"" " is arbitrary. These are, however, precisely all
the symmetric matrices, as one can see, if for a symmetric matrix C, one puts
B =} AC. Therefore E is a regular point of f, O(n) CR"™ " is a submanifold,
and its codimension is dim (S) = 4n(m + 1). ]

(5.11) Definition. Let M, N be differentiable manifolds and let
L C N be a k-dimensional submanifold. A differentiable map f: M —> N is
called transverse to L if the transversality condition

(Trp)  Tpf(TpM)+ Trpyl = TypyN if f(p) EL,
is satisfied for all p € M, see Fig. 38.

f{M) f (M)

transverse not transverse

Fig. 38

Such pictures must of course be regarded with care: the behaviour of the
map cannot be read off from its image set alone.

The transversality condition imposes a requirement only on the points
from the pre-image of L. For example, a map, whose image does not meet
the submanifold, is certainly transverse; and if dim M < codim L, then f'is
transverse to L if and only if f(M) N L = @, because the condition (77,)
cannot otherwise be satisfied. The sum of vector spaces in the transversality
condition need not be direct, for example every map is transverse to L = N.
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Equivalently, one can also formulate: (7r,) < the composition of linear
maps

.M P T,N - T,N/T,L, 7 = projection,
p

is surjective, for ¢ = f(p) € L. The condition states that the tangent space
of M is to be mapped ‘as skew as possible’ to that of the submanifold L.

If L is a point, then the map fis transverse to L if and only if this point
is regular.

(5.12) Theorem. If f: M — N is transverse to the k-codimensional
submanifold L C N and f (L) # @, then f1(L) is a k-codimensional sub-
manifold of M and, for the normal bundles, one has a canonical bundle
isomorphism

L) = D).

Proof. Let f(p) = q €L, and in some neighbourhood V of g in
suitable local coordinates let V= V' C R":

LNy =Rk Ny’

where R™ ¥ C R" is given by the vanishing of the last k coordinates. Let

m: R™ > R”* be the projection on these last coordinates. Then the transversality
condition in a neighbourhood U of p states that 0 € R* is a regular value of
the map '

U— V=V — Rk,
f wlv

Therefore the pre-image of zero, namely, £~ (L) N U, is by (5.9) a submani-
fold of codimension & of U and, therefore, ™! (L) C M is a kodimensional
submanifold (this is a local condition!), see Fig. 39.

The isomorphism L(f™L) - f*(L L) is induced by the tangent map

TFIf ' (L): TM I\ (L) - TN|L.

It induces a map TM |f~}(L) - (TN |L)/TL,lwhich is linearly epimorphic on
every fibre (transversality condition) and, because T(f ' L) obviously lies in
the kernel, the map

T™MIf'@) | INIL
T(f'L) TL

is an isomorphism on every fibre, which induces the required isomorphism
by (3.12). O
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-

Fig. 39

The pre-image of a regular point g € N therefore has a trivial normal
bundle, since it is induced from the trivial bundle T,(V) > {q}.

An arbitrary point of course does not need to be a regular value, nor does
an arbitrary map need to be transverse; an arbitrarily prescribed closed set
A C M can arise as the pre-image of a point ¢ € M under a differentiable
mapping M > N (14.1). However, as we shall see in the following chapters,
such pathological maps are ‘unlikely’, transversality being the usual case. The
concept of transversality thus plays a decisive role in differential topology.

We close this section with a further application of the rank theorem:

(5.13) Theorem. Let f: M = M be a differentiable map of a differ-
entiable connected manifold into itself with f - f = f, then f(M) is a closed
differentiable submanifold of M.

Proof. We have f(M) = {x € M |f(x) = x} = fixed point set of f,
and this is closed.

It is sufficient to consider the map fin a neighbourhood of a point of
f(M). By the rank theorem it then suffices to show that the rank of fis
constant in some neighbourhood of every point of f(M). We first show
that rk,, f is constant on f(M).

If p € f(M), then the differential of f at p satisfies the equation T, f < T, f =
T,f; therefore as above

image (T,f) = {v € T,M|T,f(v) =v} = kernel (Id — T, f),
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and thus, in particular,
rkpf+rk(ld—Ty,f) = dimM

for all p € f(M). Since both ranks on the left side can only increase in a
neighbourhood of a point, rk, f is locally constant on f(), hence constant
because f(M) is connected.

Now let rk, f = r for p € f(M), then there is an open neighbourhood U of
fM),sothat rk,f=r forall g EU.But rky f=rko(f <) =rk(Trqyf - Tof) <
rk ¢y f = 1, therefore rk, fis constant on U. O

In general, if 4 C X and f: X - A is a mapping, so that f|4 = Id,, that
is, a mapping which throws X onto A, keeping each point of 4 fixed, then
one calls f'a retraction. We have thus shown that the image of a differentiable
retraction is a differentiable submanifold. A continuous (non-differentiable)
retraction can, however, have very wild image sets.

(5.14) Exercises
1 Let R+ R be a differentiable sum of the manifold R with itself
(1.8),andlet f: R + R —> R? be the map with the components
f1() = (x,0) and f,(») = (0, exp (). Show that fis an injective
immersion, but not an embedding, and draw a sketch of the image.
2 Let the map f: R+ §' = C have the components

f1@) = (1 +exp (1)) - exp (ir),
falexp (it)) = exp (it), with S§' = {z€C|lz|=1}.

Show that fis an injective immersion, but not an embedding and
draw a sketch.

3 (a) Show that if ¢ € R is irrational, then the subgroup generated by
exp (2mic) is dense in §* = {z €C| |z| = 1}.
(b) Themap R->Cx C

t b (exp (ait), exp (bit))

is an immersion if b # 0; show that if a/b is irrational, then it is
injective and the image is dense in S* x §* C C%.

4 Let A be a symmetric real (n x n)-matrix, and 0 # b € R, show that
the quadric

M = {xER"|%x4x = b}

is an (n — 1)-dimensional submanifold of R".
S For an integer d > 0 the Brieskorn manifold W*" ~'(d) is defined as
the set of points (zo, . . . ,z,) EC"*!, which satisfy the equations

28424+ ... 422 =0
zoz'0+zlz'l+...+2n2—',, = 2

Show that W2"~1(d) is a (2n — 1)-dimensional manifold.
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Let CP" be a complex projettive space, and

m
Z Z;w; = 0}
i=0

i=

H(m,n) = [(z, w) €ECP™ x CP"

form <n,wherez = [zq,...,2,] and w ={wy, ..., w,] are
homageneous coordinates. Show that H(m,n)isa 2(m +n —1)-
dimensional manifold. Corresponding manifolds are also obtained
from the real projective spaces. They are called Milnor manifolds.
Show that the manifold of orthogonal matrices O(r) is compact, the
group operations

O(n) x O(n) > O(n) (multiplication),

O@m) » O(n), A A7,
differentiable, and that O(n) has two connected components.
A k-frame in R” is an orthonormal &-tuple (v, . . . , v;) of vectors
in R™. The set VX C R" x ... x R" (k factors) of k-frames in R" is
called a Stiefel manifold. Show that V¥ is a compact differentiable
manifold of dimensionn «k —3 < k- (k + 1).
Show that the set U(n) of unitary matrices, considered as a subset
of O(2n), is a submanifold of O(2n) of dimension n>.

Let f: M = N be a differentiable retraction and p € f(M). Show that
there is a local coordinate system around p, in which f is given by

Gy ooy Xy X)) B CGery oo v5Xp,0,...,0).

Note that here, unlike in the rank theorem, one cannot choose
charts independently in the image and pre-image manifolds!
Let M, N, L be differentiable manifolds, and

M-— N <« L
f g
differentiable maps, so that for every point p € M and g € L with
f(p) =g(g) =r €N, we have
T, f(TpM) + qu(TqL) = T(N).
Show that the fibre product of fand g:
{@.0) EMXLIf() = gla)

is a differentiable manifold.
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Sard’s theorem

The aim of this chapter is the proof of the following theorem.

(6.1) Sard’s theorem. The set of critical values of a differentiable
mapping of manifolds has Lebesgue measure zero.

In particular, if f: M —R" is differentiable, then for almost all & the set
f71{b} C M s an n-dimensional submanifold; in other words the differen-
tiable system of equations on M

fi(x)= b,
flx)y=b,

has (given f') for nearly every choice of b; an n-codimensional submanifold of
M as its solution set (5.9).
We now come to more detailed explanations:

(6.1) Definition. A subset C C R™ has measure zero (almost every
point is not in C), if for every € > O there is a sequence of cubes W; CR"
with C C U, W; and Z7_, | W;| <e. Here, | W| is the volume of the cube W,
that is |W| = (2a)" if W = {x]Ix; —x?| <a}.

A countable union of sets of measure zero again has measure zero, for if
we have C C U2, C, and C, C U2 WY with =32, [W/| <¢€/2”, then C C
U;» Wy and Z; | WY'| <e. For similar reasons it does not matter if one
takes open or closed cubes, rectangular blocks, or balls.

(6.2) Lemma. Let UC R™ be open, C C U a set of measure zero,
and let f: U= R™ be differentiable, then f{C} also has measure zero.

Proof. Since U is the union of a sequence of compact balls, one may
assume that C is contained in a compact ball, and that the cubes of a covering
of C according to (6.1) are also contained in a somewhat larger ball K C U.
The mean value theorem of differential calculus provides an estimate

56
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fx+h) = f(x)+R(x,h)
[R(x,h)|<cl|h|

forx,x + h €K, for some constant c. If, therefore, a cube W C K has edge
length e, |x —x°| <+/m -a forx €W, and |f(x) — f(x°)| <c */m + a. Thus
f(W) lies in a cube of volume (2+/m+c)™| W| and, because the constant
(2++/m-c)™ is independent of the cube, the assertion follows. O

This lemma makes it meaningful also to speak of sets of measure zero in a
differentiable manifold.

(6.3) Definition. A subset C of a differentiable manifold M has
measure zero if for every chart h: U~ U’ C R™ the set h1(C N U) C R™ has
measure zero.

Since a manifold has a countable base for its topology, from every atlas
one can choose a subatlas with countably many charts (Kelley [8], chapter 1,
theorem 15, p. 49); if one applies lemma (6.2) to the chart transformations in
such an atlas, then it follows that C has measure zero if for all charts A, of a
chosen fixed atlas h1,(C N U, ) has measure zero in R™.

A corresponding definition for a topological manifold has no meaning
because non-differentiable homeomorphisms can map a measure mero set
onto a set of positive measure (an example of this cannot be simply given).

After the introduction of charts it is only necessary to carry out the proof
that a set has measure zero for subsets of R". Here the following special case
of Fubini’s theorem provides an induction procedure:

(6.4) Theorem (Fubini). Let RY~! = {x € R"|x, =1t}; let CC R"
be compact and Cy = C N RE™ have measure zero in R}~ = R™! for all
t ER. Then C has measure zero in R™

Proof (following Sternberg [9]). We use the following elementary

Proposition. An open covering of the interval |0, 1] by subintervals
contains a finite covering [0, 1] = U I; with &, |[;] < 2.

Proof of the above. One chooses a finite subcovering, from which it
is not possible to exclude any further interval. Then every point of [0, 1] lies
only in, at most, two intervals of this covering: if it were to lie in three, then
one of these would have the smallest initial point and one would have the
largest end point, a further one would be superfluous. O

Now we come to Fubini’s theorem. Wlo.g., let CCR""!x [0, 1],
and Cy have measure zero in R"~! x ¢ for all £ € [0, 1]. For every € > 0 we
find a covering of C; by open cubes W in RF~! with volume sum < e. Let W,
be the projection of U; Wi C R}~! on the first factor R™! of R""! x [0, 1],
see Fig. 40. If x,, is the last coordinate, then, for fixed ¢, the function |x, — ¢|
is continuous on C, it vanishes precisely on C; and outside of W, x [0, 1] it
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Wyx[0,1] N

—

Fig. 40

1 > Rn-1

attains a minimum value a because C is compact. Thus we have
xelClx, —tI<a} CW;xI; withl; = (t—a,t+a).

The various intervals /, constructed like this cover [0, 1] and, according to
the proposition, from these we may choose a finite subcovering {/;|j = 1,
..., k} of volume sum < 2. Here [; = Iy, for some ¢; € [0, 1]. The rectangular
blocks

Wi xIilj = 1,... kii€N}
cover C and have volume sum < 2e. O

(6.5) Remark. The hypothesis that C is compact may be easily
weakened; it is clearly sufficient that C be a countable union of compact sets.
In particular, this holds for closed sets, open sets, images of sets of this class
under continuous maps, countable unions and finite intersections of such
sets. This class will satisfy us.

With this we come to the proof of Sard’s theorem (see Milnor [6]).
Following the introduction of charts, by definition (6.3) one has to show the
following:

Let U C R" be open, f: U~ R? differentiable and let D C U be the set of
critical points of f, then f(D) C RP has measure zero.

Proof. This is by induction on n; for n = 0, R™ is a point, f(U) is, at
most, one point and the theorem holds.
For the induction step let D; C U be the set of points x € U, at which all
partial derivatives of order </ vanish. The D; clearly form a decreasing
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sequence of closed sets

DOD,DD,D...,
and we show

(a) f(D —D,) has measure zero,
(b) f(D; — D;,, ) has measure zero and,
(¢) f(Dy) has measure zero for sufficiently large k.

Note that all the sets appearing here fall into the class to which by (6.5) we
may apply Fubini’s theorem; further, it suffices in each case to show that
each point x €D — D, (. . . respectively) possesses a neighbourhood V so that
F(V 0 (D — D)) has measure zero, for D - D, (. . . respectively) is covered
by countably many such neighbourhoods.

Proof (a). One can assume p = 2 since forp = 1,D = D,. Let
x€D—D,;asx & D,, some partial derivative of f does not vanish at the
point x, we may therefore assume that 9f/0x,(x) # 0; then by (5.5) the map

h: U~ Rn’ (xla . axn) H(fl(x)’XZs L yxn)

is not singular at the point x; so its restriction to a neighbourhood ¥ of x is a
chart 2: V- V', and the transformed map g = f-A~! has the form

g (Zla ECIY ,Zn) »(zhg2(z)9 CRCIE agp(z))

locally about 4 (x). The mapping takes the hyperplane {z |z, = ¢} into the
plane {y|y, =1};let

gl x RNV’ >t x RP-!

be the restriction of g. Then a point from (¢ x R®~!)N V' is critical for g if
and only if it is critical for g¢, since g has the Jacobi matrix

Dg =

However, by the inductive hypothesis, the set of critical values of g¢ has
measure.zero in # x R"™~!, thus the set of critical values of g has an intersec-
tion of measure zero with each hyperplane {y |y, = r}. Hence, by Fubini’s
theorem, it itself also has measure zero, and (a) is proved.

Proof (b). We proceed similarly. For each point
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x €Dy, — Dy, ,, there exists some (k + 1)st derivative which does not vanish
at the point x. We may suppose that

AFHIf [ox10x,, , . ., By, (X) # 0.
Let w: U~ R be the function

w = 3 fox, ..., 0x,,
then therefore w(x) = 0, dw/dx,(x) # 0, and as before the map

h:x P (W(x),xa,...,%Xn),
defines a chart #: V — V' about x, and

h(D,NV)COx R*™ICR",
We may therefore again consider the transformed map g = f-h™": V' = RP,
and its restriction g°: (0 x R"~!) NV’ - RP, which by the inductive hypo-
thesis has a set of critical values of measure zero. However, each point from
h(Dy, NV)is critical for g° because all partial derivatives of g, hence also of

g°, of order <k, in particular of first order, vanish. Therefore f(D, N V)=
g *h(Dy NV') has measure zero.

Proof(c). Let WC U be a cube with edges of length a, and let
k > (n/p) — 1, then we shall show that f(W N Dy ) has measure zero. Since
U is a countable union of cubes, this will be sufficient. The Taylor formula
yields an estimate

f(x+h) = f(x)+R(x,h), |R(e,h)|<c-|h|**,

forx €D, N W and x + h-€ W, where the constant ¢ is fixed for given f and
W.

Now decompose W into r™ cubes with edges of length a/r. If W, is a cube
of the decomposition, which contains a point x € D, then each point from
W, can be written as x + & with

Vna

TARS .
r

From the remainder estimate above, f(W,) lies in a cube with edges of length

Wn-a**'  p
. T
with a constant b, depending only on W and f and not on the decomposition.
All these cubes together have a combined volume s < 7" « bP/rP®*1) and, for
p(k + 1) > n, this expression converges to zero as r increases. Hence, by
choice of a sufficiently fine decomposition, the combined volume can be

made arbitrarily small. O
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The most important consequence of Sard’s theorem is the older result of
Brown, which we wish to state separately:

(6.6) Consequence. The regular values of a differentiable map

f[:M—> N are dense in N.

w

(6.7) Exercises
Let f: M~ N x R™ be a differentiable map; show that for each ¢ >0
there exists a vector v € R™ with |v|<e, so that the map

gEM->NXxR", xtf(x)+v

is transverse to the submanifold NV x 0 C N x R™.

Show that, if M™ C RP? is a differentiable submanifold, then there
exists a hyperplane in R?, which cuts M™ transversally.

Show that there is no surjective differentiable map R" > R"*1,

Let M™ be a compact manifold, f: M nl, Rntl differentiable, and
0 € f(M). Show that there exists a line through the origin of R™*!,
which only meets finitely many points of f(M™).

Let f: M~ RP be a differentiable map and N C RP a differentiable
submanifold. Show that for each € > 0 there exists v € RP, with
|v| <€, so that the map M — RP x + f(x) + v is transverse to /V.
Hint: consider the map M x N > R? (x,y) by —f(x).

For a differentiable map f: M~ N let

Y ()= (pEMIirkyf = i},

Let f: R™ - R" be differentiable and € > 0. Show that there exists
a linear map a: R™ - R" of norm < ¢, so that 2’ (f + a) is a dif-
ferentiable submanifold of R™.

Hint: apply exercise 5 to Df and use (1.11, 16).

Let f: R™ - R" be differentiable and m < 2n. Show that for each
€ > 0 there exists a linear map a: R™ - R" of norm < ¢, so that the
map f+ a: R™ - R” is an immersion.

Hint: this is a side result of the solution to exercise 6.

Let M* C R™*! be a compact submanifold and n > 2k. Show that,
for the projection m: R"*! - H™ onto a suitable hyperplane H of
R™*1 | the restriction w |M: M - H is an immersion.

