

Visual Gesture Builder: A Data-Driven Solution to Gesture Detection | © 2013 Microsoft. All rights reserved. 1

Visual Gesture Builder: A Data-Driven
Solution to Gesture Detection

Published for the Xbox One XDK on September 18, 2013

Adapted for Kinect For Windows v2 SDK on July 20, 2014

While we have tried to ensure the accuracy of this document, we provide no express warranties or

guarantees regarding the information. The information is subject to change. Microsoft may have

intellectual property rights in the subject matter of this paper. This document does not grant you a license

to those rights—it is for informational purposes only.

Abstract
Many successful and innovative applications use gestures as input. These programs span a wide variety of

genres, platforms and input technologies, from the touch screen of a smart phone to the full-motion,

natural input of devices like the Kinect Sensor. This white paper explains how Visual Gesture Builder, a data-

driven machine-learning solution for gesture detection, can be used efficiently to detect even the most

challenging gestures with very high accuracy. This technology can make developers more productive and

raise the quality of Kinect applications in terms of better gesture detection and reduced latency.

Contents
Introduction .. 1

Visual Gesture Builder .. 3

Collecting data .. 5

Tagging data ... 9

Building and analyzing gestures ... 12

Tips and tricks ... 13

Pros and cons .. 16

Conclusion .. 17

References .. 17

Introduction
For Kinect applications, it is essential to successfully and robustly communicate a person’s intent in a

natural way, for this is the very heart of Kinect—“you are the controller.” This brings us to the importance

of gesture detection.

http://www.microsoft.com/info/cpyright.mspx

Visual Gesture Builder: A Data-Driven Solution to Gesture Detection | © 2013 Microsoft. All rights reserved. 2

Gestures

A gesture is an action or a motion that is intended to communicate feelings or intentions. For example,

when your dog wags its tail at you, this is a gesture with which your dog communicates that he is happy to

see you.

Gesture detection

Gesture detection is the ability of a computer to understand human gestures as input. It has been around

since 1963, when the first pen-based input device was designed. Gesture detection is still used in many

technologies today, such as touch screens, computer mice, handwriting recognition, and Kinect.

Machine learning

When we say machine learning, we refer to the ability of a computer to automatically learn to recognize

complex patterns in data. A computer usually does this by learning from empirical data examples, and the

result is that it can classify data that it has not yet observed. There are many different approaches to

machine learning, such as weighted networks and neural networks, decision trees, support vector machines

(SVM), clustering, Bayesian networks, and boosting. Examples of where machine learning is used are

internet search engines, face detection on digital cameras, speech recognition software, stock market

analysis, and artificial intelligence (AI) in games.

Traditional gesture detection with Kinect

Gesture detection using data from the Kinect Sensor is not a trivial problem to solve. As an example, look at

the following code that could be used to implement the detection of a punch gesture.

if (vHandPos.z – vShoulderPos.z > fThreshold1 &&

 fVelocityOfHand > fThreshold2 ||

 fVelocityOfElbow > fThreshold3 &&

 DotProduct(vUpperArm, vLowerArm) > fThreshold4)

{

 bDetect = TRUE;

}

This is a very simple detection that can easily work in an optimal environment—but even this simple piece

of code has four thresholds that need to be manually found, fine-tuned and maintained. For detections to

work reliably for a wide variety of different people in a wide variety of different environments, the code

becomes much more complex very quickly as more code is added to handle additional complicating factors.

Some of these factors are that different skeleton data is produced when wearing different clothes, or when

the Kinect Sensor is at different heights and angles, and some joints might be occluded due to objects in the

room (for example, by a coffee table). This is evident in the large number of lines of code that must be

written to detect gestures in real world examples.

http://www.microsoft.com/info/cpyright.mspx

Visual Gesture Builder: A Data-Driven Solution to Gesture Detection | © 2013 Microsoft. All rights reserved. 3

Table 1. The number of lines of code used for gesture detection in real-world examples.

