ПОДВИЖНОЙ СОСТАВ И ТЯГА ПОЕЗДОВ

Задание на контрольную работу № 2 с методическими указаниями для студентов III курса специальности ЭКСПЛУАТАЦИЯ ЖЕЛЕЗНЫХ ДОРОГ

Обращаем внимание на обязательность проставления размерностей именованных величин (после получения цифрового результата). Например,

$$
S_{\mathrm{cyT}}=\frac{2\left(l_{1}+l_{2}\right) n}{N_{\mathrm{s}}}=\frac{2(300+400) \cdot 13}{23}=791 \frac{\text { КМ }}{\text { сутки }} .
$$

ОБЩИЕ УКАЗАНИЯ

К ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЬ

Для лучшего усвоения основных положений раздела «Локомотивное и вагонное хозяйство» дисциплины «Подвижной состав и тяга поездов» студенты специальности «Эксплуатация железных дорог» выполняют на III курсе контрольную работу № 2.

Контрольную работу необходимо выполнять осмысленно применяя расчетные формулы и тщательно продумывая выво ды и результаты. Совершенно недонустимо механическое применение формул и выполнение по ним расчетов. Методи ческие указания, которые приводятся ниже, не избавляют студента от необходимости глубоко и внимательно разобраться в расаматриваемых вопросах, используя рекомендуемую лите ратуру. При несоблюдении этого студент не приобретет необходимых знаний и окажется неподготовленным к экзамену по дисциплине.

При выполнении контрольной работы необходимо придерживаться следующих положений:

1. Работа должна быть выполнена на сброшорованных стандартных листах писчей бумаги (формат 210×297 мм) с обязательным оставлением полей для замечаний рещензента Текст пишется на одной стороне каждого листа. На обложке или титульном листе контрольной работы необходимо указать: название дисциплины, курс, фамилию, инициалы и учебный шифр студента, год издания задания, в соответствии с которым выполняется контрольная работа.
2. Рабопа должна быть написана аккуратно, разборчи вым почерком, без сокращения слов. При выборе требуемыл расчетных величин и параметров, использовании таблиц, формул, справочных материалов нужно ссылаться на источники; иппользованную литературу (автор, название книги, год издания) привести в конце работы.

Материал в контрольной работе следует излагать с соблюдением принятой в технической литературе терминологии.
3. Выполнение работы нужно сопровождать подробными пояснениями. Расчетные формулы приводятся сначала в общем виде с применением принятых буквенных обозначений, после чего следует подставить в формулу числовые значения

величин, а затем проставить результат (см. пример на обороте обложки).

Необходимо указать, что представляют собой величины, входящие в формулу, обязательно лроставляя для именованных величин их размерности.
4. Точность вычислений до 1% яв.яяется достаточной при раочетах, поэтому допустимо использование для вычислений логарифмической линейки. Однако для ускорения вычислений желательно использование клавишных или электронных вычислительных машин.
5. Страницы контрольной работы, иллюстрации, табли щы и графики должны быть пронумерованы. Таблицы должны иметь наименования, иллюстрации и графики - подрисуночные подписи.
6. Контрольную работу студент обязательно подписывает и ставит дату ее выполнения.

После получения прорецензированной работы нужно, независимо от того, зачтена она или не зачтена, исправить все ошибки и сделать все требуемые дополнения. Если работа не зачтена, следует в кратчайший срок выполнить все требования рецензента и вновь выслать нсправленную ра боту вмөсте с рецензией в институт для пювторной проверки.* При этом нет необходимости перепнсывать целиком контрольную работу или отдельные ее разделы, а также производить исправления по написанному тексту; все исправ ления и дополнения должны быть сделаны на отдельных листках и вклеены или вшиты в соответствующие места работы. Стирать илли зачеркивать замечания рецензента запрещается.

Контрольная работа, в которой не соблюдены изложенные выше положения, а также работа, выполненная студентом не по своему варианту, не зачитываются

Зачтенную работу с иоправлениями и дополнениями, сделанными по требованию рецензента, следует сохранять, так как без предъявления ее преподавателю студент не допускается к сдаче экзамена.