Hint: consider the (2k — 1)-dimensional manifold PTM, whose
elements are the 1-dimensional subspaces of the tangent spaces of
M, and study the canonical map PTM —~RP",

Let M* C R™*! be a compact submanifold and n > 2k + 1. Show
that, for the projection 7: R™*! - H" onto a suitable hyperplane H
of R™*!the restriction m | M: M - H is an embedding.
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Embedding

What we have studied up to now — apart from the tangent bundle — is
essentially the local structure of differentiable manifolds, and at first it is
not obvious that between two manifolds there can ever exist non-trivial
maps, and that everything which one intuitively describes as ‘smooth’ can
also be realised by means of differentiable maps. The essential technical tool
for the passage from local to global is the partition of unity which we now
manufacture.

(7.1) Lemma. Let M be a differentiable manifold and
U = {UrI\ € A} an open covering of M. Then there exists an atlas
A= {h,: V, > V, |vEN} of M with the following properties:

@) {V, lv EN}is a locally finite refinement of {U\|\ € A},
(b) V, ={xER™|Ix| <3} =K(3),
(c) Thesets W,:= h;' {x ER™| Ix| < 1} = h,;' K(1) still cover M.

Such an atlas is called a good atlas subordinate to the covering U.

Proof. Because M is locally compact with a countable basis, we
can easily find a sequence of compact subsets A;, so that 4; C A i+ and
U7.1 4; = M. (Choose a countable cover {C,}, cnof M by compact sets, and
then choose A = C; and A4,, asa compact neighbourhood of 4,,_; U C,,.) Now
for each i we may choose finitely many charts 4,: V, = K(3), so that V,, C
A;4es —A;_y and V, C Uy for some A, and so that the sets W, = ;' (K(1))
still form a cover of 4;,, —ff,-. This follows easily, since this set is compact
and has 4;,, — A; _, as an open neighbourhood (see Fig. 41). All these
charts for all i €N together form the sought for atlas

Next we recall that the function (illustrated in Fig. 42)

0 for t<0
MNR->R, ¢+
exp(—t7?) for t>0

62
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Fig. 41

Fig. 42

is infinitely differentiable, that 0 <A <1, and that \(#) =0 « ¢ <0. For
t > 0 the derivatives of A have the form g(¢) * exp (—¢72), where g is a
rational function, and they therefore converge to zero as ¢ goes to zero.
Now let € > 0 and ¢.(£) = A(¢t) * Q@) + N — 1)) (Fig. 43), then ¢, is
differentiable, 0 <¢. < 1,and ¢.(1) =0+« ¢t <0,and ¢.(t) =1 &t >e.
For the ball

K@) = xR Ix|<r}, r>0,

[

Fig. 43
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Fig. 44

we can therefore find the differentiable bump function (Fig. 44)
(7.2) V:R" >R

Yx) = 1—¢e(lxl—r)
with the properties:

0<yx)<1 forall x€R",

V) = 1oxEKQ),

Yyx) = 0eixl=r+e

About the point x = 0, where |x/| is not differentiable, y is locally constant
and therefore differentiable.

If one composes such a bump function with a suitable chart, then one
obtains a function < 4: U~ Ron the chart domain of a manifold, and
because this function vanishes outside # ' K(r + €) C U, one can extend it
(by 0 on M — U) as a differentiable function over the whole manifold M.

(7.3) Theorem. For every open covering of a differentiable mani-
fold, there exists a subordinate differentiable partition of unity.

Proof. Using (7.1) we may choose a good atlas 2 subordinate to the
cover U of M, also a bump function ¢ for the ball K(1) with ¢ |[K(1) =1,
Y(x) = 0 for |x| > 2. Define the function ¥, on M by

Y h, onV,=h,'K@3)

vy )
0 otherwise

Then y,, is differentiable, and s = X5, ¥, is well defined and differentiable,
since the family {Supp (¥,)} of supports is locally finite and differentiability
is a local property. Besides,s(p) # 0 for all points p € M, so that the functions

= (1/8)%
form the sought for pariition of unity. O
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An easy consequence:

(74) Remark. If Ay, A, are disjoint closed subsets of the differ-
entiable manifold M, then there exists a differentiable function (separating
function) p: M~>R,0<¢p<1,sothat ¢p|4,=0,¢14,=1.

Proof. Let {¢,|v € N} be a partition of unity subordinate to the
covering by the sets U; = M — A; and put

=2 ¢
vEK
with v € K if and only if Supp (¢,) C U; . O

In what follows, we shall concern ourselves with approximations to given
maps with ‘nice’ properties (embeddings, transverse maps, etc.). In doing this
we must ensure that for the approximation, not only the values of the func-
tion, but also the values of the partial derivatives, undergo no more than a
small change. However, we do not wish to involve ourselves unnecessarily
with the appropriate topologies on the set of differentiable maps C*(M, N),
and restrict ourselves to the bare minimum.

(7.5) Definition. Let U C R™ be open and K C U compact; let
FECT(U), then set

[ flg:= max {[ f(x)||x €K} +V21::1 max {|9f/9x,(x)|| x € K}.

Iff=(f1,...,fa): U>R", then | flx:= max {I £, |x}.
It is straightforward to check that | f|x defines a seminorm on C™(U),
that is,
[f+glg<I|flg+ lglk,

Ml = Al flg  for A>0,
[feglg<iflg-lglk.

Furthermore, for K C L, | flx < | f1., but clearly it is possible that | flx =0
without f = 0 (but f|K = 0).

In particular this seminorm makes C~(U, R™) into a topological space
C™(U, R")k ; e-neighbourhoods with respect to the seminorm | f|x form a
neighbourhood basis.

(7.6) Lemma. Let U be open in R™ and K C U compact, the set
of differentiable maps f: U - R", which have rank m at all points of K, is
open in C™(U,R™)k, and is dense in the case of 2m <n.

Proof. The condition rk, f = m means that the Jacobi matrix Df,
has rank m, or that the map K - R™ ", x > Df, has image contained in the
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open set of matrices of rank = m. If now | f — gk is sufficiently small, then
it follows that | Df, — Dg, | is so small on X that Dg,[K also maps into this
open set (see (7.5)).

Now let 2m <n, € >0, and let the vectors df/ox; fori =1,...,s<mbe
already linearly independent at each point of U, then we find a map g with
| f— glx <€ so that the vectors dg/ox;,i = 1,...,s + 1 are linearly indepen-
dent at each point. The result will then follow by induction. To this end we
consider the map

s f a
PR X U>R", Ay, ..., N, %) b Z () ——(x).

0% 4y
For s <m dim (R® x U) = s + m < 2m < n, so by Sard’s theorem we can find
apointa = (ay, - . . , a,) € R" of arbitrarily small norm with ¢ € ¢(R® x U).
Now, set

gx) = fx)+x54,"a,
then dg/ax; = df/dx; fori <s, and 3g/dx, ., = 0f/0x, ., + a. A linear relation

s og
DI v

= ax, axm

is satisfied nowhere in U, for this would imply that

In this proof only the trivial case (6.2) of Sard’s theorem is used. Another
proof depends on (6.7, 7). From this local result by means of a good atlas
we can cobble the appropriate global result together.

(7.7) Immersion theorem (H. Whitney). Let M™ be a differentiable
manifold, § : M — R an everywhere strictly positive continuous function and
f: M~ R" a differentiable map with 2m <n. Let A C M be closed and
rkyf=m forall p € A. Then there exists an immersion g: M = R", with
g1A4=f1A and \g(p) — f(p)| <8(p) forallp EM.

In other words, one cannot only find an immersion M = R", but one can
also always approximate a given map by an immersion where the ‘nearness’
6 of the approximation can be prescribed by an arbitrary continuous positive
function.

One can express such statements about approximation more elegantly in
terms of a topology on C~(M, N).

(7.8) Definition. Let U be open in M x N and V7, the set of
g € C™(M, N) for which the graph {(p, g(p))| p € M} lies completely in U.
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N graph (f)
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M

Fig. 45

The C°-topology (which is the only one considered in this book)on C”(M, N)
has the sets V', as a basis of open sets, see Fig. 45.

If one chooses a metric d on NV, and a differentiable manifold
admits a metric (7.12), then, given a neighbourhood Vy; of f € C™(M, N), one
easily constructs a continuous function §: M - R, § > 0, so that

U®):= {(p, )1d(f(p), q) <5(p)} C U.

(Let {¢,,|n €N} be a partition of unity on M with compact supports, and
8, > 0 be such that (p, q) € U for p € Supp (¢), and d(f(p), q) <b,;
set § = T 8,0,.) Therefore, one can certainly restrict oneself, as in the
theorem, to consideration of special neighbourhoods Vs:= Vi) of a map f.
Moreover, the C°-topology does not depend on the choice of metric and,
if M is compact, one can choose  to be constant (topology of uniform con-
vergence). With the help of locally finite atlases on M and N one can also
introduce topologies on C™(M, N') which describe the convergence of the
higher derivatives in the same way that the C°-topology describes the con-
vergence of the function values. But we do not want to go into this (see
Narasimham [7]).

The immersion theorem thus says that immersions are dense in C™(M, R"),
if 2m < n;also one does not need to disturb the map f on any closed set,
where it already has maximal rank.

Proof of the immersion theorem. Because locally the rank of f
cannot decrease (5.3); there exists an open neighbourhood U of 4, so that
rk,(f) = m for all p € U. For the cover {(M — A4), U} of M we choose,
using (7.1), a subordinate good atlas {h,: V,, > K(3)|v € Z}; the sets
W, = h;K(1) still cover M. We set U, = h,;' K(2) and so arrange the number-
ing that ¥, C U if and only if » < 1. Only in the chart domains ¥, with
positive index will g be different from f. Inductively, we construct maps
g, M~ R", v >0, with the following properties:
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(@) g =,

(b) g.(x) = g,_,(x) for x U,

(c) if d = min {8(x)|x €U,}, then |g,(x)—g,_, ()| <e,:=
d/2’ forall x €M,

(d) g, hasrank m on U; <, W;.

Having done this, we set g = lim,,, .. g,. Because the covering {U,} is locally
finite (b) implies that g, , (x) = g,(x) for almost all », and the sequence g,
converges to a differentiable map g, which, by (a) and the numbering of our
atlas, coincides with f on 4. Locally for large v, g agrees with g, and, by (d),
therefore has maximal rank m. Finally by (c)

lg—fl = lg—gol <83 27" = 6.

We now come to the construction of the sequence g,,, illustrated in
Fig. 46. For this, by (7.2), we choose a bump function y: R™ - R for K(1)
with support in K(2), and a bound s, so that || <s for K = K(2), hence for
all K. Now consider the map

u-y ' K(3) = R™
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It has rank m on the compact set C:= (T, N U; <, W;) C K(2) and, by
the local result (7.6), the same holds for every map g: K(3) =~ R" with
|gv-1 * 3" — gl <n for some suitable n > 0. Using (7.6) again, we find
such a g, which has rank m on K(2), and such that |g,_, *k;' —qlx <
¢<min {n-s7', €}

We set
) = {gv-l(x)Jr Y ohfx) (@ hfx) —gp-1(x)) for xEV,
g gy (x) x@&U,,see Fig.47.
gohy
Sy dy
Fig. 47

The definitions agree on the open intersection of the domains of definition
since there ¥ <k, = 0. Moreover,

lghs' —gp-1 M lc<s-{<n
and therefore g, - h;' has rank m on C. The same holds for g, on
U<, W; N U,.On W, we have  * h, = 1, and hence there g, = ¢ °h, also
has rank m. Finally,
gy —8v-1l S 1q-hy =gy I<{<e
on U, and hence everywhere. This concludes the proof of the theorem. |

Underpinning this proof is a general procedure of passing from a local
statement — in this case (7.6) — to a global statement.

For an injective immersion one needs more room, as the mapping St >R?
in Fig. 48 demonstrates.

L@

Fig. 48

(7.9) Theorem. Let f: M™ - R" be a differentiable map and
2m <n. Let A C M be closed and let the restriction of f to a neighbourhood
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U of A be an injective immersion. Then arbitrarily close to f there exists an
injective immersion g: M —> R", so that g|A = f|A.

Proof. As in the previous theorem, we describe the ‘nearness’ by an
everywhere positive function 6: M - R. From the previous theorem we may
also assume that f'is already an immersion. Then by the rank theorem (5.4)
fis locally an embedding; we may choose a cover {U,} of M so that for all @,
f U, is an embedding, and so that U, C U or U, C M — A. Then once more
using (7.1), we choose a good atlas {h,,: V,, > K(3)|v €Z}, which is sub-
ordinate to this cover, and so numbered that V,, C U if and only if » < 0.
Finally, we may choose a bump function ¢ for K(1) with support in K(2),
and set

Y=Y h,: M>R

Inductively, we construct a sequence of immersions g,: M —> R" by
& = 1,
& = &-1F+ Yy by, b, ERY;

where the point b has yet to be specifically chosen.

First, it follows from (7.6) that g, has rank m on 4;'K(2) and hence
everywhere, provided that b, is chosen sufficiently small. Choose b,, to be
also sufficiently small, so that for all x, |g,(x) —g,-,(x)| <27 - §(x). There-
fore all the functions g, together with g:= lim, -, .. g, remain immersions
— they lie in the prescribed neighbourhood of f and agree with f on 4. In the
choice of b, let

N™CMxM

be the open subset of points (p, g) with ¥,(p) # V.(q).
Consider the map

N™ >R (0,q) P~ (8r-1(P) —8v-1(@) * WD) — V(@) "

Because 2m <n Sard’s theorem implies that the image of this map has
measure zero, and we may choose b, not to be in this image. Then

&,(p) = g,(q) ifand only if
gv-l(p) _gv—l(q) = (d/u(p) - \bu(q)) * by,
and so by choice of b,, if and only if
Uulp) = ¥,(q@) and therefore  g,_,(p) = g,-4(4)-

Since the limit function g agrees locally with g, for large values of v, it follows
that, if p # q and g(p) = g(q), then g,(p) = g,(q) for sufficiently large ».
Hence by downward induction ,

v(P) = ¥,(q) and g,(p) = g,(q) forall v=>0.
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On account of the second condition, in particular, f(p) = f(q), and so p

and g cannot lie in the same chart domain V,,. However, if p €W, C V,, and

v >0, then ¥,(p) = 1 = ¥,(q), implying that ¢ € V,,. The remaining possi-
bility is that both p and ¢ lie in a chart domain W, with » < 0. But in this
case,p,q € Uand f|U = g|U is injective. a

An injective immersion is, as we know, in general not yet an embedding,
nor is it possible in general to approximate a given map by an embedding
(example in the exercises). However, an injective map of locally compact
spaces f: X = Y clearly induces a homeomorphism f: X — f(X) if it is proper,
that is, if it may be extended continuously to a map of the one point com-
pactifications fﬂ X% Yoby mapping the extra point to the extra point. In
other words, f is proper if £} (K) is compact for each compact subset X. In
this case, f(X) C Y is closed, for f(X)0 c v%s compact.

(7.10) Embedding theorera. An m-dimensional differentiable
manifold can be embedded as a closed subset of the Euclidean space R", if
2m <n.

For this we need:

(7.11) Lemma. If M is a differentiable manifold and n > 0, then
there exists a proper differentiable map M —~ R".

Proof (of (7.11)). Choose a countable partition of unity {¢,|» € N}
with compact supports Supp (¢,) and set

f=35 v MoR
v=1

If K C R is compact, therefore K C [—n, n] for some n €N, and f(x) €K,
then x € UJ_,; Supp (¢,), and this set is compact. Hence f is proper, and one
obtains a proper map M - R" if one chooses f to be the first component. [l

Proof (of (7.10)). By (7.11)one can choose a proper map f: M > R",
and by (7.9) approximate this by an injective immersion g: M -~ R", so that
lg—f|<1and 4 =@.If K C R" is compact, then K C K(r) for some radius r,
hence g™ (K) is closed in the compact set f ™ K(r + 1), hence compact. There-
fore g is proper, hence an embedding. O

One can improve the results presented here in several ways;as we have
already said, one can involve the higher derivatives in the apiir‘o‘ximations
and, by deeper theorems of Whitney and Hirsch, the embedding theorem
(7.10) holds also for n = 2m. There exists a large literature on embedding
and non-embedding theorems. For non-embedding theorems in particular, we
lack all the tools here. They substantially depend on the methods of algebraic
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topology. For example, it is very plausible that there exists no embedding
RP? —» R? of the projective plane in the intuitive ‘space’ of our visual
perceptions, but it is an unhappy undertaking to attempt to prove this
directly.

(7.12) Remark. From the embedding theorem it follows that a
differentiable manifold is homeomorphic to a closed subset of Euclidean
space; hence it inherits a complete metric from the Euclidean space, which
induces the given topology on the manifold. This occasionally may simplify
arguments from general topology.

(7.13) Exercises ,
1 Let M be a differentiable manifold and p € M. Show that the map

can -, frf

is surjective.

2 Let A C M be closed, U an open neighbourhood of 4, and f a differ-
entiable map from U into R". Show that there exists a differentiable
map g: M > R" withg|4 =T1.

3 Construct an injective differentiable map f: S! - R?, whose image
consists of the points {x € R?| max {x,|, Ix,} = 1}.

4 Let f: M~ N be a continuous map. Show that f is differentiable if
and only if for each g € C™(WV), g - f € C™(M).

5 Show that the ring &, possesses divisors of zero.

6 Give an immersion R > R? (and not just a picture!), which cannot
be approximated with proximity? 1 by an embedding.

7 Show that for each n there exists a differentiable map f: R~ R",
so that foreach k €N

F{tERIt>k}

contains all points, for which all coordinates are rational.

8 Find a function §: R-> R, § > 0, and for each n € R a differentiable
map f: R > R", so that for no embedding g: R—>R" one has
lg—f1<8.

Hint: use exercise 7.

9 For a compact manifold M™ it is easy to prove an embedding
theorem without regard to the dimension. One can choose a finite
good atlas {h,lv =1, ...,r}, a bump function ¢ for K(1) with
support in K(2), and one sets Y= ¢ *h,: M >R and k,:= ¥, h,:
M- R™ (both maps vanish outside ¥,). Show that the map

r

r
M~->T] R"xII R
v=1 v=1

p B kD), .., kD), ¥1(D), - . ., (D)),

is an embedding, without using anything else from this chapter.
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10 Let M™ be a connected non-compact differentiable manifold.
Show that there exists a sequence of open subsets V,, C M, so that
V,=K()CR™ V,NV,,, 8, V, OV =difx¢ v—1,v,
v+ 1}, and {V, |v € N} is locally finite, see Fig. 49.