Detector Lines of source code

Wave 550

360 degree turn 500

Jump and duck 2000

Crumpling skeleton 2500

Kinect Sports: Boxing 950

Some of the challenges with the traditional approach of implementing gesture detection by examining data

from the Kinect Sensor are:

 It’s a time-consuming engineering task, requiring many lines of code.

 Kinect data is complex—for example, twenty-five 3D joint positions with low precision.

 Determining the best detection thresholds can be difficult.

 Latency is always added, since previous frames of data need to be examined.

Visual Gesture Builder
Visual Gesture Builder (VGB) is a tool that provides a data-driven solution to gesture detection through

machine learning. This essentially means that gesture detection is turned into a task of content creation,

rather than code writing, and a task that non-engineers can perform (for example designers, animators, and

technical artists). A small gesture database is built using VGB, and using the database has very low run-time

costs in terms of memory overhead and CPU processing.

The process of creating a gesture detector using VGB is simple. Firstly, because it is data-driven, you record

people while they perform the gestures that you are interested in detecting. Raw recordings can be created

by using Kinect Studio, and then they can be converted to processed clips using KSConvert. (For more

information about Kinect Studio and KSConvert, see the Kinect SDK documentation). Next, you give

meaning to the data by using VBG to tag or label all of the frames in the recordings that define a gesture.

Once tagging is complete, you can build the gesture detector. VGB uses machine learning to build a

database that can be used at run time in your title. A live preview tool, VgbView, enables you to quickly

iterate over gestures for fast prototyping. For more information about using VGB during run time, see the

API reference for the Microsoft.Kinect namespace in the Kinect SDK documentation.

http://www.microsoft.com/info/cpyright.mspx

Visual Gesture Builder: A Data-Driven Solution to Gesture Detection | © 2013 Microsoft. All rights reserved. 4

Figure 1. The data-driven process of creating a gesture detector using VGB.

Machine learning technologies

Various machine learning technologies are available in VGB. They are grouped into two categories: discrete

indicators and continuous indicators. A discrete indicator (for example, AdaBoost Trigger) is a binary

detector that determines if a person is performing a gesture and the confidence of the system in that

gesture. A continuous indicator (for example, RFRProgress) shows the progress of the person while he or

she performs a gesture, showing, for example, 50% done with the gesture.

While the majority of your application’s gestures will likely be discrete, continuous gestures can be helpful

for combining multiple gestures to form a complex whole, such as mapping three discrete gestures—for

example, BackSwing, ForwardSwing, and FollowThrough—to one continuous gesture—GolfSwing.

http://www.microsoft.com/info/cpyright.mspx

Visual Gesture Builder: A Data-Driven Solution to Gesture Detection | © 2013 Microsoft. All rights reserved. 5

Figure 2. ”Punch_Right” is a discrete gesture indicating that the person is in the process of performing the gesture.

PunchProgress is a continuous indicator, in this frame indicating that this is the last frame of the gesture (that is, 100% done with

the gesture).

Unless disabled, continuous gestures will always provide feedback to the program. This signal might be

confusing if you don’t have at least one discrete gesture to help interpret it.

Discrete and continuous indicators can be combined in creative ways. One example is to use a discrete

gesture to determine context. For example a playable character in a game has the capabilities to walk, run,

and jump. A simple approach to using gesture detection to control the character is to use discrete gestures

to determine when a person is walking, running, or jumping. The playable character can therefore be

controlled using gesture input, but only in a binary way—that is, the player is either walking or not.

Combining this with a continuous indicator can add a whole new level of a person connecting with the

playable character, making the person feel that he is the playable character instead of feeling that he is

controlling the playable character. Since the discrete gestures can be used to determine context, only the

continuous gesture for the currently active context needs to be run. The results of the continuous indicator

can be used to blend character animations appropriately so that when a person is walking slowly, the

playable character is walking slowly, which provides a more natural feel to the game.