Выполнение контрольной работы № 2 способствует изучению учебного материала, в частности, расчетов по определе нию потребного количества локомотивов для выполнения заданной перевозочной работы, основных показателей использования локомотивов, программы ремонта локомотивов и ва гонов, требуемопо количества локомотивных бригад и работников для выполнения ремонта и технического обслуживания подвижного состава.

[^0]Для сдачи экзамена по дисциплине «Подвижной состав и тяга поездов» требуется не только знание материала, охватываемого контрольной работой, но и усвоение всех теоретических и прикладных вопросов программы по этой дисциплинне.

I. ЛОКОМОТИВНОЕ ХОЗЯИСТВО

В этом разделе контрольной работы необходимо:

1. Начертить схему обслуживания заданных участков локомотивами и локомотивными бригадами.
2. Установить пункты смены локомотивных бригад.
3. Определить пункты технического обслуживания TO-2 локомотивов и их экипировки.
4. Составить расписание движения посздов на заданном участке.
5. Составить расчетные ведомости оборота локомотивов на участке обращения.
6. Разработать график оборота токомотивов.
7. Определить потребность локомотивов для заданных размеров движения.
8. Определить основные показатели работы локомотивов.
9. Рассситтать потребность локомотивных бригад и основные показатели их работы.
10. Начерлить схему цикличности (периодичности) выполнения ремонтов локомотивов.
11. Расочитать программу и фронт ремонта локомотивов.
12. Определить инвентарный парк локомотивов.
13. Вычислить процент неисправных локомотивов в дапов ском ремонте и общий процент неиоправных локомотивов.

депन.

Исходные данные студент выбирает из табл. 1 по последней цифре своего учебного шифра и из табл. 2-по предпоследней цифре шифра *

Эти данные обязательно приводятся в начале работы.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

1. На заданных участках принимается прогрессивный кольцевой способ обслуживания поездов локомотивами при сменном способе обслуживания локомотивов бригадами, который является основным на железных дорогах СССР. Длина участка обращения локомотивов при этом не ограничивается наи-
[^1]большим допустимым временем непрерывной работы локо мотивных бригад. В настоящее время на наших железных дорогах применяются три основных споооба тяговоло обелуживания: эксплуатация локомотивов в зоне об́служивания, работа локомотивов на участках обращения, экоплуатация локомоти Вов на тяповых плечах.

В контрольной работе все расчеты нужно проводить для работы локомотивов на участке обращения*.

Пример схемы абслуживания участков локомотивами и локомотивными бригадами приведен на рис. 1 (см. вклейку).
2. Протяженность участков, обслуживаемых локомотивны ми бригадами, выбирается такой, чтобы время непрерывной работы бригады (в одну сторону) не превышало (і учетом приемки и сдачи локомотнва) $7-8$ ч, а непосредственно в пути следования бригада находилась, как правило, не более 6 ч.

Необходимость организации промежуточных пунктов смены локомотивных бригад на участках $A-B$ и $A-B$ определя ется исходя из времени следования поездов по этим участкам.

Время следования поезда по участку устанавливается по заданной протяженности участков и участковой скорости (см. табл. 1). Зная допустимое время непрерывной работы локомотивной бригады, можно определить потребное колячество пунктов смены бригад на участках $A-Б$ и $A-B$.
3. Для поддержания локомотивов в исправном состоянии при сменном опоообе их обслуживания важнейшую роль играет техническое обслуживание ТО-2 (технический осмотр), периодичность которого устанавлнвается исходя из условий эксплуатации и протяженности плеч обращения при безусловном обеспечении безопасности движения, но не реже, чем че рез 24-48 ч. Продолжительность ТО-2, установленная приказом МПС № 10 Ц-1981 г, для грузовых электровозов (кроме ВЛ11) равна 1 ч, для прузовых тепловозов (кроме ЗТЭ10М) $-1,2$ ч, для трехсекционных локомотивов (ВЛ11 и ЗТЭ10М) $-1,5$ ч.