Fig. 49.

11 Show that there exists a closed embedding of the real line in every
connected non-compact differentiable manifold.
Hint: use exercise 10.
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Dynamical systems

The differential topologist sometimes ‘pushes’ a submanifold aside,
‘dents’ it somewhere, ‘bends’ or ‘deforms’ it, and the handwaving which
accompanies such operations all the more undermines the confidence of the
observer. He believes the assertions are plausible but that they have not been
proven,

We propose to make such ‘bending’ precise by means of isotopies of
embeddings and, in order to be able to construct isotopies, one needs
dynamical systems on manifolds. Both for their own 1mportance and for the
applications we turn our attention first to these.

(8.1) Definition. Let M be a differentiable manifold. A differenti-
able map

O:RxM—-M

is called a dynamical system or flow on M, if forallx EM and ¢,s ER we
have

(@) ©0,x) = x,

(ii) O, D(s,x)) = D(t +5,x).

The essential content of these two conditions becomes clear if one replaces
@ by a family of maps M - M, parametrised by R. We write
Oy MM, x>D(t,x).

Then (i) and (ii) read @y = Idy;, and @; Dy = Py 4, 50 that -, =
@;!, and one has:

(8.2) Note. A differentiable map @: R x M - M is a dynamical
system if and only if the map ¢ - @, defines a group homomorphism of the
abelian group (R, +) into the group Diff (M) of diffeomorphisms of M onto
itself. One also says that the group (R, +) operates on M.

Geometrically, one takes a quite different position if one considers the
flow @: R x M — M as a family of curves R - M parametrised by M.

74
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(8.3) Definition. If @: Rx M —> M is a flow, and x €M, the curve
oy R=>M, 10 ®i(x)

is called the flow line or integral curve of x. The image o, (R) of the flow line
is called the orbit of x, see Fig. 50.

orbit of x

Fig. 50

(8.4) Remark. If a flow is given on a manifold, then exactly one
orbit passes through each point p of M.

Proof. The relation x ~y ¢ x = @,(y) for some ¢ is an equivalence
relation for points of M, as one can easily check. The orbits are the
equivalence classes. O

In order to obtain an idea of the geometric mechanism of a flow, one does
not usually consider the single diffeomorphism @,, but one tries to give an
overall picture of the behaviour of all the orbits. There are three types of
orbit:

(8.5) Remark. A flow line o,: R~ M of a flow is either an injective
immersion (Fig. 51), or a periodic immersion (Fig. 52), that is, a,, is an
immersion and there exists some p > 0 with a,. (¢ + p) = a,(¢) for all ¢; or a,,
is constant, a,(z) = x for all ¢. In the last case x is called a fixed point of the
flow.

Fig. 51
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X
Fig. 52
o
: —_—
a to D
Fig. 53

Proof. If a: (a, b) > M is a differentiable curve in M and ¢, € (g, b),
then we write &(2o) € Ty yM for the velocity vector of the curve at the point
to. Thus a(?,) as a derivation is given by a(t¢)(f) = (d/d¢)fa(t,), see Fig. 53.
Now for a flow line a, (see Fig. 54) we have &,(¢,) = T(®;,)(6(0)), for
o, (r + 1g) = (@y, ~,)(2). Since @, is a diffeomorphism, either d,(¢) # 0 for
all ¢, that is, the flow line is an immersion (non-singular curve) or, ¢,(¢) = 0
for all ¢, that is, a, is constant. If a, is not injective, hence a,(ty) = o, (¢;)
for specific values z, <7y, then @ (x) = @, (x), hence also @ ,@; (x) =
@, @, (x) for all z. It follows that @ ,(x) = Dyt -1,)(X), that is, e, (1) =
a,(t+ (t, —ty)) for all £, |

Fig. 54
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Fig. 56

If we have a flow on M and U is an open subset of M, then we see from
Fig. 55 that, in general, it is not the case that flow lines of points in U lie
entirely in U. On account of continuity however, if x € U the flow line a,,
must belong to U for some small interval (a,, b, ) about 0 € R, see Fig. 56.
This situation leads us to the definition of the concept of a ‘local flow’:

(8.6) Definition. Let M be a differentiable manifold. By a local
flow ®on M we understand a differentiable map

O:4A->M

from an open subset A C R x M, containing 0 x M, to M, so that for each
x €M the intersection 4 N (R x {x}) is connected, see Fig. 57, and so that

i) ©@©0,x) = x
(i) @z, (s, x)) = O(t +5,x)

for all ¢, s, x for which both sides are defined.
A local flow with 4 = R x M is clearly a flow (global flow).
(8.7) Notation. If @: A -~ M is a local flow on M, then we shall
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» R
Fig. 57
M M
% Ox 0 by *R
Fig. 58

denote the domain of definition of the flow line a, :
td(t, x)
by (a,,b,), see Fig. 58.

Note that for a local flow, one can, in general, no longer talk of the diffeo-
morphism @y, since for fixed ¢ # 0, x > @(¢, x) is not necessarily defined on
all of M, see Fig. 59.

(8.8) Definition. If @ is a (local or global) flow on M, then the
vector field

O:M->TM, xtd,(0)
is called the velocity field of the flow, see Fig. 60.

(8.9) Remark. For all flow lines and for all ¢t € (a,., b,), &, (t) =
@ (ax(2)), see Fig. 61.
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0xM A

LixM

flow velocity field

Fig. 61

Proof. This follows from the definition for ¢ = 0. For z = a,(t), we
have a,(s) = a, (s -+ ¢), provided that both sides are defined (in any case in
some neighbourhood of s = 0), hence ¢,(0) = é,(?). O

Often in geometric considerations, one needs flows which ‘do’ something
or other, that is, have preassigned properties. It would be highly inconvenient
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to always have to explicitly construct such flows as maps Rx M - M or

A — M. What really makes flows useable is the result that a flow is completely
determined by its velocity field and that, to a prescribed velocity field, there
actually exists a flow.

(8.10) Integrability theorem for vector fields. Every vector field is
the velocity field of exactly one maximal local flow; on a compact manifold
even of a global one.

Proof. The essential mathematical kernel of this theorem is the
theorem on the existence and uniqueness of solutions to first order ordinary
differential equations, which we want to quote here. Qur problem consists
then only in the translation into the language of manifolds. Therefore:

Quotations from the theory of ordinary differential equations:
Let Q C R" be an open subset and f: Q - R" a differentiable (C”)
map. Then we have

(a) Uniqueness theorem. If
a: (ag,a;) > Q

and

B:(bo,b1) > Q2

are differentiable curves with a(0) = (0) = x, and &(t) = f(a(?)),
B(?) = f(B()) for all values of t in the appropriate domain of
definition, then o(t) = B(¢t) for all t € (ag,a,) N (bo, b,), (Lang [2],
chapter 8, section 1, theorem 3, p. 375.)

(b) Existence theorem. For each x € (2 there exists an open neigh-
bourhood W C Q, some € > 0 and a differentiable (C™) map

o:(—e,e)x W—>Q

with the property that $(0,x) = x for all x €W, and d')(t, x) =
F(o(t, x)) forall (¢t,x) €E(—e€,€) x W. (Lang [2], chapter 8, section
4, theorem 7, p. 388.)

Connection with differential topology. Let X be a vector field on M
and (k, U) a differentiable chart of M. By means of the bundle chart of TM
associated to (2, U), we transplant X |Utoamapf: U' > TU' =U' x R" >
R" of U' into R", namely, f(h(x)) = Txh(X(x)), see Fig. 62. Here
ThexyU' = R™ in the usual way. Then for curves a: (a, b) = U we have

a(t) = X@@®)) ¢ (h-a) @) = fh-a@)), see Fig. 63.

We now want to call a curve a: (¢, b) > M a solution curve for X, if a(¢) =
X (a(2)) everywhere, Then the considerations above show that, for each
X €M, there is exactly one maximal solution curve a,: (ay, b,) = M with
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X(x) € TuM

h{x) LUcR"

Fig. 62

1

Fig. 63

a,(0) = x. The existence of a solution curve with a(0) = x follows (using a
chart about x) from the existence theorem for ordinary differential
equations, and any two solution curves agree on the intersection of their
intervals of definition. This follows since the set of ¢, where the two solutions
agree, is closed by continuity, but it is also open, as one sees by applying the
uniqueness theorem in the image of a chart about y € M. Therefore, the

N R

Fig. 64
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uniquely determined maximal solution curve is given on the union of all inter-
vals of definition of all sotution curves with a(0) = x, see Fig. 64.

Now let us turn to the proof proper of the theorem. We first establish the
following assertion:

(8.11) Assertion. The set

4= U (ax>bx) XX
xEM
determined by the domains of definition of maximal solution curves is open
in Rx M, and the map

Q:A->M

given by the solution curves is a maximal local flow with the given vector
field as velocity field.

To prove this it is enough to show that A is open and @ is differentiable,
since the conditions @ (0, x) = x and @ (¢, D(s, x)) = O(¢ + s, x) follow simply
from the fact that ®|(a,, b,) X x is a solution curve. Both

t@Q( +s5,x)
t @, D (s, x))

(where we allow all ¢ for which both expressions make sense) define maximal
solution curves for the initial value @(s, x) and hence are necessarily identical.
The maximality of the flow follows immediately from the maximality of the
solution curves.

Now for each x € M, one considers the interval J, C R, which consists of
those ¢ > 0, for which 4 contains a neighbourhood of [0, #] x x, on which @
is differentiable.

Then we have to show thatJ, = [0, b,) and the corresponding result for
t < 0. By definition, J, is open and it is enough to show that J, is non-empty
and closed in [0, b,.). Both follow from the local existence theorem:

For a point p €M we find a neighbourhood W of pin M, an e >0and a
differentiable map

¢:(—2€,2e) x WM,

and

so that ¢|(— 2€, 2¢€) X g is a solution curve for the initial value ¢ € W. From
this follows, first of all, that 4 contains a neighbourhood of 0 x M, on which
@ is differentiable, for, given the uniqueness of the solution curves, we must
have ®|(— 2¢, 2¢) x W = ¢. Hence J, is non-empty. If 7 €J, (closure in

[0, b,)!) and @, (x) = p then, by definition of J,, we have a set [0, 7 — €] x-U
in 4, in whose neighbourhood @ is defined and differentiable. Here, U is

“a neighbourhood of x in M, and e is chosen as above for the point p with

7 —2€e> 0. If one now defines the neighbourhood U’ of x in M by
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Fig. 65

U’ = q);je‘(nb—é(w):

with W the neighbourhood of p chosen above, see Fig. 65, then @ is defined
and differentiable in a neighbourhood of [0, 7 + €] x U’, hence particularly
in a neighbourhood of {0, 7] x x. Note that the differentiable map

(r—2e,7+2e)xU' > M
(t,u)r ot —1,(1,u))

correctly extends the solution curves given by ® on U’ x [0, 7 — €] because

of the uniqueness theorem, see Fig. 66. Therefore r €J, which is what we
had to show.

Fig. 66

In this way, we have associated a maximal local flow to the preassigned
velocity field. That this is the only maximal one follows immediately from
(8.11), for each flow with the same velocity field must be a restriction of @
since its flow lines are solution curves of the field and @ has the maximal
solution curves as flow lines. Thus, the uniqueness part of the integrability
theorem for vector fields is also proved, and it only remains to show that the
maximal flow of a velocity field given on a compact manifold is global.
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Fig. 67

If M is compact, then for some € > 0, 4 contains a subset of the form
(— e, €) x M, see Fig. 67. Then (— 2¢, 2€) x M must also be contained in 4,
for one can extend the flow defined on (—e¢, €) x M to (— 2¢, 2€) x M by
setting

@Q,x) = Q)(é, (D(;—,x)) .

Since @: A -~ M is maximal, it follows that (— 2¢, 2¢) x M C 4. Clearly,
therefore, R x M = A, which concludes the proof. O

A generalisation of this last part of the theorem actually holds: a maximal
solution curve, which is not defined for all time, eventually leaves each com-
pact set. This means, if a: (a,, b, )= M is a maximal solution curve of a
vector field on M, b, <o and K C M is compact, then there exists some
€ >0, so that a(b, — €, b,) N K = @. For the proof, one needs only to
choose € so small that K x [0, €] belongs to the domain of definition A of the
local flow. :

As a first typical geometric application of the integration theorem for
vector fields we prove the important

(8.12) Fibration theorem of Ehresmann. Let f: E — M be a proper
submersion of differentiable manifolds, then f is a locally trivial fibration,
that is, if p EM and F = f~Y(p) the fibre of p, then there exists a neighbour-
hood U of p in M and a diffeomorphism ¢: U x F — f~'U, so that the follow-
ing diagram is commutative:

UXF d U

pr, fietu
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Proof. The assertion is local relative to M, so that we may replace
E,Mand f by f~1U, U and the restriction of f, and thus, w.l.0.g., assume that
M= R" and p = 0. In this case we have the basic vector fields 9/9x,,, and we
can lift these to F, obtaining vector fields v, ..., v, on E, so that for all

Tof(@y(x)) = 8/0x,.

Locally, about a point x € E, such fields are easy to find because, by the rank
theorem, f is transformable to the form pr,: U x V = U, and one obtains the
v, on all of E by glueing together the locally chosen fields by means of a
partition of unity.

Now by (8.8), (8.10), the vector fields v,, determine local flows ®” on E,
and in order to prove the theorem we put

F = f70), ¢, x) = Dy -... Dy (x)
forx€Fandu = (uy,...,u,)EM = U = R",

It is perhaps not immediately clear that the map ¢(u, x), defined in this way,
actually exists for all « € R", but in any case, so long as the local flows exist,

u= prl(uax) = f°¢(u,x)s
@, () = f-Do(») +uye,,

where e, € R” is the vth unit vector. Namely, the equation holds for u, =0,
and the agreement of the derivatives according to v, is assured, because v,,
lifts the field 3/0x,,

Then, however, it also follows that all the flow maps in the definition of ¢
exist, because for {u | < K the flow lines remain inside the compact set
f {u €R"|u| < K}. Here we use the assumption that f is proper. Finally,
one obtains the inverse map ¢~!: £~ U x F for U = R" by setting f(y) =u

and
671() = U, 0%y .. . DLy (V). O

The assumption that f is proper is essential; if, for example, we remove a
point from E, the restriction of f is still a submersion but, in general, it is no
longer a fibration.

(8.13) Exercises

1 Show that for each n > 0 there is a flow on S! with exactly n fixed
points.

2 Show that for each vector field X on M there is an everywhere
positive function e: M > R, such that €X is globally integrable.

3 Show that each bounded vector field defined on R™ is globally
integrable.

4 Let G C R be a closed subset and subgroup of (R, +). Show that
either G =0,orG=Z,0r G =R.

Let a,: R — M be a flow line of a dynamical system; show that

for,
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G = {t € R|a,(t) = x} is a closed subgroup of (R, +), and that the
following hold:

a, is an immersion iff G # R.

a, is periodic iff G = Z. The smallest period is then a generator for
G.

If o, is periodic, then o, (R) C M is a submanifold, diffeomorphic to
a circle.

Let M be a compact manifold of dimension > 2. Show that there
exists an injective immersion R - M, whose image is not a flow line
of a flow on M.

Show that every submanifold of M diffeomorphic to ' arises as the
orbit of a global flow on M.

Hint: partitions of unity.

An open set U C R” is called star-shaped for p € U if, for each

x € U, the line segment joining x to p lies entirely in U. Show that a
star-shaped subset of R” is diffeomorphic to R".

Hint: construct a diffeomorphism which maps the orbits of the
vector field X (x) =x —p on R" onto the orbits of a vector field

€* X on U, with € as in exercise 2, see Fig. 68.

Fig. 68

Give an example of a fixed point free flow on §2"!.

Hint: S*"-tc C",

Define a flow on S2, which has exactly two fixed points, and exactly
one closed orbit.

Give an example of a flow on the projective plane RP?, which has
exactly one fixed point and otherwise only closed orbits.
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11 For each A € [0, 1] let a flow ®™: R x S S! be given, so that
the associated map [0, 1] x R x §' > 8! is differentiable, and so
that 1 s the reversed flow for @®, that is, ®P(z,x) =
@9 (—¢, x). Show that each point x €S? is a fixed point of @™
for some A, see Fig. 69.

~.
‘

-

-

Fig. 69

12 Show that if X is a vector field on $2, which is nowhere tangential to
the ‘equator’ S' =52 N (R? x 0) C R3, then each flow line meets
the equator at most once.

13 Show that on the torus S' x S! there exists a vector field for which
no orbit of the associated flow is a submanifold of S x S!.

Hint: S'xS'=R xR/Z xZ . Consider a specific constant vector
field on R2,

14 Show that on each non-compact connected manifold there exists a
vector field which is not globally integrable.

Hint: apply exercise 11 of Chapter 7.
15 Letg: R - R, be continuous, | li'm g(x)=0,and 4 = {(¢,x) €
X|—>o

R?| ¢ < g(x)}. Show that there is a maximal local flow on R, which
is defined on 4 but not on all of R x R.



9
Isotopy of embeddings

For the intuitive, as well as the formal, understanding of the theory of differ-

entiable manifolds, it is important to know the extent to which submanifolds
can be ‘moved’.

(9.1) Definition. Let f: M — N be an embedding. A differentiable
map A: [0, 1] x M > N is called an isotopy of f if ho = f and each of the maps -

heeM > N x b h(t,x)

is an embedding; % is called an isotopy between h, and k,, and ho and k4 are
called isotopic embeddings, see Fig. 70.

ho(M)

L = JR -

(o

hy(M)

Fig. 70

At the ‘boundary points’, for example (0,x) by ‘differentiable’ we mean that
there exists some neighbourhood U of (0, x) in R x M and a differentiable
map h: U — N, which agrees with 2 on Uun ([0, 1] x M), see Fig. 71. Although
this is the way one thinks and speaks about isotopy, it is often technically
more convenient to use a modified (but equivalent) definition. For example,

Fig. 71
88
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without further assumptions, the definition above does not imply that isotopy
between embeddings is a transitive relation. Thus, when we naively stick
together isotopies /& between fand f', and k between [’ and f":

h(2t,x) for0<r<}
hQ2t—1,x) ford <r<l1,

illustrated by Fig. 72; then, because #; = ko = ', this map is certainly con-
tinuous but, in general, not differentiable.