Collecting data
The recommended process of collecting data is to use Kinect Studio to record Raw IR 11 Bit data and then

to convert the files by using KSConvert to the processed event file (XEF) format (that is, processed IR data,

depth data, and skeletal data). You should record members of your target audience—individually—while

they interact with a prototype of your application in different spaces, under various tilt angles of the Kinect

Sensor, and while wearing a variety of clothes.

http://www.microsoft.com/info/cpyright.mspx

Visual Gesture Builder: A Data-Driven Solution to Gesture Detection | © 2013 Microsoft. All rights reserved. 6

Data to record

We recommended recording raw files via Kinect Studio to take advantage of any future changes made to

the depth/skeleton tracking system. If raw recordings are not an option (due to storage or length

limitations), then you must record the following processed NUI streams: Depth, IR, BodyFrame, Opaque

Data and Calibration Data. Processed streams can be recorded from Kinect Studio, or by using the

IKStudioRecording interface.

Whenever improvements are made to skeletal tracking in the SDK, the same depth data will produce

different skeletal data. When you record the raw format (XRF), you can convert the file by using KSConvert

to generate the latest streams (IR, depth, skeleton, opaque, and so on). The newly converted files can then

be used in your training set to generate a gesture database that will work with the latest skeleton/depth

tracking system.

In many cases, simply looking at depth or skeletal data won’t reveal the intentions of the users; however,

by also looking at IR data, users’ intentions can be determined. Since this is a data-driven system, it is

essential to tag frames correctly. So, make it easier for the people doing the tagging to interpret the

recordings by including IR data.

Target audience

Although you need to include a diverse variety of people for generalization and criteria selection in training,

it is important to define the target audience of your application. It could be teenagers, small children, adult

males, the whole family, and so on. Make sure that this group of people is well represented when doing

data collection—don’t develop an application targeted at small children and mainly use gesture recordings

of adults. Try to include people of various body compositions within your training set, too, because they

may perform gestures differently due to their height or weight.

Record people individually

When recording people, record them individually, since people are easily influenced in the way they

perform a gesture when they see how others perform the same gesture or when many other people are

watching as they perform a gesture. It is best to have recordings of the widest possible range of ways that

people perform relevant gestures in their own unique ways, since wide variety is what your application will

encounter in the real world.

What gestures to record

Ideally, you record people while they are interacting with a prototype of your application, since people

perform a gesture differently when asked to perform a gesture versus interacting with an actual program.

For example, telling a person to “show me a punch gesture” has a different result than asking “please

punch the boxing bag”—people perform differently in these contexts, though the fundamental gesture may

be the same.

Also, define the gestures that you want to detect from the user. For example, if you are creating a boxing

game, you probably want to detect punches and blocks. These are defined as positive examples because

they are the gestures that you are aiming to detect. However, and most importantly, you also have to think

http://www.microsoft.com/info/cpyright.mspx

Visual Gesture Builder: A Data-Driven Solution to Gesture Detection | © 2013 Microsoft. All rights reserved. 7

of negative examples. Determine which motions cause problems for detection, such as false positives, and

include them as negative examples for training. For example, a throw gesture might look very similar to a

punch, since the hand and elbow move forward in both cases, but the two movements are actually slightly

different.

In general, including negative examples in training data reduces false positives, and this leads to a better

user experience. Therefore, we recommend that you record many more negative examples for your

training data than positive examples. It is usually a good practice to treat all remaining gestures for your

application as negative examples during training (for example, a kick gesture can be treated as a negative

example when training a punch gesture).

If you do not have a prototype to use, then try recording a mixture of gesture scenarios. Have the user

repeat gestures often and mix their ordering, because the skeleton might behave differently when the

person is performing a gesture immediately after another gesture, in contrast to performing the gesture

from standing still. For example, if you create gestures for a kick-boxing game, you might make several

recordings of the player punching left and right, a set of clips where the player kicks left and right, and a set

which includes alternating kicks and punches.

Use a variety of play spaces and sensor tilt angles

Although the algorithms in VGB mostly operate on tilt-corrected skeletal data that is local to the user’s

space, it is important to record people in different environments, and with different heights and tilt angles

of the Kinect Sensor. The main reason for this variety is that skeletal tracking produces different skeletal

data at different tilt angles and sensor heights, because body joints are observed differently by the Kinect

Sensor; for example, a joint might be occluded from one angle but not from another. Furniture can also

introduce occlusions that can change the result of skeletal tracking. Therefore, we recommend that for

each person recorded, the Kinect Sensor be slightly moved from its previous location.