При кольцевом способе обслуживання поездов локомотивами ТО-2 целесообразно выполнять в одном из пунктов оборота ($Б$ или B). Экипировку локомотивов топливом, песком, смазочными материалами следует, как правило, совмещать с их техническим обслуживанием ТО-2.

* Отметим, однако, что на ряде дорог в условиях больших замкнутых кольцевых зон успешно применяется зонный апособ эксплуатаиии локомопивов пнесколыких основных депо то общему прафику оборота, обеспечивающий высокие показатели использования локомотивного парка.

Зак, 1324

Номера поездов	Время отправления co cr. B	Номера поездов	Время отправления co cr. B	Вариашт (предпоследняя цифра шифра)									
				1	2	3	4	5	6	7	8	9	0
2044 2046 2048 2050 2050 3404 3054 2058 2144 2058 2060 2064	16.03 16.23 16.56 17.59 18.22 20.21 20.44 21.18 21.50 22.24 23.06 23.40	2043 2045 2047 2049 2051 3403 2053 2055 2143 2057 2059 2063	16.30 17.14 17.36 17.45 19.06 19.26 20.15 22.48 23.00 23.20 23.31 23.49	$\begin{aligned} & + \\ & + \\ & + \\ & + \end{aligned}$ $+$	$+$			$+$ $+$	$+$ $+$ $+$ $+$ $+$	$\begin{aligned} & + \\ & + \\ & + \end{aligned}$	$\begin{aligned} & + \\ & + \\ & + \\ & + \end{aligned}$	$\begin{aligned} & + \\ & + \\ & + \\ & + \end{aligned}$	+ + + +
Размеры движения, пар поездов/сутки.				12	12	14	14	12	13	12	12	13	13

4. Для составления расписания движения поездов на уча стке используются данные табл. 1 и 2. Из табл. 2 выбирают ся поезда, отмеченные знаком « + ». Время прибытия поездов на участковые станции определяется путем прибавления времени следования поезда по участку ($B-A, A-B, B-A, A-B$) к времени отправления поездов с участковых станций. Время движения поездов по участкам находится делением длины участка на соответствующую участковую скорость (см. табл. 1). Время стоянки поездов на станции основного депо A принимать равным 25-35 мин. Пример расписания движения поездов приведен в прил. 1 .
5. Расписание движения поездов является исходным документом при составлении ведомостей работы локомотивов, приписанных к основному депо A, и локомотивных бригад на участке обращения (прил. 2 и 3). Столбцы (графы) $1,2,4,6,12$, 13, 17 заполняются щифрами, взятыми из расписания движения поездов. В столбцах $3,5,8,14,16$ проставляюпся значения, вычисленные в соответствии с указаниями, которые приведены в скобках после названия столбцов. При составлении ведомостей должно быть предусмотрено наиболее рациональное использование локомотивов и локомотивных бригад при выполнении заданных размеров движения. Последовательность абслуживания поездов локомотивами должна быть такой, чтобы простой локомотивов в пунктах оборота $Б$ и B был по возможности наименьшим, но не менее 1,5 ч, необходимых для прохода локомотива по станционным путям после прибытия и перед отправлением поездов, техническопо обслуживания, экипировки епо, сдачи и приемки локомотивов бригадамии.

В прил. 2 и 3 приведены примеры составления ведомостей работы локомотивов депо A на участках $A-B$ и $A-B$ на основаниии расписаиния движения поездов, приведенного в прил. 1.

В конце ведомостей подсчитываются суммарное время для всех локомотивов, находящихся в экоплуатации, за сутки: время в пути (туда и обратно), простои на станции основного депо A (в четном н нечетном направлениях) и в пунктах оборота.

Ведомости подписываются студентом, ставится дата исполнения.
6. На основании ведомостей работы локомотивов студент

разрабатывает прафик оборота локомотивов депо A на участке обращения $B-A-B$.