(t,x) >

differentiable?
Fig. 72

(9.2) Definition. A differentiable map A: R x M — N will be called a
technical isotopy, if each &, is an embedding and also for some € > 0.
{ho forr<e
t =

hy, fort=1—e

here hg / here h;
1 ]

0 £ 1-€ 1

Fig. 73

It is clear that one can easily join such technical isotopies together, as in
Fig. 74, and that the combined isotopy is again technical. If  is a technical
isotopy between %, and A, then clearly £ [0, 1] x M is an isotopy
between ko and k,. Conversely, given an isotopy 4: [0, 1] x M = N between
ho and hy, and a C™function ¢: R > [0, 1] of the kind illustrated by Fig. 75

(compare Chapter 7), then the map
RxM—-> N

defined by
(t,x) b h(@(@),x)
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here

here hg hy=ko! here k,
| |
0 1
Fig. 74
R
1 graph ()
G323 1 R
Fig. 75

is a technical isotopy between /i, and #,. In particular therefore, ‘isotopic’ is
an equivalence relation.

(9.3) Definition. By a diffeotopy of a manifold N we understand a
differentiable map

H:[0,1]xN = N,
such that Hy = Idy and each H;: N ~> N is a diffeomorphism.

If H is a diffeotopy of N and f: M - N is an embedding, then h;:= H; - f
gives an isotopy of f; any movement of the big manifold carries all submani-
folds with it.

(9.4) Definition. An isotopy h: [0, 1] x M - N is said to be
embeddable in a diffeotopy if there exists a diffeotopy H of N, such that for
all t, h, = H; - hy. The embeddings ko and 4, are then said to be diffeotopic
inN.

Two diffeotopic embeddings /o and ki, are, in particular, clearly equivalent
in the sense that there exists a diffeomorphism (here equal to #,) from V to
itself, so that
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is commutative, something which for merely isotopic embeddings need not
be the case. One is frequently in the situation where one has isotopy and
would like to have diffeotopy. The following theorem, which constitutes the
main content of the present chapter, shows that, under certain conditions,
this wish can be fulfilled.

(9.5) Theorem (R. Thom 1957). If h is a (technical) isotopy of
embeddings of M in N, which holds fixed all points outside a compact subset
My of M, then one can embed h in a (technical) diffeotopy of N, and indeed
even in one which holds fixed all points outside a compact subset Ny of N.

Although the theorem is valid for arbitrary isotopies, we shall only prove
the weaker result for technical isotopies. This is enough for all applications
— in particular, one can conclude from the existence of an isotopy the
existence of an embedded isotopy.

Proof of the theorem. Let h: Rx M — N be a technical isotopy
which holds fixed every point outside the compact set My C M. We can choose
a compact neighbourhood N, of ([0, 1] x M), as in Fig. 76. We want to
construct a technical diffeotopy H: R x N = N, which holds fixed all points
outside N, and which has the required property that h, = H, - kg, see Figs. 77
and 78. To this end we consider first the map

M
No< N
Mo
Fig. 76
N
No /\/
ho(M)
| | ] R

Fig. 77
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F: RxM - RxN
t,x) P (t, hy(x)).

In order to embed # in a diffeotopy we try to define a global flow on Rx &,
d: [Bx (ﬂ}xN) > RXN,

YY YYYY Y

'y

Fig. 78

on which we impose the following conditions:

Condition (i). @, should map 7 x N onto (7 + ¢) x N, see Fig. 79.

T xN (7 +t)xN

flow line

— R
Fig. 79

Condition (ii). @ should carry the isotopy along with it, which

Ox N
M DJOXN

tx N

is commutative for all ¢; and finally

Condition (iii). Outside [€, 1 — €] x N, the projection of an arbitrary
flow line on A should be locally constant.

If @ fulfills these three conditions, then clearly the differentiable map
H: R x N — N, defined by the diagram



Isotopy of embeddings 93

Rx(OxN) —2— RxN

\JPn‘j.

N

has the properties required by the theorem. Because @ is a flow, Hy = Idy;
condition (i) implies that each H;: N - N is a diffeomorphism (®_.|¢ x N
takes care of the inverse); because of (ii) #, = H; - ho and because of (iii) H
is a technical diffeotopy which holds fixed all points outside Ny .

Since every flow is determined by its velocity vector field, we may formu-
late the conditions (i)~(ii) as conditions on ®.

Assertion 1 in the proof. If @ is a global flow on Rx &V, ther_l the
conditions (i)~(iii) are equivalent to the conditions (i")-(iii") on X:= ®:

(i") The R-component of X, that is, the image of X under the differen-
tial of the projection R x N = R is equal everywhere to the ‘unit
tangent vector’ 9/d¢.

(ii") On F(R x M) the field X is given by Ty, . F(9/3t) = X(F(t, x)), see
Fig. 80. This means that the curves R~ R x N, (¢ b (¢, h{(x))) given
by the isotopy are solution curves of X, hence flow lines of @, and
this again means precisely that the isotopy is ‘carried’ as in (ii)
above.

o image of F: RxM —=Rx N
- (t,x) ~o(t,hix)

Fig. 80

(iii") Outside [e, 1 —€] x N, the field X equals 8/dz.

Assertion 2 in the proof. If a vector field X on R x N has the
properties (i')-(iii"), then it is the velocity field of a global flow @, since
[0, 1] x N, is compact and the maximal solution curves for initial points
outside [0, 1] x N, have at least (— €, €) in the domain of definition. Hence
(—8,8)x (RxN)C A for some § >0, hence also (—25,26) x (RxN)C A4,
etc.

We therefore obtain, as an intermediate result: the theorem is proved once
we can find a vector field X on R x NV with the properties (i")-(iii").

First of all, we remark that the conditions (i')(iii") for the section
X: Rx N~ T(R x N) are conditions on the individual vectors X(¢, x), and
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that if the conditions are satisfied for v and w out of T, »,(Rx N), then they
are also satisfied for all Av + (1 —X)w. Hence it is enough to show that such
avector field exists locally about each point because we can then construct
the required vector field on all of R x N by means of a partition of unity.

If, for each point outside the compact (and hence closed) subset
F([e, 1 — €] x My) C Rx N,one defines X as 3/3¢, then one has already solved
the local construction problem for all pointsin R x N — F([e, 1 —e] x My)
(Fig. 81). We therefore consider a point gy = F(ty, o) With (29, po) belonging
to [e, 1 —€] x M. We want a neighbouthood U of g, in Rx N and a vector
field X, on U with the properties (i')-(iii").

/]

Fig. 81
First, we choose local coordinates about the point q4 in ¢4 X V, with
respect to which &, (M) is given by x4y =...=x, = 0. This is possible
because A, is an embeddmg, see Fig. 82. Wlth respect to these coordinates
andona sufﬁc1ently small neighbourhood of (fo, po,0)in R x M x R" ¥,
the map

Dy Xks1s--sXn) P F(t,p)+(0,0,...,0,Xp01,...,%,)

is a differentiable map into R x V, which has maximal rank at the point
(20, Do, 0) and, therefore, is a local diffeomorphism. We may choose § >0
and a small neighbourhood ¥V of p, in M, so that on

W= (to— 8,10 + 8) x Vx {x ER" ¥ | |x| < 8},
this map, which we now want to label £, defines a diffeomorphism
F:w - E(W) =U.

F (RxM)
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/ F(RxM)NU

We may also choose W so small that the projection from U on NV remains
inside N, and that, apart from the points F(¢, p, 0), no other points of

F(R x M) lie in U, see Fig. 83. (If this last condition could not be fulfilled,
then there would exist a sequence (¢, p;);eNWith ¢; b o, p; EM — V and
F(t;, p)) > qo- It would be impossible for infinitely many points p; to belong
to the compact set My, — V, because these would have an accumulation point
p €M —V, for which F(to, p) = qo, contradicting the injectivity of A, .
Hence only finitely many points p; belong to My, and the sequence (¢;, p;)
belongs ultimately to R x (M — M,). However, there 4 is, by assumption,
independent of ¢, hence not only does F(¢;, p;) > qo, but also F(to, P;) > qo,
but then &, could not be an embedding: a contradiction.) Next, one carries
the vector ﬁeld /3t on W over to a vector field Xy on U by means of £:

Xo) = T(F™)(8/00),

and obtains thereby a local vector field near g, with the properties (i'), (ii"),
(iii").
This closes the gap in the construction, and proves the ‘isotopy theorem’

9.5). a

UcRxN

Fig. 83

(9.6) Exercises

1 Let M be a connected manifold with dim (M) > 2. Let x;, ..., X3
be distinct points of M, and let y,, . . ., ¥}, also be distinct points
of M. Show that there exists a diffeomorphism ¢: M - M with
¢(x,-) =y,(l =1,2,..., k).

2 Let M be a closed submanifold of the connected manifold V,
codim M =2, and p, g €N — M, Show that there exists a diffeo-
morphism of N to itself, which is the identity on M, and which
maps p to q.

3 If ®: Rx M- Misa flow, then ®|[0, 1] x M is of course a
diffeotopy. Give an example of a diffeotopy which is not the
restriction of a flow.

4 Let K C R" be compact and U C R" open and non-empty. Con-
struct a globally integrable vector field on R” so that @,(K) C U.
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Show that in a differentiable vector bundle every differentiable
section is an embedding isotopic to the zero-section.

Consider the embedding S* + §! —C, which is the usual inclusion
on the first factor and which is given on the second by x > 2x, see
Fig. 84. Define an isotopy of this embedding &,: S* + §* - C by

ezm‘t — e21ri(t+r)’
e2m's — 2e21ri(s-—1')

for 0 <7< 1, and embed it in a diffeotopy.

Fig. 84
Show that the antipodal map
§*-> 8" x b —x

is isotopic to the identity if and only if » is odd.
Construct an embedding f: R~ R with f(R) = (0, 1).
Give an isotopy of the embedding

,1) > t P (t,0),
©,1) > R? ((AY)

which cannot be embedded in a diffeotopy of R2.

Show that any two orientation preserving embeddings R > R are
isotopic.

Let n > m. Show that two arbitrary embeddings R™ - R" are
isotopic.

Give two orientation preserving but not diffeotopic embeddings
R->R.

Show that the embeddings in Fig. 85,

st c R — (o},
and

s> R2 — {0}
x P x+(2,0)

are not isotopic in R* — {0}.
Hint: use complex variable theory.
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M
-

14 Find an isotopy h: Rx M —> N which is such that the map
RxM =R xN (t,x) P (¢,h(2,x))

fails to be an embedding.
Hint: tty M=R,N = R2.

Fig. 85

97
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Connected sums

It is intuitively clear how one can combine two connected manifolds M, and
M, into a third connected manifold M, # M, (Fig. 86). We treat this process
in this section as an application of the isotopy theorem (9.5), because it is the
isotopy theorem which shows why the result M, # M, is essentially well
defined, hence independent of the technicalities of the combination.

M1 M2 M'|+M2
Fig. 86

(10.1) Definition. Let M™ be a connected n-dimensional manifold
and f,g: R" > M" two embeddings. We say that f and g are compatibly
oriented if either M™ is not orientable or, f and g, relative to fixed orient-
ations of R" and M", are both either orientation preserving or reversing.

(10.2) Remark. If 7: R™® > R" is given by 7 (xq, ..., X,) =
(—x1,X2,...,xp)and f,g: R™ - M™ are not compatibly oriented, then f
and g - 7 are.

(10.3) Lemma. If two embeddings of R" in the connected
n-dimensional manifold M™ are compatibly oriented, then they are isotopic.

Proof. let fand g be the two embeddings. First, we want to con-
vince ourselves that, w.l.0.g., we may take f(0) = g(0).
On a connected manifold for any two points p and ¢ there always exists a
diffeotopy H, which takes p into g: H,(p) = q. One only needs to embed an
isotopy between the embeddings

{p}>{piCcM

{p}-lajCM

in some diffeotopy by means of (9.5), and each differentiable path from
p to q gives us such an isotopy, see Fig. 87. If now H is a diffeotopy with

and

98
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g=Hs{p)

Hi{p)

p=Holp)

Fig. 87

H,(f(0)) = g(0), then it is enough to show that H, < f and g are isotopic, since
isotopy is an equivalence relation. Since it is clear that all H,- f are com-
patibly oriented, so are H, -f and g, so that the problem is reduced to the case
f(0) = g(0). We shall now therefore assume that f(0) = g(0).

The next step in the proof will be to ‘shrink’ f and g. But before doing
that, we wish to make a short remark about R"™ which will also be frequently
useful later. Given prescribed ro > 0, € > 0 we choose a C*-function ¢ on
[0, e°) with everywhere positive slope, which is given by ¢(r) = r on [0,7,]
and whose limit as 7 - oo is 7y + €, see Fig. 88. Then, if y(r) = (1/r) ¢(7),

Y is also a C*=-function on [0, <), see Fig. 89, and

oi(x) = Y{lx|)-x

ro+ I3

Fig. 88

o

Fig. 89
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defines an isotopy o of embeddings R"” - R" (work in polar coordinates!),
of which we wish to collect some properties for future use.

(10.4) Assertion. For prescribed ro>> 0 and € > 0 there exists an
isotopy o (shrinking) between the identity on R" and an embedding R" -
R™, with image (ro + €) Br= {x ER"|x| <ry + €}, which is such that all

points of roD" = {x ER"|x|<rg} are held fixed during the isotopy, see
Fig. 90.

remains
pointwise fixed

Fig. 90

In particular, g, is a diffeomorphism between R™ and (7o + e)lj", which is
the identity on r,D". For example, we have:

Rn

Fig. 91

(10.5) Corollary. If an open neighbourhood of r(D™ C R™ is
embedded in a manifold M, then there also exists an embedding R" -~ M,
which agrees with the given embedding on roD".

Now we continue with the proof of lemma (10.3). We can choose a chart

about the point f(0) = g(0) in M, so that the image of the chart domain U is
all of R™ see Fig. 91. This is easy to do, since eD" =R",
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uzR"

W

Fig. 92

Next, we can choose a shrinking (10.4) sufficient to ensure that f -0,(R")
C Uand g -0,(R™) C U, see Fig. 92. Since f -0, is isotopic to f (the isotopy is
given by #; ‘= f .0,), and likewise g -0, to g , we have yet to show that f -0,
and g -0, are isotopic.

It is now enough to consider embeddings R™ - R”, and we pick one such,

¢: R" > R", with ¢(0) = 0. Then (and this is the essential point of the whole

proof) ¢ is isotopic to the linear embedding Dgo: R"™ ~ R™, given by the
Jacobi matrix at the point zero.

In fact lemma (2.3) there exist differentiable maps y;: R > R", i =
1,2,...,n, with ¢(x) = T, x;(x), and then the Jacobi matrix consists
precisely of the columns ¥/;(0):

D¢0 = (wl(o)a LY \I/“(O))
One now defines the isotopy between ¢ and D¢, by

n
&x)P Y, xytx) = (¢(tx)/t for t>0
i=1
D¢o'x for t = 0.
S ——— et
clearly clearly an

differentiable  embedding R™ - R" for each ¢.

If now two linear embeddings (hence isomorphisms) R” - R™ are com-
patibly oriented, then they are in the same connected component of
GL(n,R), and are therefore isotopic (the elementary transformations of a
matrix — adding a multiple of a row (column) to anothet, multiplying a row
(column) by some number a # 0 — do not change the path component if
a>0).

In the case of an oriented manifold M we can now complete the proof of
lemma (10.3): here not only f and g but also f - ¢, and g - ¢, are compatibly
oriented, both with respect to M and also with respect to U = R". Therefore
we obtain isotopic Jacobi matrices, since they have the same orientation.

If, however, M is not orientable, so that fand g cannot be assumed to
satisfy an orientation condition, then f- ¢; and g - 0; may be oppositely
oriented with respect to U= R". At first, therefore, the route via Jacobi
matrices seems blocked.
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Clearly, this problem is solved if we can prove the following:

Proposition. If M is a connected, non-orientable manifold and
D €M then there exists a diffeotopy H of M with H,(p) = p, such that
TpH,: Ty M~ Ty M is orientation reversing.

Let us suppose that this proposition is false. Then we could choose an
orientation for T, M and orient every other tangent space T, M in the follow-
ing way: choose a differentiable path a: [0, 1] =M, a(0) =p, a(l) =gq;
embed it in a diffeotopy H* and orient T, M via

T HY: TyM =T M.

P
Fig. 93

This orientation of T, M is indeed independent of the choice of a and H*
because, if another diffeotopy HP induced the opposite orientation, then the
composition of H* with the reversed diffeotopy associated with H? (see
(9.2)) would have the property required by the proposition, see Fig. 93. So in
this way we would obtain an orientation of M, which was assumed non-
orientable — contradiction.

In this way the proposition, and with it the lemma (10.3), is proved. = [J

(10.6) Definition. Let M; and M, be n-dimensional connected
. manifolds — oriented in the orientable case. Let

fl . Rn > Ml
f2 :R" > M2
be embeddings — if the manifolds are oriented assume f; preserves the orient-

ation and f;, reverses it. Then one calls the n-dimensional manifold, which is
obtained from the disjoint union

[Ml _fl(Dn/3)] + [M2 “fz(D"/3)]

by the identification of fy(¢x) with f,((1 — t)x) for all 1/3 <z<2/3,
x € S™1, the connected sum of M, and M, relative to the embeddings f;
and f,, denoted by M, # M,, see Fig. 94.

Before we make ourselves more familiar with the connected sum, this is
perhaps the place to make some general remarks about ‘identification’.,
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é : My #M,

(10.7) Remarks about identification. Let X and Y be topological
spaces, Xo C X, Y, C Y subspaces and a: Xy —> Y, a homeomorphism. Then
one can glue X and Y by means of « along X, and Y, to obtain a new topo-
logical space X U, Y. Thus:

In X + Y, one introduces an equivalence relation ~ by setting each point
Xo € X, equivalent to its image point a(x) € Y,. The equivalence classes take
the form

\

&

1 pn
M -fz(—D )
M My-f (30", zen

Fig. 94

{x}forx €X —X,,
{y}fory€EY —Y,,
{x,a(x)} for x € X,.

and

The set X + Y/~ of equivalence classes, equipped with the quotient topo-
logy, is then denoted by X' U, Y, see Fig. 95.