Try to re-create the user’s environment, and position the sensor in a logical location (centered above or

below the screen). Record the user at various distances from the sensor. If the gesture can be performed in

a sitting position, be sure to include a variety of seating options and postures. If your application supports

multiple users, then there is a good chance that the user will not be centered while using your application,

so be sure to record people positioned to the left and right of the sensor as well.

Variety of clothing

Make sure to record people wearing a variety of clothing—for example, skirts, dresses, tank tops, shorts,

pants, and wool sweaters. Wearing different types of clothing can produce different skeletal data, even for

the same person. Also, be sure to record people wearing the clothing that your customers wear, rather

than only what you are accustomed to seeing and wearing. For example, if you are a developer in Florida,

chances are that you see short-sleeved shirts and sandles all year round, clothes that people in Belgium

would only consider wearing during summer. However, your application might be used by both Floridians

and Belgians alike, so your gestures need to work regardless of clothing type.

http://www.microsoft.com/info/cpyright.mspx

Visual Gesture Builder: A Data-Driven Solution to Gesture Detection | © 2013 Microsoft. All rights reserved. 8

Testing data versus training data

It is important to understand that the accuracy of the machine-learning algorithm cannot be measured by

testing it on the same data that it has been trained with. In other words, do not use training data for testing

purposes. For this reason, whenever a gesture project is created in VGB, two projects are created: one for

building/training and one for analyzing/testing the gesture. An example of how to apportion data into

different sets is to use 66% of data for training and 33% for testing.

How much data is enough?

When creating a gesture prototype, a small set of training clips (10-20) might prove sufficient, but such a

gesture would quickly break down if released to the real world. How much data is required is not a question

that has the same answer for every gesture. For example, one gesture might prove reliable with 100

training clips, but a second gesture could require a thousand. So, rather than asking how much training data

is needed, the question should be: “How can I establish that I have enough training data for a gesture?”

To answer this question requires counting false positives and false negatives. An example of a false positive

is when a user performs gesture B, but gesture A is detected. An example of a false negative is when a user

performs gesture A, but detection fails to identify that gesture A has been performed. The number of these

two errors are two different values that need to be interpreted separately—the one is not the inverse of

the other. Building and analyzing gestures, later in this paper, explains in detail how to build a gesture, and

then how to test or analyze it. The results of this analysis provide the count of errors from false positives

and false negatives.

To understand whether you have enough data, you need to track how the values for false positives and

false negatives change as you add new training data. In the graph in Figure 3, you can see that with very

few training examples, the error rates are high, but as you add more training examples, the error rates go

down. The interesting part is that, at some point, the error rates simply stay the same, regardless of how

many more training examples are added. When both values for false positives and false negatives start to

flatten out at a low error rate, it is safe to assume that you have enough data in the training set. Other

measurements can also be used—for example, precision, accuracy, and recall.

Figure 3. Error rate in false positives and false negatives, graphed against the number of training examples, is a good indication

of when you have enough training data.

http://www.microsoft.com/info/cpyright.mspx

Visual Gesture Builder: A Data-Driven Solution to Gesture Detection | © 2013 Microsoft. All rights reserved. 9

Tagging data
Tagging recorded data is the most time-consuming part of creating a gesture detector with VGB, but it is

the most important step. Tagging plays a huge role in the results, since VGB uses a data-driven approach—

in other words, garbage in, garbage out. The following are a number of best practices to following when

tagging data:

 Keep gestures simple

 Avoid over-labeling

 Separate gestures from poses

 Reduce latency

 Be consistent

 Specify Left or Right gestures

 Verify tagging

 Use keyboard shortcuts

Keep gestures simple

Break complex gestures into smaller sub-gestures and build multiple detectors. For example, a golf swing

can be broken up into three gestures: a back swing, a forward swing, and a follow through. Detection of

cyclic gestures—like walking, rowing, and waving—are almost always more reliable when detection is

divided into two simple gestures. For example, to detect a wave, have one detector for when the hand is

moving leftward and another for when the hand is moving rightward.