Этот график является планом работы всех подразделений локомотивного хозяйства. График оборота локомотивов разрабатывают с учетом принятых методов эксплуатации локомопивов и достижений передовых подразделений железнодорожнопо транспорта. Он служит связывающим звеном между работниками служб локомотивного хозяйства и движения, а также друпих служб по обеспечению ритмичности и бепперебойности перевозочного процесса.

Для построения графика оборота локомотжвов предварительно подготавливают сетку графика, состоящую из 24 вертикальных делеший, соответствующих суточному чиюлу часов, и горизонтальных строк, каждая из которых соответствует суткам работы одного локомотива.

На сетке графика по горизонтальным строкам прямой линией обозначают время следования локомотива с поездом от станциии основного депо до пуннта оборота и обратно. В начале и конце каждого отрезка, изображаюшето следование поезда, следует указать время отправления и прибыттия локомотива с поездом на участковые станции (ставятся только минуты, так как часы определяются вертикаиьными линиями графика) ; над отрезками проставляются номера поездов. Поезда накладывают на сетку прафика оборота в полном соответствии с ведомостями работы локомотивов. Более подробно порядок составления ведомостей и построения типового графика оборота локомотивов освещен в $[1,2,3]$.

Пример графика оборота локомотивов, построенного на основании ведомостей работы локомотивов, приведенных в прил. 2 и 3 , дан в прил. 4

График оборота локомотивов должен быть обязательно замкнутым: это значит, что локомотив, обслужив все поезда, предусмотренные расписанием* ${ }^{*}$, должен быть снова подан под первый поезд, с которого началось построение прафика (см. прил. 2, 3 н 4).
7. Эксплуатируемый парк локомотивов грузового движения на участке обращения следует определить двумя споообами:
a) полученюое число горизонтальных строк типового графика оборота соответствует потребному числу поездных локомотивов эксплуатируемого парка, необходимого для обслуживания заданных размеров движения;
б) на основании ведомостей работы локомотивов на участках $A-Б$ и $A-B$ подсчитывается время в ч, которое затра-

* Или часть поездав (тогда получается несколько групп).

чивается локомотивами длля обслуживания всех поездов, предусмотренных графиком на участке обращения:

$$
\begin{equation*}
\Sigma T=\Sigma t_{1}+\Sigma t_{2}+\Sigma t_{3}+\Sigma t_{4}+\Sigma t_{5}+\Sigma t_{6}+\Sigma t_{7}+\Sigma t_{8} \tag{1}
\end{equation*}
$$

где Σt_{1} - суммарный простой локомотивов на станцмии основного депо A (при следовании поездов к ст. $Б$);
Σt_{2} - суммарное время в пути от станции основного депо A до станции аборота B;
Σt_{3} - суммарный простой локомотивов на станции оборота $\overline{\text {; }}$
Σt_{4} - суммарное время нахождения локомотивов в пути от станции оборота B до станции основного депо A;
Σt_{5} - суммарный простой локомотивов на станции основного депо A (при следованиии поездов к ст. B);
Σt_{6} - суммарное время в пути от станции основного депо A до станции оборюта B;
Σt_{7} - суммарный простой локомотивов на станции аборота B;
Σt_{8} - время нахождения локомотивов в пути от станции оборота B до станции основного депо A.
При точном подсчете ΣT должна делиться без остатка на число часов в сутках (24). Число локомотивов эксплуатапионного парка получим по формуле

$$
\begin{equation*}
N_{3}=\frac{\Sigma T}{24} \tag{2}
\end{equation*}
$$

Потребное количество локомотивов, определенное по графику оборота, должно совладать с чиплом локомотивов, вычисленным аналитичеоким способом по формуле (2).
8. Для оценки рабюты линейных звеньев локомотиввного хозяйства введены колиичественные (объемные) и качественные показатели.