Assertion. One can canonically consider X and Y as subspaces of
Xu,Y.

Assertion. If X and Y are differentiable manifolds, X, and Y, open
submanifolds, a: Xy~ Y, a diffeomorphism and (1) X U, Y a Hausdorff
space, then X U, Y is again in canonical fashion a differentiable manifold.
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.

%o =

b %

X Y XUpY
Fig. 95

=

Fig. 96
\ /_—;}. non-Hausdorff
Fig. 97

So, for example, if instead of the identification f,(¢x) P f,((1 — #)x),
iltustrated in Fig. 96, we take the identification f,(¢x) P f,(¢x), illustrated in
Fig. 97, we do not obtain a manifold (even though the identification space is
still locally Euclidean).

The condition that X U, Y is again Hausdorff can be stated thus: if
x€X — Xy, x, €X, and lim (x,) = x, then lim (a(x,)) does not exist
in Yo .

(10.8) Assertion and orientation convention. A connected sum of
connected manifoids M, and M, is orientable precisely when M, and M, are
orientable, and there then exists exactly one orientation on M, # M, which
is compatible with the given orientations on M; — f;(D"/3),i =1, 2. From
now on, a connected sum of oriented manifolds will always be given this
orientation.

The construction of M, # M, uses embeddings f;: R™ - M;. That such
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embeddings always exist (assuming that M; is non-empty) is obvious (charts
and (10.5)). To what extent however is M, # M, independent of the choice
of these embeddings?

First of all, the following is clear: if f;: R"™ - M; and f; : R™ - M; are such
embeddings and ¢;: M; = M; diffeomorphisms, for which

M

n
) @

M;

i

D

is commutative, then the ¢; induce a diffeomorphism between M, # M,
(formed using f; and f,) and M # M, (formed using f; and f5).

In the case M; = M;, we know already that f; and f; are isotopic because
of the assumed compatibility of orientation (lemma (10.3)). This isotopy,
however, does not necessarily fix all points outside a compact subset of R™,
and so, without further discussion, we cannot embed it in a diffeotopy. We
would like to do this, because then

would be commutative. It is, however, also unnecessary to embed the whole
isotopy in a diffeotopy, since we only use it on D",

(10.9) Complement to the isotopy theorem. If & is a technical
isotopy of embeddings M - N and My C M is compact, then there is a diffeo-
topy H of N, which is fixed outside a compact subset of N, with hy| My =
H t° h 0 l M 0-

Proof. The proof proceeds almost exactly as that of the isotopy
theorem itself (9.5), except that the required vector field X on R x NV has to
satisfy condition (ii'):

Tt,0F((3/0r) = X(F(t,x))

only for points (¢, x) € R x M,. The argument on p. 95, in which the
independence of A, from ¢ outside M, plays a role, is now dispensable. Od
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(10.10) Corollary. The (where relevant, oriented) diffeomorphism

type of M, # M, does not depend on the choice of embeddings R" - M;.

We can therefore, in cases where it is only a matter of (where relevant,
oriented) diffeomorphism types, simply speak of ‘the’ connected sum
M, #M,, while having in mind some particular connected sum.

1

2

(10.11) Exercises

Let M be an oriented connected manifold, p,q € M and ¢: T, M =
Ty M an orientation preserving isomorphism. Show that there exists
a diffeomorphism f: M > M with T,,f = ¢.

Show that there exists no embedding f: R~ S! x R, for which
f(R?) contains one of the sets S* x {x}, see Fig. 98.

pé¢f(R?)

Fig. 98

Hint: use exercise 13 in Chapter 9.

That two arbitrary embeddings of R" in an n-dimensional, non-
orientable, connected manifold are isotopic has a remarkable
consequence: in the case that our universe, which we only know
locally, is globally not diffeomorphic to R*, but, for example, to
S! x RP?, then one would be able to make a journey from which
one’s mirror image would return (heart on the right-hand side, etc.).
Try to believe it!

If one picks a base point from each of k copies of ", and passes
from the disjoint union S™ + ...+ S" to the quotient space
obtained by identifying these k points, one obtains a so called
‘bouquet’ of k n-spheres. Describe a subspace of R™*!, which is
homeomorphic to this bouquet of spheres. Is the bouquet a
manifold?

Let A = {h,: Uy > Uyla € A} be an atlas for a topological
n-dimensional manifold M. Consider the finest equivalence relation
on the topological disjoint sum 2, < 4 Uy, under which two points
are equivalent if they correspond to each other under some change
of chart, Show that X, < 4 U, /~ is homeomorphic to M.
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Show that
My # My) # M3 =M, # (M, # M;),
M, # M, =M, #M,,
M#S" =M,

where the various connected sums may be defined using (10.6) and
(10.8).

R*#... #R"=?CR".

Show that RP? # RP? admits a nowhere vanishing vector field.
Show that if M, and M, are compact submanifolds of R* , then

M, #M, is also embeddable in R¥.

If n is odd, then RP" is orientable. Show that the diffeomorphism
type of RP" # M is independent of which orientation one chooses in
the two summands.

and

Let M,, ..., M, be connected n-dimensional manifolds, Show that
W Mis,,
* 7%
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Second order differential equations
and sprays

If M is an open subset of R”, the straight line from each point x €M,
t b x + tv, with prescribed velocity, remains with M for some time (Fig. 100)

and any two points in M which are sufficiently close to each other can be
joined by such a path,

Fig. 100

On a general manifold, one can of course do the same thing locally with the
help of charts, but for global problems this is worthless, since the connecting
paths of course depend on the charts, and so in the regions of overlap are not
well defined.

For example, if M is open in R” and f, g: X > M are close in the C°-
topology, then a homotopy between fand g in M is defined by

(x, 1) P (1 = 2)f(x) + tg(x), see Fig. 101.

In order to imitate such a construction for a general manifold M, we need a
coordinate free substitute for the connecting paths between two points.
This is the concern of the present chapter.

Traditionally this is carried out ‘quite simply’: one introduces a Riemannian
metric on M; locally the geodesics play the role of straight lines. For a book
such as this one, this has the disadvantage that one must assume a knowledge

108
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glx)

f{x)

Fig. 101

of Riemannian geometry. Therefore, we follow instead the method of sprays,
applied by S. Lang in [3], and which can be completely developed in a few

pages.
(11.1) Notation. We recall, once more, that for a differentiable curve

7: (@, b) > M in a manifold, we denote by () € Ty, M the velocity vector of
the curve:

Y():= Tyy(d/dr).
The velocity curve y: (a, b) - TM is then a differentiable curve in TM, for
which we can again apply the same notation:

¥:(a,b) > TTM
is the velocity curve of ¥, where TTM denotes the tangent bundle of the total
space of the tangent bundle of M.

(112) Definition. A second order differential equation on a mani-
fold M is a vector field £ on TM with the property that every solution curve 8
of ¢ is the velocity curve of its projection on M, that is, 3= fory = - 3,
see Fig. 102.

(11.3) Definition. A curve v: (e, b) > M is called a solution curve
of the second order differential equation £ on M if v is the solution curve of &
on TM, that is, if for all #

¥():= £V (®)
Since the solution curves of £ on TM and M are related by the formulae
y=u:8 B8=17,
we can consider them as two ways of looking at one and the same thing.
The definition of a second order equation on M as a vector field on TM

corresponds to the more familiar use of the same notation in calculus. Thus,
the second order equation
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e
(GJ b)

S
Fig. 102
y'= 1@,y

is equivalent to the first order system

y' =2z Z'=f@,z2).

(11.4) Notation. If £ is a second order differential equation on M,
then for each v € TM the associated maximal solution curve of £ in TM will
be denoted by §,, and the projection 7 - §, on M by 7, .

Thus, for v € T,.M the curve 7, : (a,, b,) = M is the maximal solution curve
of ¢ in M with v,,(0) = x and v,(0) = v, see Fig. 103.

Fig. 103
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Such a curve ¢ | y,(¢) will be the substitute for the straight line
t > x + tv inR". But, in order to make such a substitute geometrically
usable, one will have to demand, at least, that v,, and 7y, differ from each
other only in the velocity of passage (in contrast to say ballistics, where
different solution curves are associated with different initial velocities along
the same direction, see Fig. 104).

Y

Fig. 104

(11.5) Definition. A second order differential equation & on M is
called a spray if for s, t € R, v € TM, the number ¢ belongs to the domain of
definition of v, if and only if sz belongs to the domain of definition of v,,
and if in this case

Yso(t) = 7o (50).
(11.6) Theorem on the existence of sprays. On every manifold there
exists a spray.

Proof. Until now we have stated the conditions on a vector field ¢
.on TM to be a second order differential equation and a spray as conditions
on the solution curves. What do they say directly about £?

Assertion 1. A vector field £ on TM is a second order differential
equation if and only if Tm-§ = Idqpy -

TTM 2 TM

<

™

For if § is a second order differential equation, v € TM, @, is the solution
curve for v in TM and 7y, := 7 - §, the solution curve in M, then

Tr-£@) = Tr(Bs(0)) = 7,(0) = B,(0) = v,
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or Tm - £ = ldpy . If, the other way round, £ is the vector field with T - &£ =
Idppr, then for the flow lines 8 we have

(@) = Tn-£B®) = TaB(@) = Q).

This checks the second order condition on 3, and completes the proof of the
first assertion.

Assertion 2. A second order differential equation £ on M is a spray
if and only if forall s ER, and v € TM, we have

E(v) = Ts(s&()),
where Ts: TTM = TTM denotes the differential of multiplication by s.
F if ¢ is a spray, then for fixed s €R, v € TM and for ¢ allowed to vary
in a neighbourhood of zero,
Yso(®) = Yo(51) = Ysult) = $7,(s) =
Bso(®) = sB,(st) = st(t) = TS(SB'U(SI))-
Hence for t = 0:
£6v) = Ts(E@)),

which is the required condition.
Conversely, let £ be a second order differential equation which satisfies
this equation, and let

Yo: @y, by) > M

be the maximal solution curve in M with initial velocity v. We show first that
the equation a(?):= 7,(st) gives a solution curve with initial velocity sv. To
this end we check that

a(0) = 57,(0) = sB,(0) = sv,
the correct initial value and, moreover,

at) = syy(st).

Therefore, 6(t) = Ts(s¥,(st)) = Ts(sé(7,(st))) which, by the assumed formula,
however, equals

E@7u(s) = E(a(?)).

Therefore, &(t) = £(a(?)), and a is the solution curve associated with initial
velocity sv. For all values of ¢, for which v,,(s¢) is defined, it follows that

Y () is also defined and that y,(st) = v, (¢). It only remains to show that
if 7,5, (¢) is defined, then so is 7, (s¢). For s # 0 we have only to apply the
argument above with 1/s instead of s; for s = 0 it is clear in any case, because
each solution curve is defined at the point zero. This concludes the proof of
the second assertion.
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We now turn to the construction of a spray on a given manifold M. The
conditions from assertions 1 and 2, thus

Trn-§ = ldyy and £(sv) = Ts(s&()) foralls, v,

which g must satisfy, are conditions on the restrictions & | T,.M, which must
be satisfied for each x €M, see Fig. 105. Both are clearly ‘convex’ conditions
in the sense that, given two sections £, and &, of TTM | T, .M, which satisfy
the conditions, then so does (1 —A); + A£,. Hence it is enough to show that
each point in M has a neighbourhood U, on which there exists a spray, for we
can then glue such local sprays together to form a global spray on M by means
of a partition of unity.

here £1T,M
Fig. 105
For the local problem, we are justified in taking U as an open subset of R".
We can therefore write
TU = UxR", TTU = UxR*"xR" xR",
which is to so arrange things that the velocity curve of a curve
t B (x(0),v(t))ETU = UxR"
is given by
t B (x(D), v(t), dx/de(r), dv/du(r)).

Since m: TU = U'is given by (x, v) + x, and hence Tn: TTU - TU by
(x, v, w, b) P> (x, w), one writes the differential of multiplication by s

Ts: TTU -» TTU as (x,v,w,b) b+ (x,sv,w,sb).

A second order differential equation is therefore a section £: TU - TTU of
the form £(x, v) = (x, v, v, Y(x, v)). Translated into the usual terminology of
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the infinitesimal calculus, the differential equation becomes y" = Y(y, »"),
and such a differential equation is a spray precisely if ¥ (x, sv) = s*y(x, v).

If, as in our case, no further conditions need to be imposed on the spray,
then we have, for example, in

£TU -~ TTU (x,v) b (x,v,v,0),

found a spray on U, see Fig. 106. With this therefore we have also proved
theorem (11.6). 0O

U

solution curve treX+tv

Fig. 106

(11.7) Exercises

1 Let (E, m, M) be a differentiable vector bundle. If one restricts
Tn: TE - TM to TE |M (M = zero-section!), then one has a bundle
homomorphism TE {M - TM. Show that this bundle homomorphism
is surjective, and that the subbundle £ C TE |M is its kernel.

2 Let (£, m, M) be a differentiable vector bundle. Prove that
TE=n"E e n*TM.

3 Give an example of a non-trivial differentiable vector bundle E,
whose tangent bundle TF is trivial.

4 Let M be a non-empty connected manifold. Show that there exists a
differentiable curve y: R - M, so that the image of the velocity curve
¥: R TMis dense in TM.

5 Construct a spray for M = S, for which not all maximal solution
curves are defined on all of R.

6 Let M be a manifold, dim M = 1. Show that not every curve in M can
arise as the solution curve of a second order differential equation.

7 Give an example of a spray on S™ (as a vector field on TS" C
S™ x R"*1), whose solution curves are great circles.
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The exponential map and
tubular neighbourhoods

(12.1) Remark. Let & be a spray on M. Then the set
Oy = {v €ETM|v,(1)is defined}
is an open neighbourhood of the zero-section in 7M.

Proof. We denote the maximal flow on TM, whose velocity field is
£,by @ and its domain of definition by 4 C R x TM. Therefore

O = {vETM|(1,v)E 4},

is open (compare (8.11)) because A4 is open. Moreover, from £(sv) =
Ts(s&(v)), putting s = O one sees that £ vanishes on the zero-section, and thus
the flow lines of the points of the zero-section (as fixed points) are defined
for all R, in particular for £ = 1. Therefore @, contains the zero-section.  [J

(12.2) Definition. If £ is a spray on M, then the map
expg: T~ M, v b 7,(1)
is called the exponential map of &, see Fig. 107.

Fig. 107

Clearly, expy is a differentiable mapping because, if @ is the flow associ-

ated to £, then expy is given by v > m -@(1, v). We now want to determine
the differential

115
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Tpexpg: TpTM > TpM

of expy at the points of the zero-section M C TM. (Since T is open in
™, T, G =TpTM.)

To this end, first let us agree on a notation. If £ is a differentiable vector
bundle over M and p €M is a point of the zero-section, then T, £ has two
significant subspaces T, Ep and T,M; for both E}, and M (= zero-section) are
submanifolds of £ (Fig. 108), which pass through p. By looking at a bundle
chart we see that T, E is actually the direct sum of T}, £, and T, M and, since
T, Ep is canonically isomorphic to Ep,, we have T, E = E, ® T, M for each
p €EM. Globally we have TE|M =FE & TM.

(12.3) Notation. If E is a differentiable vector bundle over M, then
in the canonical isomorphism

Fig. 108

TEIM = EeTM

we wish to keep to this order of summands, so that even in the case
TIM|M = TMo TM

there will be no confusion as to the meaning of the summands.

(12.4) Remark. The differential Texpg: TTM > TM, restricted to
TTM|M=TMe TM is

(ld,[d): TMeo TM - TM.
The differential of the projection 7: TM — M, restricted in the same way, is

(0, 1d): TM © TM - TM.

Proof. Both maps, exp; and 7, are the identity on the zero-section

M, from which it follows that on the second summand of TM ® TM both their
differentials are the identity.

Now let v be a vector from the first summand; then v is the velocity vector
of the curve ¢ > tv in TM, T respectively, at the point ¢ = 0, see Fig. 109.
The image curve under the projection is constant, therefore T'w (v) = 0. How-
ever, the image curve under the exponential map is £ > expg(tv) = 74, (1) =
Yv(?), and therefore T expg(v) = 7,(0) = v.
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Fig. 110

(12.5) Corollary. On the zero-section the differential of the map
(7, expg): O > M x M is given by

}0 Id

TM®TM->TMOTM=T, ,MxM

(p.p}

Id Id

In particular, on the zero-section the map has maximal rank.

From now on in this chapter we shall be much concerned with maps of
this kind. An important geometric consequence of the property of having
maximal rank on the zero-section is formulated in the following lemma:

(12.6) Lemma. Let M be an n-dimensional manifold, (E, n, X) a
differentiable vector bundle with n-dimensional total space E. Let U be an
open neighbourhood of the zero-section in E (see Fig. 111 )and f: U>Ma
differentiable map which has maximal rank on the zero-section and which
also embeds the zero-section X in M. Then there is an open neighbourhood
U, of the zero-section in U, so that f | U, is an embedding and, therefore,
here it is a diffeomorphism onto an open neighbourhood of f{X) in M (see
Fig. 112).

Proof. We may assume that f is everywhere of maximal rank on U
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4E
7?>?7f/ /7U
Y, X

Fig. 111

>

f(U)

Fig. 112

(5.3), then f: U~ f(U) is open and a local homeomorphism. We may further
assume that f(U) = M, and the embedding f | X allows us to consider X asa
subset of M. We are therefore looking for a local inverse to the map f: U~>M
near X. For the proof we recall the following lemma from general topology
(which is familiar in sheaf theory, see Godement [1], p. 150):

(12.7) Section extension lemma. Let f: U > M be a local homeo-
morphism, X C M a subset such that each neighbourhood of X in M contains
a paracompact neighbourhood (this holds in particular for manifolds and,
more generally, for metric spaces M). Let s: X - U be a section of f, that is,
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[ s =Idx. Then there exists an open neighbourhood W of X in M, and an
extension of s to a section s: W— U, and s(W) =: U, is open in U.