Figure 4. Shows how a golf swing can be broken up into three simpler gestures. The first image shows a back swing; the middle

image shows the forward swing where, the golf club makes contact with the ball; and the last image shows the person’s follow

through.

Avoid over-labeling

Tag all of the frames that make up a gesture, but only tag the core portion of the gesture. Try to find the

canonical motions that uniquely represent an action. For example, when tagging a jump gesture, it’s best to

not include the frames where the user is getting ready to jump (for example, moving downward), but

rather, to tag only the frames where the user is starting to move upwards until he reaches the apex of the

jump, where his body is no longer moving upward. In general, avoid tagging preparatory or recovery

motions.

http://www.microsoft.com/info/cpyright.mspx

Visual Gesture Builder: A Data-Driven Solution to Gesture Detection | © 2013 Microsoft. All rights reserved. 10

Separate gestures from poses

Don't mix and match frames from static poses with dynamic gestures. For example if you want to detect a

jump gesture, tag the frames of the person in which he or she is moving upward; don't include frames

where the person is getting ready to jump or where the person might be in a static pose. Whereas, if your

gesture is a static pose, like glide, only tag the frames where both of the person’s arms are fully extended,

not those where the person is moving his or her arms up or down to get into position.

Reduce latency

Latency can be significantly reduced by tagging gestures earlier in a sequence of frames, rather than only

tagging when the gesture finishes. Determine the point in the sequence when the person is committed to

performing the gesture, and use that frame as the starting point for tagging the gesture. For example, the

starting point for a punch gesture could be when the person is leaning forward to punch, but his hand is still

close to his shoulder.

Figure 5. An example of how early a punch gesture can be tagged to reduce latency. All these frames include joint information of

the person intending to do the punch, therefore all these frames are tagged as a punch.

Be consistent

It is important to tag different examples of the same gesture in a consistent manner; that is, the starting

points and the end points should be tagged in approximately the same places throughout the recordings. In

some cases, it might be hard to understand the intention of a user by looking only at depth or skeletal data,

and in such cases, examining the IR data might make tagging much easier.

Specify Left or Right gestures

When creating a project, an option called Body Side can be set to the value Left or Right. If the gesture to

be detected can be performed on either side of the body or in either direction, then we recommended

setting a value for Body Side; doing so means that your data and tags can be mirrored, doubling the size of

your data set for training.

For example, most people are right-handed which means that when recording and tagging a punch gesture,

you will have less training data for left-handed people than right-handed people. If your project has Body

Side set to Right, then VGB can use all of the training data from right-handed punches as training data for

left-handed punches by mirroring the data.

http://www.microsoft.com/info/cpyright.mspx

Visual Gesture Builder: A Data-Driven Solution to Gesture Detection | © 2013 Microsoft. All rights reserved. 11

Figure 6. Shows the “Body Side” option, which specifies on which side of the body, or in which direction, a gesture is performed.

Verify tagging

It is crucial that you verify that data is tagged correctly. Any gesture that is untagged will be used as a

negative example during training. This confuses machine learning, because the machine is shown examples

of what the gesture looks like (tagged, positive examples), and then it is shown examples of what the

gesture does not look like (untagged, negative examples). It is also possible that a gesture could be marked

with the wrong gesture tag. So, we recommended that a quality assurance (QA) team approve tagged data

before it is added to a training set.

VGB can be used to automatically find errors in tagging. The following procedure can find errors where

gestures were not tagged or where gestures were tagged with a wrong label.

1. Add all tagged recordings to the build project

2. Add all tagged recordings to the analysis project

3. Build the gesture

4. Analyze the gesture

5. Visually inspect the analysis for

a. Frames that were detected but not tagged

b. Frames that were not detected but tagged

Since training and testing is done using the same data (for this type of verification only), we expect the

detector to be near 100% correct during analysis. Having any frames where the tags do not match the

results of the detector is a strong indication of incorrect tagging. For example, analysis detects a Punch_Left

gesture between frames 100-110, but these frames are tagged as a Punch_Right or not tagged at all.