Годовой пробег локомотивов, обслуживающих заданный участок обращения в км/г

$$
\begin{equation*}
L_{\mathrm{roI}}=365 \cdot 2\left(l_{1}+l_{2}\right) n \tag{3}
\end{equation*}
$$

где l_{1} ии $\boldsymbol{l}_{\mathbf{2}}$ - длины заданных участков (см. табл. 1);
n - рразмеры движения, пар поездов/сутки (см. табл. 2).
Перевозотная работана заданном участке обращения в тाкм/г

$$
\begin{equation*}
A=Q L_{\mathrm{r}} \tag{4}
\end{equation*}
$$

где Q - вес состава, тс (определен в курсовой работе).

Среднесуточный пробег локомотмва в км/сутки ша заданном участке обращения может быть определен по формуле

$$
\begin{equation*}
S_{\mathrm{cyT}}=\frac{2\left(l_{1}+l_{2}\right) n}{N_{\mathrm{y}}} \tag{5}
\end{equation*}
$$

N_{s} - эксплуатируемый парк локомотивов грузового движения.
Полиый оборот локомотива в ч на участке обращения вычисляется по формуле

$$
\begin{equation*}
T=\frac{\Sigma T}{n} \tag{6a}
\end{equation*}
$$

или

$$
\begin{equation*}
T=\frac{48\left(l_{1}+l_{2}\right)}{S_{\mathrm{cyT}}} \tag{6б}
\end{equation*}
$$

Коэффициент потребности локомотивов (количество локомотивов, требуемое для обслуживания одной пары поездов) в локомотивах/пару поездов

$$
\begin{equation*}
K=\frac{T}{24} . \tag{7}
\end{equation*}
$$

Суточная производительность локомотив а выражает перевозочную работу его в тонно-километрах брутто и является комплексным измерителем использования локомотива.

Среднесуточная производительность поездного локомотива прузового движения в ткм брутто/сутки

$$
\begin{equation*}
M=\frac{S_{\mathrm{cyt}} Q}{1+\beta_{0}} \tag{8}
\end{equation*}
$$

где β_{0} - коэффициент учитывающий резервный и вспомогательный пробети локомотивов, можно принять $\beta_{0}=0,05 \div 0,1$.
участковая скорость в км/ч на заданном участке обращения

$$
\begin{equation*}
v_{\mathrm{y}}=\frac{2\left(l_{1}+t_{2}\right) n}{\Sigma t_{2}+\Sigma t_{4}+\Sigma t_{6}+\Sigma t_{8}} \tag{9}
\end{equation*}
$$

Время полезной работы локомотива в ч в течение суток может быть определено по формуле

$$
\begin{equation*}
t_{\mathrm{ro} \pi}=\frac{S_{\mathrm{cyr}}}{v_{\mathrm{y}}} \tag{10}
\end{equation*}
$$

Время работы локомотива в чистом движении (за сутки) в ч

$$
\begin{equation*}
t_{\mathrm{q}, \mathrm{~J}}=\frac{S_{\mathrm{cyr}}}{v_{\mathrm{r}}} \tag{11}
\end{equation*}
$$

где v_{T} - техничеокая скорость; можно принять $v_{\mathrm{t}}=(1,05 \div$ $\div 1,10) \boldsymbol{v}_{\mathrm{y}}$.
Бюджет времени локомотива является показателем, позволяющим установить время движения н простоя локомотива за сутки. Этот показатель выражается в часах

$$
\begin{equation*}
t_{\mathrm{u} \pi}+t_{\mathrm{np} \mathrm{cr}}+t_{\mathrm{cm}}+t_{\mathrm{oc}}+t_{\mathrm{o} 6}=24 \tag{12}
\end{equation*}
$$

где $t_{\text {ч }}$ - время работы локомотива в чистом движении за сутки, ч;
$t_{\mathrm{np} \text { ст }}$ - простой локомотива на промежуточных станциях за сутки, ч;
$t_{\text {см }}$ - время нахождения локомотива в пунктах смены локомотивных бритад за сутки, ч;
$t_{\text {ос }}$ - простой локомотива за сутки на станции основного депо, ч;
t_{06} - простой локомотива за сутки в пунктах оборота, ч.
Элементы бюджета времени локомотива определяются следующим образом.