Proofof(12.7). In M we may choose a family {/'\}nea of open

sets, which cover X, and sections s, : ¥, = U of f, which are such that
s UVANX =s|Vy N X. This is possible because f is a local homeomorphism.
Now we may assume that the V, cover all of M, that M is paracompact
(replace M by some neighbourhood of X'), that this covering is locally finite,
and that it admits a refinement {Wh} ca with Wy C ¥V (Kelley [8], chapter
5, theorem 28, p. 156; for manifolds see (7.1)).

Now we put

W= {xEM|Ix EW N W, =s5(x) = su(x)}.

Then, clearly, X C W, and we have extended the section s: X - U continu-
ously to W. It therefore only remains to show that W (respectively s(W)) is a
neighbourhood of X.

Suppose then that x € X. We choose a neighbourhood @ of s(x), which is
.mapped homeomorphically by f onto a neighbourhood of x, see Fig. 113.
Next we choose a neighbourhood A of x in M, which is so small, that

() 4 C£(Q), -
(ii) A intersects only finitely many Wy, say Wy, ..., Wg,
(i) x € W;, i=1,...,k,

ivyACV, i=1,...,k,

v s:(4)CQ, i=1,...,k
Thens;|A=...=s5,14=(f10) 14, and so from (i) 4 C W.
With this we have proved (12.7) and hence (12.6). O

Fig. 113

In this proof we have followed S. Lang [3]. In the literature one fre-
quently finds other proofs of (12.6), which use a somewhat complicated
topological argument, but which do not generalise to infinite dimensional
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Fig. 114

manifolds. Moreover, at this point, the following assertion easily slips into the
argument (we have found it in four books): if f: U = M is a local homeomor-
phism, 4 C Uis closed, and f | A: A > f(A) is injective, then it is possible to
extend f to a homeomorphism of a neighbourhood of 4.

Counterexample (Fig. 114): U= (0, 1) x (0, 1);M = R?>,4 = (0, 1) x }.
The mistake lies in the assumption that, given the hypotheses fl4:A~>

f(A) is a local homeomorphism.

Next, in order to make the application of (12.6) easier, we wish to
remark that a ‘nice’ neighbourhood of the zero-section is contained in every
preassigned neighbourhood of the zero-section, see Fig. 115.

7 / v /
'/'/W/ //1/’% g//’%/%/
/'?,//lgéf % /

BhhY
-‘ '

Fig. 115

nice
beighbourhood

(12.8) Remark. If (E,w,X) is a differentiable vector bundle with
a Riemannian metric {,) and if U is a neighbourhood of the zero-section,
then there exists a differentiable everywhere positive function e: X > R, so
that the open neighbourhood

eDE = {v € E|v| < e(n(v))}
is contained in U.

Proof. Locally this is clearly possible, even with constant € (see Fig.
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S
—_ /
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Fig. 116

116): For an appropriate cover, one chooses a subordinate partition of unity
{Tnln €N} and obtains a global ¢ in the form e = Z,, eNén* Tn. O

As a first application of the exponential map and of the lemma (12.6) we
prove

(12.9) Theorem. Let M be a manifold and Y a topological space. If
two continuous maps

e Y->M

are sufficiently close in the C°-topology (compare (7.8)), then they are
homotopic, that is, there exists a continuous map h: [0, 1] x Y - M with

h(0,y) =f(y)and h(1,y)=g(y)forally €Y.

Proof. We choose a spray on M and a Riemannian metric for TM.
Then for the exponential map

exp: M

of the spray, we choose a small positive function €, so that eDTM C &, and so
that
(m, exp) | eDTM
is a diffeomorphism onto an open neighbourhood U of the diagonal A,; in
M x M. All this is possible by (4.20), (11.6), (12.5), (12.6), (12.8).
Observe that the diagram

eDTM ——— UM xM>3(p.q)

d l !

M Ay (r,p)

is commutative; therefore the points (7, exp)~!(p, q) all lie in the fibre over p.
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U
Ay
M
M
Fig. 117
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£DTf(y)M
gly)
Fig. 118

Next, if f,g: Y = M are sufficiently close in the C°-topology (compare
(7.8)), then (f(»), g(»)) must lie in U for all y € Y (that is, close to (f(¥),
f(»)) € Ay), see Fig. 117.

If we set
h(t,p) = exp (t((, exp) | eDTM) ™' (f(),8(»)))
we have found the required homotopy, see Fig. 118. O

Now we wish to turn to tubular neighbourhoods. In the study of sub-
manifolds X C M we must often handle problems which, while not local and
so not transferable by means of a chart to a problem in R™, do not involve
the whole manifold M, but only the consideration of a neighbourhood of the
submanifold. For such considerations it is therefore very useful to know that
the ‘position’ of X in such a neighbourhood is the ‘same’ as the ‘position’ of
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X as zero-section in its normal bundle. The following definition makes this
precise:

(12.10) Definition. If X C M is a submanifold, then by a tubular
map for X one understands an embedding

TlX-M
of the normal bundle 1 X of X into M, which on X is the inclusion X C M,
and for which the differential induces the identity L X - L X on the zero-
section.
The differential of 7, restricted to (T L X) | X, is a bundle homomorphism

LXoTX>TM|X

(compare (12.3)), because 7 restricted to X is the inclusion. The condition
stated last in the definition concerns itself with the composition

Lxe 0™ x 2985 ) x = (M| X)/TX.

(12.11) Theorem on the existence of tubular maps. For every
submanifold there exists a tubular map.

Proof. 1et X C M be a submanifold. We choose a spray on M with
an exponential map exp: - M, and choose a Riemannian metric ¢, ) for
TM. By means of the canonical isomorphism L X = (TX Y- we consider 1 X as
a subbundle of TM| X. Then on the neighbourhood

U = ﬁ’ﬁ 11X
of the zero-section in 1 X, a map
U-M

is given by the exponential map, which is the inclusion X C M on X. Since
the differential of the exponential map, restricted to TTM | M is exactly
(Id, 1d): TM ® TM = TM (12.4), then the differential of exp |U: U > M,
restricted to (T L X)| X = L X ® TX is just the identity

LXeoTX S TM|X.

From this we draw two conclusions: first, the differential has maximal rank
on the zero-section and thus fulfills the hypotheses of (12.6) and, second, it
induces the identity L X > 1 X

Next, we choose a small positive function € on X, so that eD1XCUand
so that exp |eD L X is an embedding ((12.6), (12.8)).

Finally, we choose a diffeomorphism

LX3eDLX,

which on (¢/2)- D L X is the identity (compare the technique applied for
(10.4)). Then, clearly, the composition
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exp

LX>eD1 XM
is a tubular map. O

(12.12) Definition. If 7: L X - M is a tubular map for X C M, and
if 1 X is equipped with a Riemannian metric ( , ), then the neighbourhood

(D1 X)
of X in M is called a tubular neighbourhood of X.

Therefore the tubular map 7 equips the tubular neighbourhood with the
structure of a ‘disc bundle’ so that with the given tubular map one also speaks
of fibres and of the projection

tubular neighbourhood - X (see Fig. 119).

Fig. 119

For certain constructions which make use of all of this structure, it is
important to know how far the construction depends on the choice of the
tubular neighbourhood. To this end one has the following uniqueness
theorem with which we want to end this section:

(12.13) Uniqueness theorem for tubular neighbourhoods of

compact submanifolds. Let X be a compact submanifold of a
manifold M; 1o, 71: L X = M tubular maps, { , )y and  ,),; Riemannian metrics
on | X;and finally let Uy = 179 (Do L X) and U, = 7,(D; L X) be the associ-
ated tubular neighbourhoods of X. Then there exists a diffeotopy H of M,
which is fixed on X and which is such that H, maps the tubular neighbour-
hood U, fibrewise onto U,. Furthermore, it is even possible to choose H, so
that all points outside a compact subset of M are likewise held fixed, and so
that for each point p € X and each t, T, H, induces the identity L, X > 1, X.

Proof. Clearly, it is enough to prove the theorem for the two special
cases

@Qrp=m=7
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and
(b) G =0 =)

For (a): we only need to find a fibre preserving isotopy # of the identity
on 1 X, which leaves a neighbourhood of the zero-section fixed, and for
which /2; maps the disc bundle Dy L X = {v €1 X | v]|, <1}onto D; L X.
Then we can embed the isotopy of 7| Dyl X, given by

T"ht

in a diffeotopy H with the required properties (see 10.9).

Wlo.g., we may suppose that |v]|o<<|v}; forallv €L X. If ¢: R~ [0, 1]
is a C=-function of the kind illusirated in Fig. 120 (compare Chapter 7), then
an isotopy of the required kind is given by

h(t,0) = ¢(t|v|o):—Z{—;+(1—¢(rw|o)) v

(Naturally one sets (¢, 0) = 0.) This proves case (a).

12 1
Fig. 120
For (b): here it is enough to find an isotopy between 7, and 74, so that

each 7, is a tubular map. We can forget the metric on 1 X. Instead of this we
choose a metric  ,) for TM, a spray on M and € > 0, so that

Fig. 121
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(m, exp): eDo(TM [ X)=>XxM

is an embedding, see Fig. 121.

Next we must make use of the possibility of shrinking a differentiable
vector bundle: there always exists a fibre preserving isotopy of the identity,
which leaves fixed a neighbourhood of the zero-section, and whose end-
embedding maps the whole bundle into a preassigned neighbourhood of the
zero-section,

Seizing this possibility for L X we recognise that we may already take 7,
and 7, to be so small, that (m, 7)(L X) and (7, 7,)(L X) C X x M are con-
tained in (rr, exp)(te D(TM | X)). Therefore, both

7o = (m,exp)~!(m, 7o)

and ,
T = (ﬂa exp)—l(ﬂ’ 7'1)
Fig. 122

are fibre preserving maps
LX->TM|X

which, after composition with the exponential map, give 7, and 74, see Fig.
122.

It is now enough to show that 7o and 7; are connected by a fibre preserv-
ing isotopy which keeps the zero-section fixed, which for each p and ¢
induces the identity on 1, X via T, and which takes place completely in
eDTM | X. Then 7 = exp - 7’ will do what is required.

We can forget the condition that 7' takes place in eDTM | X - if the argu-
ment works anywhere in TM | X, it will work equally well in eDTM | X
(shrinking argument).

Since we now have all of TM | X to play with, we can replace 7, and 7; by
the bundle maps given by their differentials at the zero-section

T LX>TM| X
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:lX->TM|X.

This dinearisation’ proceeds exactly as in the proof of (10.3) by means of
lemma (2.3):

[0,11 x1X~>TM| X
(t,v) P 4
Tp1o(®) fort =0

for t # 0

is the isotopy between 7, and 75, which we need. The argument for 7y is
analogous.
To finish the argument, compose both 75 and 77 with the projection
L i x B9 (TM | X)TX = LX, i = 0,1.
This gives the identity of 1 X, something which holds also for each
(1 —8)7g + t7}.
10,11 xLX~>TM| X

(t,2) > (1 — 1) 7o(v) + t71(®)

With

we obtain an isotopy with the required properties. O

(12.14) Exercises

1 Let X C M be a submanifold whose normal bundle possesses a
section everywhere different from zero. Show that the inclusion
X C M is isotopic to an embedding whose image is disjoint from X .

2 Show that two disjoint closed submanifolds of M also have disjoint
tubular neighbourhoods.

3 Let X be a submanifold of M. Show that if X is compact and M — X
connected, then so is the complement of every tubular neighbour-
hood of X in M. The hypothesis that X is compact is not superfluous,

4 Let M be a connected manifold and X C M a (codimension one) con-
nected submanifold. If X lies ‘one sidedly’ in M, that is, the normal
bundle 1 X is not trivial, show that M — X is connected.

5 Let M be a manifold. Show that a connected subset X C M is a sub-
manifold, provided that there exists an open neighbourhood U of X
and a differentiable map f: U= U with f-f=fand f(U) = X.

6 Let X be a closed kcodimensional submanifold in M with a trivial
normal bundle. Show that there is a differentiable map

fiM~—S*,
so that X is the pre-image of a regular value of f.

7 Let (E,n,M)be a differentiable vector bundle. Then the set P(F') of
1-dimensional subspaces of the fibres is in a canonical manner a
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manifold and, over P(F'), we have a canonical differentiable line
bundle

n(E) > P(E),

for which the fibre over a point p = V C E,. of P(E) is the line

{p} x V. Clearly, we have a canonical linear map of vector bundles
1n(E) ~ E (one says that n(£) arises from E by ‘blowing up’ the zero-
section). Show that there is a diffeomorphism

n(E) — O-section = F — 0-section

given by the canonical map n(£)~ E.

Let X C M be a compact submanifold and 7 a tubular map for X.
Show that there exists exactly one differentiable structure on

(M —X)UP(LX)=: My, for which the maps (i) and (ii) below are
embeddings:

() M—XC My
(i) n(L X)~> Mx

v for v € P(L X) = zero-section of n(L X)
7(¢p(v)) forv €En(L X) — {zero-section},

where ¢: n(L X) - L X is the canonical map. Show that the differen-
tiable structure of Mx does not depend on the choice of tubular
map. (One says that the differentiable manifold Mx arises from M
by ‘blowing up’ X.)

Show that the blowing up of a codimension one submanifold has no
effect.

Show that by blowing up a point in S™, one obtains the projective
space RP". (In general, blowing up a point of M" is, up to diffeo-
morphism, the same as taking the connected sum M # RP"))
Construct a non-empty, n-dimensional manifold M, n = 2, for which
the blowing up of a point does not change the diffeomorphism type.

[/ nd
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Manifolds with boundary

Manifolds, which are locally modelled on Euclidean space, are not the only
interesting geometric objects one can imagine. However, without further
assumptions one cannot base the theory developed so far on local models
other than Euclidean space, even if a corresponding generalisation of mani-
fold were easy to define. The basic methods which we have learnt rest,
namely, on the possibility of performing analysis on manifolds (differential
equations, inverse functions, etc.), and here the essential local statements
depend on properties of Euclidean space.

However, one can extend many methods from the theory of manifolds
to spaces, which are built up from local models other than Euclidean space,
as long as these spaces or local models are sufficiently sensibly composed or
built up from manifolds (‘stratified spaces”). We shall not go into this, restrict-
ing ourselves to the classical and simplest case of manifolds with boundary,
which locally look like the closed Euclidean half-space

R7?:= {x €R"|x, >0} (Fig. 123).

Xn

///// o // R?
.

Fig. 123

These manifolds with boundary are important, not only as a generalisation
but, also, as an aid in the theory of ‘ordinary’ manifolds.

Since it makes sense (as is well known from infinitesimal calculus) to speak
of C™-maps defined on open subsets of R”, there is no difficulty in replacing
R" everywhere by R? in the definition of a differentiable manifold. Since we
want to call on this analogy several times from now on, we shall explicitly
write down the definition on this first occasion: ‘

129
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(13.1) Definition. A topological n-dimensional manifold with
boundary is a second countable Hausdorff space M, which is locally homeo-
morphic to RY. An atlas of local charts

hU->U
(Uopenin M, U’ open in R?, h homeomorphism) is called differentiable if
the chart transformations are differentiable;and an n-dimensional differen-

tiable manifold with boundary is a pair consisting of a topological #n-dimen-
sional bounded manifold M and a maximal differentiable atlas D for M.

The rank theorem easily gives an example:

(13.2) Note. If M is an (ordinary) manifold and ¢ € R a regular value
of f: M~ R, then £~ ((— °°, a]) is canonically a manifold with boundary, see
Fig. 124. About a point p € f™!(2), one can clearly choose a~f as last co-
ordinate of a chart.

Fig. 124

In this way many examples of manifolds with boundary present them-
selves to us, for example the disc

D" = {xER"|Ix*< 1}

or,more generally, for a differentiable vector bundle (£, m, X) with Riemannian
metric <, > and a positive differentiable function € on X, the e-disc bundle
eDE

eDE= {v EE||v|* < e*(m(v))}.

A diffeomorphism of one open subset of R} onto another, maps each
point of the ‘boundary’ (that means, each point with x,, = 0) to a point
on the boundary, because an invertible germ (R”, x) - (R", y) possesses an
open representative, and hence cannot take an ‘interior’ point to a point on
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Xn Axp

Y

X",...,Xn-] X},.A.,anl

Fig. 125

the boundary, see Fig. 125. It follows that the boundary of a manifold with

boundary is well defined and can itself be given the structure of a differen-
tiable manifold.

(13.3) Definition and Notation. If M is an n-dimensional manifold
with boundary, then a point p € M, which is mapped by some (and hence by
every) chart about p to a point with x,, = 0, is called a boundary point of M.
The set of boundary points of M is canonically ar: (# — 1)-dimensional mani-
fold (in the usual sense) which we shall denote by oM, and call the boundary

of M (Fig. 126). M — aM is canonically an (ordinary) n-dimensional manifold,
and is called the interior of M.

aM

Fig. 126

(13.4) Convention. In order to avoid always having to speak of
‘ordinary’ instead of the newly introduced manifolds with boundary, we wish
to agree that manifolds with boundary will always be called manifolds with
boundary, and that the word ‘manifold’ will be reserved for the usual,
unbounded manifolds. However, it will be possible for a manifold with
boundary to have an empty Boundary. If M is a manifold with boundary and
oM = (@, then M = M — dM is of course also canonically a manifold. By a
closed manifold we understand a compact manifold (without boundary).
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A manifold with boundary is formed from the two manifolds M — oM and
OM. We have, therefore, first of all, to describe how these two manifolds fit
together, that is, to describe a neighbourhood of oM in M.

(13.5) Definition. By a collar for a manifold with boundary we
mean a diffeomorphism from the manifold with boundary M x [0, 1) onto
an open neighbourhood of oM in M, which is the inclusion dM C M on oM,
see Fig. 127.

Fig. 127

(13.6) Theorem. Every manifold with boundary has a collar.

Proof. Note that one can consider the boundary as a submanifold
and therefore obtain the collar as half a tubular neighbourhood. In detail, and
in a simpler fashion, we argue as follows:

For manifolds with boundary, one defines the tangent bundle (TM, m, M)
as for unbounded ones, and indeed so that also for the boundary points, 7,,M
is a vector space, rather than just a half-space. (To apply the ‘geometer’s
definition’ meaningfully here would be rather clumsy; however, the definitions
of the ‘algebraist’ or the ‘physicist’ carry over word for word, compare (2.2) or

WM pam

%/

<}

7

oM

Fig. 128
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(2.5).) For x € oM, T.0M is a 1-codimensional subspace of T,,M, which
decomposes 7, M into two half-spaces, of which, relative to some and hence
to every chart about x, one lies on the side of the manifold. We wish to call
a vector v € T, .M, which is not tangential to M and which belongs to this
half-space, an inward pointing vector, see Fig. 128.