Visually inspecting the recording will reveal if the detector or the tag was wrong.

http://www.microsoft.com/info/cpyright.mspx

Visual Gesture Builder: A Data-Driven Solution to Gesture Detection | © 2013 Microsoft. All rights reserved. 12

Figure 7. An example of using VGB for verifying correctness of tagging. The analysis indicates that the detector detected two

gestures (indicated by the two purple peaks), but three gestures were tagged (indicated by the horizontal blue lines). Visual

inspection of what the person actually did indicates that the detector is actually correct, and the tag in the middle is incorrect.

Use keyboard shortcuts

Since tagging is a time-consuming process, make sure that taggers know of the keyboard shortcuts. Using

these could significantly reduce tagging time. For a list of the shortcuts, see “Visual Gesture Builder

Timeline” in the Kinect SDK documentation. They are also located below the timeline control for quick

reference within VGB:

Building and analyzing gestures
After tagging data, you can build either a solution or just one gesture project. During the building process,

the appropriate machine-learning algorithm processes the tagged data. This creates a gesture database

which can be loaded into your application at run time.

Some interesting information can be seen in the log files. For example, from the log file in Figure 8, you can

see that the angle velocity between the spine, shoulder center, and left shoulder is actually a good indicator

for a right punch. If you only looked at the top classifier, you can interpret this as:

if (AngleVelocity(Spine, ShoulderCenter, ShoulderLeft) > 0.5f)

{

 bRightPunchDetected = TRUE;

}

Therefore, in the case of the AdaBoostTrigger, you can actually do knowledge extraction from the log files

to implement your own gesture detection.

http://www.microsoft.com/info/cpyright.mspx

Visual Gesture Builder: A Data-Driven Solution to Gesture Detection | © 2013 Microsoft. All rights reserved. 13

Figure 8. A portion of the log file from an AdaBoostTrigger project that indicates the top 10 weak classifiers defining a particular

gesture.

To test how well the detector fares, you can test it at run time by using Live Preview in VGB (available on

the File menu), which runs the detector in VgbView and is very useful for fast prototyping.

Another way of testing is to use the analysis project. This will run the detector within VGB. The biggest

advantage of using the analysis project is that you can compare the results across multiple builds; for

example, you can determine if adding more training data really improved the detector or not.

Figure 9. An example of the analysis of a gesture where five tagged gestures (blue lines) are correctly detected (purple peaks)

and one is not.

For more information about the analysis project in VGB, see “Visual Gesture Builder Analysis Project” in the

Kinect SDK documentation.

Tips and tricks

Efficient tagging

To tag efficiently, make sure you know all of the keyboard shortcuts for VGB; at the same time, the

shortcuts that you’ll probably use most often are those in the following table.

Key stroke or combination Action

Shift + Left Arrow /

Shift + Right Arrow

Selects a range of frames to tag.

Enter Sets the default maximum value.

Delete Deletes the selected range or a single frame.

Ctrl + Left Arrow /

Ctrl + Right Arrow

Moves the cursor to the previous or next frame.

http://www.microsoft.com/info/cpyright.mspx

Visual Gesture Builder: A Data-Driven Solution to Gesture Detection | © 2013 Microsoft. All rights reserved. 14

Key stroke or combination Action

Page Up /

Page Down

Selects the previous/next attribute in the Tags grid as the

active attribute.

Some shortcut keys can also be combined. For example, by pressing Shift + Ctrl + Left Arrow/Right Arrow,

you can quickly select multiple frames between tagged gestures, since Shift selects the frames and Ctrl

jumps to the next/previous tagged gesture.

Use training settings

When used correctly, training settings can greatly improve the reliability and robustness of gesture

detection. During the process of gesture creation, several training options are available in the creation

dialog.

Figure 10. Shows the basic “Training Settings” that are available when creating a new gesture project.

Think about your gesture carefully. Which parts of the body are integral to the gesture? Which body parts

would be better to ignore? By ignoring a body area, you provide the user with more flexibility and make

your gesture more robust. For example, if your gesture depends mainly on the upper body, then selecting

Ignore Lower Body will allow that gesture to be detected when the user is standing, seated, crouched, or

when their legs are occluded by furniture, and so on.

If you are confused about which training settings to use, try creating your gesture by using the Gesture

Wizard (a link to this tool is available within the Create New Project dialog, located on the File menu). This

tool will provide a step-by-step guide to help you learn more about the basic training properties and when

to use them. You can modify existing settings in the gesture’s property panel after creation.

Use ‘Generate Tags’

After you have built a gesture database, you can start to use the ‘Generate Tags’ feature for help with

tagging new clips to improve gesture detection. We recommend the following approach when using the

‘Generate Tags’ feature:

1. For discreet gestures (AdaBoostTrigger), follow these steps:

a. Right-click on the analysis project and select ‘Add Clip’

b. Add a small number of clips to the project (10-20)

c. Right-click on the analysis project and select ‘Analyze’

http://www.microsoft.com/info/cpyright.mspx

Visual Gesture Builder: A Data-Driven Solution to Gesture Detection | © 2013 Microsoft. All rights reserved. 15

d. Select the gesture database that you want to use for generating clips with (typically,

this is the most recent database that you have trained).

e. For each untagged clip in the analysis folder, select the ‘Generate Tags’ button.

i. Newly created tags will be colored pink in the timeline control.

ii. Review the clips for accuracy and adjust the tags as needed (this usually

requires fixing the first few frames at the start and end of each gesture).

f. After verifying that the tags are correct, select ‘Accept Tags’ or ‘Reject Tags’.

i. Accepted tags will convert from pink to blue, to show that they are final.

ii. Rejected tags will be removed.

g. Compare the analysis results with the final tags within each clip. If the results are

different, consider moving the clip into the training folder to help imrove detection. Try

to maintain the training:testing ratio by moving 2/3 of the clips into the training folder

and keeping 1/3 in the analysis folder.

2. For continuous gestures (RFRProgress), follow these steps:

a. Ensure that each clip in the project has been tagged with one or more discreet gestures

(for example, if you are tagging the continuous gesture, JumpProgress, then the

discrete gesture, Jump must already be tagged).

b. Right-click on the project and select ‘Generate Tags’ to open the ‘Link Gestures’ dialog.

i. Select one or more discrete gestures (Jump) that can be mapped to the

progress gesture (JumpProgress).

ii. Specify start and end values for the continuous gesture which should

correspond to the first and last frame of the discrete gesture.

iii. Select ‘Confirm’ to generate the continuous gesture tags.

iv. Review the clips for accuracy and adjust the tags as needed (this usually

involves adding/adjusting mid-points).

c. After verifying that the tags are correct, select ‘Accept Tags’ or ‘Reject Tags’.

i. Accepted tags will be converted from pink to blue, to show they are final.

ii. Rejected tags will be removed.

http://www.microsoft.com/info/cpyright.mspx

Visual Gesture Builder: A Data-Driven Solution to Gesture Detection | © 2013 Microsoft. All rights reserved. 16

Reduce training time

Depending on how much training data you have and the type of hardware your training computer has,

training times for AdaBoost Trigger can potentially be long. There are, however, a few easy things that can

be done to reduce training times.

Training a gesture database can be shared across multiple machines by having each machine build

individual gesture projects with the command-line option -build. Once all projects are complete, they can

be combined into a single database by using the command-line option -join.

AdaBoost Trigger has a project setting, Accuracy Level, that you can specify when configuring a project. This

project setting controls the accuracy threshold that must be reached as a result of machine learning.

Therefore, it affects how long training will take by stopping the search for weak classifiers when a certain

error metric has been reached. For more information about Accuracy Level, see “AdaBoostTrigger Machine

Learning” in the Kinect SDK documentation.