Pointing inward is a convex property in the sense already used several
times. Therefore, by means of a partition of unity, we can easily construct
a vector field X on M, so that each vector of X | 9M points inward. Then
there exists a positive function € on M, and a differentiable map of

{Cx,)EM xR, 10 <r<ex)}

to M, which for each fixed x is a solution curve of X with initial value x.
This map is the inclusion on oM, it is injective, it is of maximal rank every-
where and, therefore, as can be easily seen, it is a diffeomorphism onto an
open neighbourhood of 0M in M, see Fig. 129. By means of ‘shrinking’

aMx R« M

Fig. 129

(compare (10.4)) we easily obtain a diffeomorphism of aM x [0, 1) — indeed,
if we so wish, we can map oM x R, onto a neighbourhood of M in M, which
is the inclusion 9M C M on M. O

For collars, as for tubes, there exists a uniqueness theorem which, here (for
the sake of simplicity) we only formulate and prove for compact boundaries.

(13.7) Theorem. If M is a manifold with compact boundary, and
Ko, K1 are two collars for M, and K is a compact neighbourhood of 0M in M,
then there exists € > 0 and a diffeotopy of M, which leaves OM and the
complement of K pointwise fixed, and which on oM x [0, €) takes the collar
Ko into K.

Proof. We construct a family X, of vector fields, depending differ-
entiably on A, on a neighbourhood of oM in M as follows: The vector field
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Yy
Ty

S -

Fig. 130

9/0t on oM x [0, 1) (Fig. 130) is taken by k, and k, into two vector fields,
both defined in a neighbourhood of 9M in M. Label these fields X, and X,
on the intersection U of the two neighbourhoods (Fig. 131). Then let us
define X:= (1 —A)X, + AX; on U.

Xg on U : (

Fig. 131

Along oM each X, points inward. By integration we therefore obtain, for
sufficiently small €, an isotopy k between ko and k; on oM x [0, 2¢). Here each
Kk is a collar and, indeed, the whole isotopy takes place in the (topological)
interior K of K. As in the isotopy theorem (complement (10.9)) we now find
a diffeotopy of K, which leaves fixed all points outside a compact subset
of K, and in which  |[0, 1] x 0M x [0, €] is embedded. We extend this
diffeotopy to one of M by decreeing all points outside of K to be held fixed.
In this way we have found the required diffeotopy. ]

In order to prepare a first application of collars, just look at the following
situation: let V be a manifold and r:V =V at a fixed point free involution,
that is, a diffeomorphism with r(p) #p for all p, and 7 -7 = Id.

If one identifies points which correspond to each other under 7 and
denotes the quotient space by N/7, then the canonical projection N —>N/7 is
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topologically a two leaved covering and, because 7 is a diffeomorphism, there
exists exactly one differentiable structure on N/7 with respect to which 7 is a
local diffeomorphism. We therefore consider N/7 as a differentiable manifold.
Example: 7: §" > S, x > —x, then S”/7 = RP".

(13.8) Definition and Notation. Let M be a manifold with boundary,
7: 8M ~ 0M a fixed point free involution, and « a collar for M. Then there
exists exactly one differentiable structure on the (unbounded) topological
manifold M/, which is obtained by identifying points which correspond to
each other under 7, with respect to which the canonical inclusion M — oM C
M/t and the map
oMx(—1,1) R M
Tx (—1Id) T
k(p, t) for t=0
k(p,—t) for <0

lp, 7] &

-defined by « are embeddings. The differentiable manifold defined in this way
will also be denoted by M/r.

The definition shows how one can use the canonical differentiable glueing
of oM x [0, 1) to itself, giving oM x (— 1, 1)/7 x (— Id) (locally this is illus-
trated in Fig. 132), by means of a collar to explain the differentiable identifi-
cation space M/r.

oM/t

aM
=

Fig. 132

The differentiable structure of M/7 indeed depends on the choice of the
collar, as one recognises, for example, by considering the paths
-11) > M/t
k(p,t) t=20
k(rp,—t) t<0,

which must be differentiable for each p € M. For example, if M = R2 + R2,
hence oM = R+ R, and 7 is the natural interchange of the two boundary
components, then M/7 is both as set and as topological manifold the same

as R2. If one uses the natural collar (x, ) P> (x, ), then one obtains the
differentiable structure of R2. If however, one chooses the collar given by
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aM/r aMm/T
AN
differentiable paths in differentiable paths in
M/ w.rt. kix, t) = (x, 1) M/Tw.rt kix, t)=(x+t,1)

Fig. 133

(x, ) > (x + ¢, 1), then the paths ¢ > (x + [¢], ) become differentiable in
M|t = R?, see Fig. 133. In actual fact the diffeomorphism type of M/t does
not depend on the collar, that is, two manifolds M/7 formed from two
distinct collars are nonetheless diffeomorphic.

In the case of compact boundaries there even follows:

(13.9) Corrollary from the uniqueness theorem for collars. Let M
be a manifold with (compact) boundary, T: OM = dM a fixed point free
involution and Kk, K collars for M. Then there is a diffeomorphism

M|t - M,

which takes the differentiable manifold M|, formed using Ky, onto that
formed using k, and which on dM/t and outside a preassigned compact
neighbourhood of M|/t is the identity.

(13.10) Explanation. 1t is clear that everything said so far about the
construction of M/r applies also to the case when 7 is not defined on all of oM,
but when 7: X - X is a fixed point free involution on an open and closed
subset X of 8M (equal to a union of boundary components, see Fig. 134).

As a convention, we want to agree that, in cases where only the diffeo-
morphism type is important, given M and 7, we shall speak of ‘the’ differen-
tiable manifold M/t without specifying the collar.

M M/T

Fig. 134
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As a special case of the construction, we consider the identification of two
manifolds with boundary by means of a diffeomorphism of the boundaries.

(13.11) Definition. Let M, M, be manifolds with boundary,
X; C oM; be open and closed and ¢: X 5 X, be a diffeomorphism. Then
we write

My Eb’Mzi-‘—‘ M7,

where M =M, + M, and: X; + X, > X; + X, isgiven by 7| X, = ¢,
71X, =¢7", see Fig. 135.

S
Sl

/ 0
M X% m MiUp Mg

Fig. 135

The particular manifold without boundary MU;q4 M which one obtains if
one glues together two copies of M by means of 1d: 9M — oM, is called the
double of M.

N |- MXxN

P

Fig. 136

As another application of the collar theorem, we shall show how one can
present the product of two manifolds with boundary, again as a manifold
with boundary. If M and N are manifolds with boundary, then (M x N) —
(8M x dN) has a canonical structure as a manifold with boundary, see
Fig. 136. At the points of M x 0N, from the charts for M and N, we obtain
‘charts’ for M x N which, instead of the half-space, map into open subsets of
the ‘quarter-space’

RT xR? = R™*" 2y R, x R, (Fig. 137).
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Fig. 137

In order to define a differentiable structure on all of M x N, we use the
homeomorphism of the half-plane R? (see Fig. 138) onto the quadrant
R, x R, (see Fig. 139), which in polar coordinates is given by halving the
angle. Denote this by ¢:

¢:(r,0) > (r,0/2).
¢ defines a diffeomorphism R2 —0 = (R, xR,)—0.

/A

Fig. 138

\\

Fig. 139

(13.12) Definition and Notation. Let M and N be manifolds with
boundary with collars k and A, taken here for technical reasons in the form

K:OMXR,~> M
AONX R, = N

Then there exists exactly one differentiable structure on M x NV, relative to
which the maps
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MxN)—(OMxON)CMxN,
and

M XN x R2 %5 aM x oV x R, x R,

> (M x R x (BN x R,) =2 Mx N

are embeddings, that is, are diffeomorphisms onto open subsets of M x N. In
future M x NV is to be understood in this fashion as a differentiable manifold
with boundary.

The technique used here is called ‘straightening the angle’.

(13.3) Remark. The boundary of M x Nis 9M x N Uygyy, o
M x 9N if one uses the collars given by x and A for M x N and M x oN,
see Fig. 140. If one is only concerned with diffeomorphism type, then one
can simply speak of ‘the’ product M x NV as a differentiable manifold with
boundary, without specifying the collars.

Fig. 140

We want to conclude this chapter on manifolds with boundary by intro-
ducing the notion of ‘bordism’, which plays so great a role in advanced
differential topology.

Every manifold without boundary is the boundary of a manifold with
boundary, for example M = 3(M x [0, 1)). But to be the boundary of a
compact manifold with boundary is a restriction with interesting geometric
consequences. More generally, one divides closed (that is, compact, un-
bounded) manifolds into ‘bordism classes’ as follows:

(13.14) Definition. Two closed n-dimensional manifolds M, and
M, are called bordant if there is a compact manifold with boundary W, such
that oW = M, + M, (Fig. 141). If the closed manifold M is the boundary of a
compact manifold with boundary, we call M bounding or nullbordant.
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N
<
N

M
Fig. 141

(13.15) Remark and Definition. ‘Bordant’is an equivalence relation.
The equivalence classes are called bordism classes; we denote the bordism
class of M by [M].

Proof that ‘bordism’is an equivalence relation. The clearly symmetric
relation is, given 0(M x [0, 1]) = M + M, also reflexive. In order to under-
stand transitivity, we apply the technique of glueing manifolds together: if
M, ~M, and M, ~ M, and if W;, W, are compact manifolds with boundary
with oW, =M, + M,, 3W, =M, + M,, then 3(W, UmM2 W) =M, + M.
So transitivity follows, see Fig. 142.

My >

Fig. 142

(13.16) Remark. The disjoint sum of manifolds makes the set R,
of bordism classes of n-dimensional manifolds into an abelian group; the
Cartesian product defines a multiplication

Snn Xmm - mn+m,

with makesM, =eo,_.,M,, into a Z/2-algebra.
One convinces oneself of this without difficulty or surprise. In contrast the
structure of this algebra lies very deep.

My My

The geometric-analytic techniques which we describe‘in this book, cer-
tainly form the basis of the study of differentiable manifolds, but they do
not suffice to solve most of the harder problems. Here one also needs the
help of algebraic topology. With the definition of the algebra®M, we have
come to a threshold between geometry and algebra. For quite a lot of
geometric problems, which can be solved only with the help of algebraic
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topology, it is of great importance to know the structure of .. This struc-
ture was determined by R. Thom, who thereby laid the foundations for
the extensive bordism theory. His result is:

(13 1 7) Theorem (Thom 1954). Let Z/2[X2, X4,X5,X6,X8,X9, . .]
be the polynomial ring over Z[2 on countably many variables X;, one for each
i > 0, which is not of the form 2’ — 1. Then there is an algebra isomorphism

Z[2[X,, Xs,...] > RN,

which maps each X; onto an element of R;. One can so set up the iso-
morphism, that for each even i, the variable X; is mapped onto the bordism
class of the i-dimensional real projective space.

(13.18) Exercises

1 Let M be a closed manifold and e, b € R regular values of a differ-
entiable function f: M - R. Show that the manifolds f*(¢) and
f71(b) are bordant.

2 Show that on each manifold with boundary M there exists a differ-
entiable function with £~1(0) = oM.

3 Show that M — dM = f implies that M = @ also.

4 Show that an orientable manifold with boundary has a boundary
which is also orientable.

5 Give an example of a manifold with (non-empty) boundary, whose
diffeomorphism type is unaltered by the removal of an arbitrary
point.

6 Let M be a compact manifold with boundary and X a vector field
on M, which is inward pointing on the boundary. Show that R, is
contained in the domain of definition of each maximal solution
curve,

7 Show that M, # M, is bordant to M, + M,.

8 Show that every closed manifold is bordant to a connected manifold.

9 Let Ay and 4, be disjoint closed subsets of the differentiable mani-
fold M. Show that there exists a decomposition M = M, U M,,
oM, = oM, = My N M, of M into two manifolds with boundary,
which are glued along the common boundary, and which are such
that 4, C M,, see Fig. 143.

Fig. 143



142 Introduction to differential topology

10 Show that the double of a compact manifold with boundary
certainly bounds.

11 Let M be a compact manifold with boundary and ¢: oM —~ oM x0
the canonical diffeomorphism. Show that M is diffeomorphic to
MU, (M x [0, 1]), see Fig. 144,

M aMx[0,1]
Fig. 144

12 Show that for each diffeomorphism ¢: §”! - 8"~!, the manifold
D™ Uy D" is homeomorphic to S”.

13 Give examples of oriented manifolds with boundary M, and M,
and of a diffeomorphism ¢: aM, 5 0M,, so that M; Uy M, is not
orientable.

14 Show that a closed manifold, on which a fixed point free involution
exists, necessarily bounds.

15 Show that D™ x D™ = D"*™,

16 How many bordism classes of 15-dimensional manifolds are there?
Use (13.17).
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Transversality

We study the following situation: let f: M = N be a differentiable map of
differentiable manifolds, and let L C N be a submanifold. What can we say
about the pre-image f~'(L) C M? If f is transverse to L, then we know that
' l(L) C M is a submanifold of the same codimension as L in N. However,
without further hypotheses, £~ (L) has in general no structure of any kind,
see Fig. 145.

LcN

. f(M)

Fig. 145

(14.1) Theorem (Whitney). Every closed subset of a differentiable
manifold is the set of zeros of some differentiable function.

Proof. Suppose, first, that A4 is a closed subset of the open subset
V of R™, then we may cover the open set " — A4 with a sequence of open
discs {K,,|» €N} and choose for each » € N a differentiable function
¥, V= R with the properties

(a) 0<y,and Y,(x)>0exEK,
(b) the absolute values of the functions ¥/, and of all their derivatives,
up to the vth order, are smaller than 277,

Condition (a) is easy to satisfy (Chapter 7); one satisfies condition (b) when
one multiplies a function which satisfies (a), by a sufficiently small constant
factor.

143
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Now set y:= 25, -, ¥,. This sequence converges uniformly on all of ¥
because of (b), as does the sequence for each derivative of the ¥, and hence
the limit function { is differentiable. Because of (a) ¢/ (x) > 0 if and only if
x €K, for some v, that is, if and only if x € 4.

More generally, suppose that A C M is closed, and choose a partition of
unity {¢; |i €N}, so that Supp (¢;) is contained in a chart V; for each i. Then
Supp (¢;) N A is closed in V; and, as above, one finds a function A;: V; »> R,
)\i = 0, 7\,-(x) =0exc Supp (¢l) MNA.Nowset A = E;Ll ¢i)\i (With )\i =0
outside V7).

The function A is well defined and differentiable because the sum is locally
finite. If x € A, then A;(x) = 0 for all /,hence A(x) = 0. If x & A4, then ¢;(x) >0
for some i and x & Supp (#;) N A4, hence A;(x) > 0, hence ¢;(x)\;(x) > 0 and
therefore A(x) > 0. 0

(14.2) Remark. If we set a(x):= exp (— A(x) %) with the function A
as constructed above, then 0 < a < 1,and o 1(0) = A. All derivatives of «
vanish on A (with respect to any charts) because exp (— %) vanishes if and
only if # = 0, and has a trivial Taylor Series at the zero point. Such functions
are a useful technical aid.

Every closed subset A C M is thus the pre-image of the submanifold
{0} C R under an appropriate differentiable map. The situation is quite
different for analytic or algebraic functions; for these there exists a large
and interesting theory of zero sets for the appropriate functions. But the
theory of pre-images of submanifolds under differentiable maps does not end
here, since the peculiarly pathological maps, such as the one here constructed,
are, in a certain sense, untypical exceptions — the usual state of a map
is that of transversality. We shall show here — similarly to the immersion
theorem — that one can approximate a map arbitrarily closely by a transverse
map. First some preliminaries:

(14.3) Definition. We say that a vector bundle E is of finite type if
E is a subbundle of a trivial bundle 7: B x R¥ = B. In other words, there
exists a vector bundle F over B so that £ @ F is trivial (4.11).

(14.4) Lemma. A differentiable vector bundle over a differentiable
manifold has finite type.

Proof. The real reason is that the base is finite dimensional. In order
not to have to load ourselves with too much topology, we permit ourselves
the following argument: if a bundle has finite type, so clearly has every sub-
bundle, likewise the restriction of the bundle to a subspace of the base. More-
over, the tangent bundle 7M of a differentiable manifold has finite type, for
the embedding M C R" (following (7.10))induces an inclusion TM C TR" |M,
and the tangent bundle of R” is trivial.

Now let £ — N be some differentiable vector bundle, so that the total
space I is a differentiable manifold and, as we have just said, the tangent
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bundle TE is of finite type. The same holds for the restriction of this bundle
TE |N = N to the zero-section N C E. This bundle contains E as a subbundle,
the normal bundle of the zero-section (12.3). O

The general transversality theorem depends on the following special case:

(14.5) Proposition. Let (E, m, M) be a differentiable vector bundle
which is equipped with a Riemannian metric. Let N C E be a differentiable
submanifold and € a continuous everywhere positive function on M. Then
there exists a differentiable section s: M ~ E, |s(p)| < e(p) for all p €M, so
that s is transverse to N. If A C M is closed and the zero-section satisfies the
transversality condition (5.11) with respect to N for all points of A, then one
can choose the section s, so that s |A = 0 (Fig. 146).

|

Fig. 146

Proof. Choose first a complement (E', 7, M) to the vector bundle
(E, m,M),so that E ® E' is the trivial bundle M x R*. Let f: E @ E'~> E be the
projection on the first factor, then the map f: M x R*¥ - E is a submersion,
hence £} (V) C M x R* is a submanifold (for a submersion is certainly trans-
verse), and the fibres of the normal bundle of £ (V) in M x R* are mapped
by Tf isomorphically onto the fibres of the normal bundle of NV in E.

Hence a section s of the trivial bundle M x R* - M is transverse to f~1(V)
if and only if the section f - s is transverse to V. To summarise: w.l.0.g., we
may suppose that £ is the trivial bundle M x R* - M. By the way, f ' (V) is
the total space of the bundle 7*E’ | N over V.

Suppose, therefore, that £ = M x R¥, that a is the function associated
to the given closed set A CMin (14.2), U=M—Aand§ =e-a: M~> R.
Then 0 < 8(p) < e(p) for all p € U, and both & and all its derivatives vanish
on A. We have a bundle map
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g EIU=UxRF>UxRE, (p,0) & (0, 6(p))"0),

choose a regular value w € R*, |w| < 1, of the composition
NNEIU) 5 UxR* 7 R,
and define the required section s by

s(p) = (p,8(P)w).

Rk
—Hw
] -0
N n
I
\\\ ~
Fig. 147

We are here using Sard’s theorem (6.1), see Fig. 147. At the point p €A, the
value of the function s and its differential agree with those of the zero-section;
by hypothesis, transversality is satisfied. If p € U, one has only to convince
oneself that at p the section g - s | U (which has the constant value w) is
transverse to g(V N E | U), see Fig. 148. O

(14.6) Transversality theorem for sections (R. Thom). Let f:E > M
be a differentiable map between differentiable manifolds, and let s:M ~> E be a
differentiable section of f (that is, f - s = Idyy). Let N C E be a differentiable
submanifold, then arbitrarily close to s there exists a section t: M > E trans-
verse to N. If the transversality condition on s is already satisfied for all
points of a closed subset A C M, then one can choose the section t so that
t|4 =s|A (Fig. 149).
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g(NNE/U)

/
\2

A

Fig. 149

‘Arbitrarily close’ is to be formulated with respect to some metric on £
and the C°topology for maps, see (7.8).

Proof. We choose a well adapted tubular neighbourhood of s(M),
and apply proposition (14.5) in this tubular neighbourhood:
The section s is differentiable and an immersion, for Tf - Ts = Id; also
s: M - s(M) is a homeomorphism with inverse map f|s(M) and so, following
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(5.7), s is an embedding. Because f|s(M) has rank equal to the dimension

of M, fis a submersion in some neighbourhood U of s(M), and it is enough

to prove the theorem for f: U~ M, s: M~ Uand N N U C U. In other words,
we may assume that fis a submersion (U = E).

Consider the bundle ker (Tf) over E which is a subbundle of the tangent
bundle TE; then ker (Tf)|s(M) is a complement of the tangent bundle of
s(M) in TE |s(M) and therefore may serve as a normal component: The
inclusion ker (Tf)|s(M) — TE |s(M) induces an isomorphism with the normal
bundle of s(M) in E. One can now define a spray &: TE - TTE, so that
£(v) € T(ker (TY)) for vectors v € ker (Tf) and, therefore, so that the integral
curves, which begin in the direction of a vector out of ker (Tf), certainly pre-
serve a direction from this subbundle. Put another way: the integral curves,
which at one point are tangential to the ‘fibre’ ! (p), p € M, never leave
f~Y(p). The argument is illustrated by Figs. 149 and 150.

Fig. 150

From this spray one obtains a tubular map
7: ker (T)|s(M) ~ E,
so that the diagram

ker (T f)[s(M) ——

T
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commutes. Since 7 is an open embedding, one can apply the proposition
(14.5) directly to the left-hand side of the diagram. O

As a special case we obtain the classical result of Thom:

(14.7) Transversality theorem for maps. Let f: M — N be differen-
tiable, and let L C N be a differentiable submanifold. Then, arbitrarily close
to f, there exist maps g: M — N transverse to L. If the transversality condition
on fis already satisfied at the points of a closed subset A C M, then one can
choose g so that f1A = g | A (Fig. 151). '

Fig. 151

Proof. Consider the composition M > M x N > N, s = (Id, f),
m = projection, then f = 7 -5, and 7 is a submersion, and hence transverse
to L with the pre-image 7~'(L) =M x L C M x N. We may therefore approxi-
mate the section s of the projection M x N = M, following (14.6) by a section
t transverse to M x L. Hence ~ by the same conclusion as in the first step of
the proposition — the map 7 - ¢: M = N is transverse to (M x L) = L. O

Note that, in this proof, we do not use the fact that the approximation ¢
of s is a section. Without this condition (14.6) is much simpler to demonstrate
because one can argue with a completely arbitrary tubular neighbourhood of
s(M).

Transversality theorems are basic to all ‘general position’ arguments in
differential topology. With them begins cobordism theory, as well as the
stability theory of differentiable maps, and they really explain why differ-
ential topology, far from being a desert of pathologies, yields a cornucopia
of geometric phenomena.

As a topologist, one tries to approximate mappings between manifolds by
others with good properties (differentiable, transverse, . . . ) because sufficiently
close maps are homotopic (12.9). Suppose, therefore, fo, f1: M — N are suffic-
iently close approximations to a map f and are transverse to a submanifold
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—

Mx1 —f—]’

N O

Fig. 152

L C N, then both are homotopic to f via differentiable homotopies
M x[0,1]1 >N, i =0, 1, which do not depend on ¢, wherever fo(p) = f(p)
or f1(p) = f(p)-

Let us choose a ‘technical’ homotopy which, for example, between the
times 0 < ¢ < 1/3 and 2/3 <¢ <1 is independent of ¢, then we can compose
the two original homotopies and obtain a differentiable (technical) homotopy
F between f, and f;, see Fig. 152. By assumption, f, and f; are transverse to
L and, if we choose the homotopy to be stationary for the times 0 <¢<1/3
and 2/3 <t <1, then it follows that F |M x (0, 1/3] and F|M x [2/3, 1) are
transverse to L. Using (14.7) we may replace the homotopy F |M x (0, 1)
by a map which is transverse to L without altering it on the closed set
M x ([0, 1/3] U [2/3, 1]). Consider now the pre-image F (L) C M x [0, 1];
then F~1(L) N M x (0, 1) is a submanifold of the same codimension as
Lin N, and

F(L)n0,1/3) = f5' (L) x [0, 1/3);
FlL)N(2/3,11 = fi*@) x 2/3, 1.

Putting everything together, one sees that £~ (L) is a manifold with
boundary equal to fo (L) + f1 (L), hence homotopic maps which are trans-
verse to L have bordant pre-images. The bordism class of f~*(L) is thus inde-
pendent of which particular approximation to f, transverse to L, one takes.

Indeed, one only needs to assume that the original map fis continuous,
since any continuous map can be approximated by a differentiable one.

(14.8) Theorem. Let f: M~ N be a continuous map which is
differentiable on an open neighbourhood U of the closed set A C M. Then,
arbitrarily close to f, there exists a differentiable map g: M ~ N, so that
glA=flA.

Proof. Choose a closed embedding N C R",and a tubular neighbour-
hood ¥ on Nin R” with projection n: ¥ = N (see (7.10), (12.11)). Now let
W be a neighbourhood of the graph of fin M x N, so that
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0= {(p,9) EM x V|n(q) € W}

is a neighbourhood of the graph of fin M x V. If the graph of a differentiable
map g: M~ R" lies in Q, then the graph of 7 - g lies in W, so that we may
assume that NV = R".

In this case we consider an e-neighbourhood of f, where e: M > R is a
strictly positive function; choose with this a covering {U,, |v € Z} of M with
a subordinate differentiable partition of unity {¢,} together with constants
fv,so that | f(p) —f, | <e(p) for all p € U,, and so that U, C U for v <0,
and U, C M — A for v > 0. Then one sets

g(p) = ;Of(p)-¢y(p)+ Y f,0.(D). O

v=0

(14.9) Exercises

1 Let 4y, Ay, be disjoint closed subsets of the differentiable mani-
fold M. Show that there exists a differentiable function a: M ~> R
such that 0<a<1,a {0} =4,,a {0} =4,

2 Let M be a compact connected differentiable manifold, and A CM
a non-empty closed subset. Show that there exists a vector field
on M, which vanishes on 4 and only on 4.

Hint: first construct a vector field for which the set of zeros is finite.

3 In the transversality theorem (14.6) we have assumed that N C E is
a submanifold. Show that the same theorem holds if one replaces this
inclusion by an arbitrary differentiable map g: N — E. In this case,
one must formulate the transversality condition (on s: M > E) as
follows: if p €M, q € N and s(p) = g(q) = x EE, then Tps(T,M) +
Tg(ToNY=T,E.

4 Formulate and prove a generalisation of the transversality theorem
for maps (14.7), which corresponds to the generalisation of (14.6)
in exercise 3.

5 Let B be a manifold with boundary and let L C M be a differentiable
submanifold. Show that each continuous map f: B = M is homotopic
to a map g:B » M, so that g"'L C B is a differentiable submanifold
with boundary and a(g™'L) =g™'L N dB.

6 Let M be an oriented differentiable manifold, and let f,: N, > M,

=1, 2, be differentiable maps of oriented closed manifolds of
complementary dimensions, that is, dim (V,) + dim (V,) = dim ().
The intersection number [f,] -[f,] € Z is then defined as follows:
choose a map g homotopic to fy and transverse in the sense of
exercise 3 to f,. Then the fibre product F:= {(p, q) EN, x N, |g(p) =
f2(q)} is finite (5.14, 11) and, for each pair (p, ¢) € F, one has an
isomorphism of oriented vector spaces Tp(V1) © To(V2) T Ty
TgpyM,and we may set €(p, q) = + 1, depending on whether this
isomorphism preserves or reverses orientatation. Then
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[f1] - [f2] =Y e(p, q), see Fig. 153.
F

N2

[f]]o[f2] =0 [f‘l] o [fz] =1
Fig. 153

Show that the intersection number is well defined and depends only
on the homotopy classes of the maps f,. Furthermore, [f1] - [f2] =
D" "2 fa] < [f1], nyi= dim N,

For a connected manifold M let m,, M be the set of homotopy classes
of continuous maps S" - M. Show that if n <k, then m,8% =0.
Hint: (14.8), (6.1).

Leti: {p} — S" be the inclusion of a point. Show that the following
map s: 7,8" = Z,n > 0 is surjective: if « €7, S is represented by
the map a: "> S", then s(a):= [a] - [i], see exercises 6 and 7.
More generally than in exercise 8 let M be a closed, oriented,
connected, differentiable n-dimensional manifold and I7 the set of
homotopy classes of continuous maps f: M > S™. If i: {p} > S™ is
again the inclusion of a point, then f + [f] - [{] is a surjection [T~ Z.
Show that the map I1—Z in exercise 9 is bijective hence, in par-
ticular, that 7, S™ = Z.

Hint: use (10.3).

Let s: M — TM be a vector field on a closed oriented manifold (TM
possesses a canonical orientation (4.22, 5), (11.7, 2)). The number
x(M):= [s] - [s] is called the Euler characteristic of M. Show that
X(M) depends only on M (exercise 6). If there exists a nowhere
vanishing vector field on M, then x(M) = 0.

Show that x(S?"*) = 0, x(S*") = 2 (see exercise 11).

Hint: S$?"*1 is the unit sphere in C"*!, and one can construct a
nowhere vanishing vector field. For S?" consider the vector field
induced by rotation about an axis.
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n-dimensional manifold
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chart 2

Euclidean valuation 4
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particular homogenous
coordinates 4

unit interval (closed,
half-open, open) 7
differentiable sum 8
differentiable
(Cartesian) product 8
induced map 12, 14
inner or scalar product
13
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germ(s) 14

conclusion of proof 15
vector bundle 22

fibre 22

fibre mapping 22

orthogonal complement

24
restriction of a bundle
25
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induced bundle 27
Whitney sum 33
tensor product 34
dual bundle 34
exterior power 34
orientation 34
orientation cover 35
normal bundle 38
closure 41

diagonal 42, 121
seminorm on C*(M, N)
65

local flow 74

velocity vector (curve,
field) 76, 79
connected sum 98
identification by means
of 103

109

boundary of a manifold
131

quotient manifold 135
intersection number
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a, integral curve 75
Alt® bundle of alternating k-forms 34
angle (straightening) 139
antipodal map 96
approximation, differentiable 150
by immersions 66
transverse 146ff, 151
atlas 2
of a bundle 28
differentiable 3, 130
good 62
maximal 4

ball (disc) 63,130
ballistics 111
basis 22
boundary 131
of a product 139
bounding 139
bordant 139
bordism class 140
bordism group 140
Brieskorn manifold 54
Brown, theorem of 61
bump function 63
bundle 22ff
map 27
homomorphism 23
induced 28
restriction of 25

C complex numbers 11
C" complex vector spaces 11
C* differentiable category 6
C*(M) algebra of differentiable functions 6
C*(M, N) differentiable mappings 6
CP" complex projective space 11
C°-topology 67
canonical line bundle 32, 128
carrier 41
chart 2

bundle 23

change of 2

domain 2

manifold 2
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closed 131
closed disc 5, 130
codimension 9
collar 132, 138
collar theorem 133
compactification 71
connected sum 98
contour 50
convex 40
coordinate 8
homogeneous 11
critical 48
value 48

D", ball, disc 4, 130
Df, Dfy, Jacobi matrix (at the point p) 17
3 boundary of a manifold 131
A diagonal 42, 121
D, 8/ax,, partial derivative 15ff
deform 74
derivation 14
derivative, partial 15
det () determinant 12
diagonal 42, 121
Diff () 74
diffeomorphism 3, 7
diffeotopy 90ff
differential 15, 31
differential equation 80
of second order 108ff
differentiable 3, 88, 130
category 6
structure 4
structure of M/r 135ff
dim ()9
dimension 9, 16
of a vector bundle 22, 28
disc (solid disc) 4, 130
disc bundle 123,130
double 137
dual bundle 34
dynamical system 74ff

&(p), &, ring of germs 14
eDE disc bundle of radius € 120
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Ehresmann 84
embedding 9, 49, 62ff
theorem 71

theorem for compact manifolds 61, 72

embedding, isotopy of an 88ff

an isotopy in a diffeotopy 91ff

error 120
Euler characteristic 152
existence theorem
for collars 132
differential equations 80
Riemannian metrics 41
sprays 111
tubular maps 123
exp ( ), e-function 62
exponential map 115ff
exterior power 34

®, ®; (local) flow 74ff
fibre £, of a bundle 22, 33

of a tubular neighbourhood 124

fibre product 27, 55
fibration theorem 84
finite type 144

fixed point 53, 75, 86

fixed point free involution 11, 135, 142

flow 74ff
line 75
local 77ff, 82
frame 55
Fubini’s theorem 57
functorial property 12, 14
of the differential 15

general position 149
geometric phenomenon 149
germ 14
GL (n,R) real linear group 17
GL* n,R) 42
global 34

flow 77
glue 3, 103ff, 137ff
glueing of isotopies 89
great circle 114

H(m, n) Milnor manifold 55
half-space 129
Hom 34
homomorphism bundle 34
homotopic 121
homotopy 108ff, 121
group 152
technical 150

ideal, maximal 12, 20

identify 103ff, 135

image 24

immersion 48
theorem 66

induced bundle 27
initial velocity 111
integral curve 75
integration of vector fields 80
interior 131
interior point 130
intersection number 152
invariant under change of charts 3
inverse function 44
involution 11, 135ff, 142
isomorphism 7
isotopic 90
isotopy 74, 88ff
of a linear map 101
theorem 91, 105

Jacobi matrix 17

K(r) ball about 0 with radius 7 63
kernel 23
Klein bottle 43

N(E) k-fold exterior power 34
Lebesgue measure (zero) 56
linear

group 17

map of bundles 27
line bundle 43

canonical 32, 128
local homeomorphism 118
local model 129

Mm,,, maximal ideal in &, 20
M(p), maximal ideal in &(p) 20
manifold 1

differentiable 3ff

ordinary 129

Riemannian 38

topological 1

with boundary 130
mapping, differentiable 3, 6
max { }, maximum 11
maximal solution curve 82
metric, Riemannian 38, 41, 108
Milnor manifold 55
Maobius strip 5, 32
motion 88

N, natural numbers 62

T, Nn, bordism groups 140
nice neighbourhood 120
normal 38

normal bundle 38, 50

null bordant 139

a,a 4, orientation 34

a, domain of definition of the
exponential map 115

O (n) orthogonal group 38, 50
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one-sided 127
operate 74
orbit 75
orientation 34
cover 35
of a manifold 37

P(E) projective bundle 127
w, homotopy group 152
path 18
path germ 19
partition of unity 41, 64
periodic 75, 86
polar coordinates 138
pre-vector bundle 29
product 8
of manifolds with boundary 138
projection 22
of a tubular neighbourhood 124
projective space
complex 11
real 4
canonical line bundle 32, 128
orientation 42
proper 71

quadrant 138

quadric 54
quarter-space 137
quotient bundle 34
quotient space 103, 135

R real numbers 1
R” Euclidean space 1
R" Euclidean half-space 129
rank 44

theorem 45
regular 48

value 48f£f, 130
retraction 54, 127
Riemannian

manifold 38

metric 37, 39, 108
rk, rkp, rank 23, 44
RP" real projective space 4

S™ sphere 2, 4
s Y(f) singularity set 61
Sard, theorem 56ff
scalar product 37
Schmidt orthogonalisation 37
section 25

canonical 32

extension 118
seminorm on C7(U) 65
separating function 65, 151
shrinking 99
singular 48
solution curve 80
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for second order differential equation
109
sphere 2, 4
spray 108ff, 111
stable 148
star-shaped 86
Stiefel manifold 55
straightening the angle 139
structure, differentiable 4
subbundle 23
submanifold 9
submersion 48
subordinate 41
sum, differentiable 8
of vector bundles 33
connected 98ff, 102
supp( ), support 41

Tf, Tpf differential 15, 31
TM tangent bundle 30
TpM tangent space 13
Tp(N)g 18
Tp(Mpp 17
tangent bundle 30
tangent map 14
tangent space 13ff
algebraist’s 14
geometer’s 18
physicist’s 17
technical homotopy 150
technical isotopy 89
tensor product 33
Thom 91, 141, 146
torus 2,9, 87
total space 22
transition function 28
(Trp) transversality condition 51
trivial 23
locally 22
TTM tangent bundle of TM 109
tubular map 123ff, 148
existence 123
uniqueness 124
type, finite of a vector bundle 144

U(n) unitary group 55
uniqueness theorem
for collars 133
differential equations 80
embedding of R™ 98
tubular neighbourhoods 124
universal property
of the induced bundle 28
product 9
sum 8

v Stiefel manifold 55
vector field 31
integration 80
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vector bundle 22ff W?2"1(d) Brieskorn manifold 54
differentiable 29 Whitney 66, 71, 143

velocity curve 80, 109 sum 33
field 80
vector 80, 109 Z integers 67

zero section 25
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