You can also exclude from training meaningless data (for example, a person standing idle for a long period

of time) by marking all training frames as TRUE or FALSE. VGB clip files that have discrete gestures tagged

only with TRUE values assume that all non-tagged frames are FALSE during training. However, if a clip file

contains TRUE and FALSE values, then all frames not tagged will be excluded during training.

Another way to reduce training time and run-time cost is to mirror a gesture—for example, a right-handed

golf swing could be used as a left-handed golf swing by mirroring the data. The HorizontalMirror property

of VisualGestureBuilderFrameSource can be used to mirror the skeletal input data at run time. Essentially,

you halve your training time by using this functionality, because you only have to train for one side, and at

run time, you can use the same database for both sides or directions.

Command-line options

Since VGB turns the problem of writing gesture detectors into content building, you might want to build

gestures overnight, on a daily basis, with other content. Options for building and analyzing gestures, joining

or splitting gesture databases, and listing the contents of a database are available from the command line.

These options can be used from the command prompt or in batch files and scripts; for more information

see “VGB Command Line Options” in the Kinect SDK documentation.

Pros and cons
Visual Gesture Builder provides many benefits, but using it also has some costs. Consider the following pros

and cons in assessing VGB for your project.

Pros

 Gesture detection is created and handled as content, rather than being a time-consuming

engineering task.

 Gestures can be quickly prototyped and evaluated before any code is written.

 Non-engineers can create gestures—for example, designers, animators, technical artists and

testers. No knowledge of machine learning, skeletal tracking, or programming is required.

http://www.microsoft.com/info/cpyright.mspx
http://www.microsoft.com/download/en/details.aspx

Visual Gesture Builder: A Data-Driven Solution to Gesture Detection | © 2013 Microsoft. All rights reserved. 17

 High accuracy for detecting gestures can be achieved—even in cases where skeletal data is very

noisy, such as sideways poses.

 By tagging data appropriately, perceived latency can be made very low.

 The run-time costs to CPU and memory are low—on magnitudes of microseconds and kilobytes.

 The database size is independent of the amount of training data.

 There are very few thresholds to tweak and maintain.

 Live Preview (VgbView) enables fast iteration times for easy prototyping and testing.

 VGB provides a free, automatic test framework for gestures; that is, no extra engineering work

must be done to test gestures, as in the traditional implementation of gesture detectors.

 A simple API is provided by the SDK.

 As tracking in the SDK improves, you can convert your clip files to work with the latest advances in

depth and skeleton.

Cons

 It’s time consuming to tag data—but at least it’s not an engineering task, and therefore, you can

outsource tagging.

 You require a powerful PC for training, but most developers already have a powerful PC for building

other types of content.

 You require lots of disk space for storing raw (XRF) and processed (XEF) recordings, but luckily, hard

disk drives are becoming cheaper.

Conclusion
Using traditional methods to create gesture detectors for Kinect is not a trivial task to do robustly. Visual

Gesture Builder simplifies this task, which can make developers more productive and raise the quality of

Kinect applications in terms of better gesture detection and reduced latency. Since tagging plays a huge

role in obtaining good results, it is worth investing in a quality assurance team to approve data before

adding the data to a training set.

References

Presentations

The following presentations are available from Download Center:

 Innovative Solutions to Gesture Detection – Claude Marais & David Quinn, Game Developer

Conference 2012.

 Gesture Detection using Machine Learning – Claude Marais, Gamefest 2011.

 Building Great Gesture Detection – Claude Marais, Game Developer Conference 2011.

 Xbox Studio Deep Dive: Designing, Debugging and Testing Your Kinect Title – Claude Marais, Game

Developer Conference 2011.

http://www.microsoft.com/info/cpyright.mspx
http://www.microsoft.com/download/en/details.aspx
http://www.microsoft.com/en-us/download/details.aspx?id=29196
http://www.microsoft.com/en-us/download/details.aspx?id=28066
http://www.microsoft.com/en-us/download/details.aspx?id=26114
http://www.microsoft.com/en-us/download/details.aspx?id=26103