Простой локомотива на промежуточных станциях за сутки

$$
\begin{equation*}
t_{\mathrm{np} \mathrm{cT}}=t_{\mathrm{nor}}-t_{\mathrm{qa}}-t_{\mathrm{cm}} \tag{13}
\end{equation*}
$$

где $t_{\text {си }}$ - подсчитывается в соответствни со схемой обслуживания ложомотивов бригадами и приводится к 1 супкам работы локомотиввов:

$$
\begin{equation*}
t_{\mathrm{cu}}=\frac{n \boldsymbol{\Sigma} t_{\mathrm{cw}}^{\prime}}{N_{\mathrm{o}}} . \tag{14a}
\end{equation*}
$$

Нлй

$$
\begin{equation*}
t_{\mathrm{cum}}=\frac{24 \boldsymbol{\Sigma}^{\prime} t_{\mathrm{cu}}}{T}, \tag{14б}
\end{equation*}
$$

где $\Sigma t_{\text {см }}^{\prime}$ - суммарное время нахождения локомотива в пунктах смены бригад (б и в) за один полный оборот (за полное «кольцо»); время стоянки поезда в каждом промежуточном пунाкте смены локомотивных бригад принимаем $t^{\prime}{ }_{\mathrm{cm}}=20$ мин $(0,33$ ч) .

Время нахождения локомотива на станции основного депо $t_{\text {ос }}$ и в пунктах оборота t_{06} за сутки в ч вычисляется по формулам:

$$
\begin{align*}
t_{\mathrm{oc}} & =\frac{\sum t_{1}+\sum t_{5}}{N_{9}} \tag{15}\\
t_{\mathrm{o} \mathrm{\sigma}} & =\frac{\sum t_{3}+\sum t_{7}}{N_{9}} \tag{16}
\end{align*}
$$

Использование мощности локомотивов характеривуется количеством тонно-кинометров брутто, приходящихся на единицу мощности. Суммарная мощность локомоти вов в л. с.

$$
\begin{equation*}
\sum N_{\mathrm{k}}=N_{\mathrm{k}} N_{\mathrm{a}} \tag{17}
\end{equation*}
$$

где $\quad N_{\mathbf{k}}$ - мощность локомотива, работающего на заданном участке обращения:

$$
\begin{equation*}
N_{\mathbf{\kappa}}=\frac{F_{\mathbf{\kappa p}} \boldsymbol{\sigma}_{\mathrm{p}}}{270} \tag{18}
\end{equation*}
$$

Здесь $F_{\text {кр }}$ - расчетное значение силы тяги заданного локомотива, кгс (ом, куроовуюо работу);
v_{p} - расчетная скорость локомотива, км/ч (см. курсовую работу).
Тогда количество тонно-километров брутто на единицу мощности в ткм брутто/л. с. год

$$
\begin{equation*}
q_{\mathrm{cp}}=\frac{A}{\sum N_{\mathbf{k}}} \tag{19}
\end{equation*}
$$

где A - перевозочная работа на заданном участке, ткм/г.
9. Потребное количество локомотивных бригад для заданных размеров движения на участке обращения при сменном обслуживании локомотивов может быть получено по формуле

$$
\begin{equation*}
E_{6 \mathrm{p}}^{\mathrm{qB}}=\frac{30,4 \Sigma T_{6 p}}{173.4} \tag{20}
\end{equation*}
$$

где $\quad \Sigma T_{6 р}$ - суммарное число бригадолч;
30,4 - ореднеподовое число суток в месяце;
173,4 - месячный фонд рабочепо времени одной бригады.

$$
\begin{equation*}
\boldsymbol{\Sigma} T_{6 \mathrm{p}}=\boldsymbol{\Sigma} t_{2}+\boldsymbol{\Sigma} t_{\mathrm{s}}+\boldsymbol{\Sigma} t_{\mathrm{6}}+\boldsymbol{\Sigma} t_{8}+\boldsymbol{\Sigma} t_{\text {non }}, \tag{21}
\end{equation*}
$$

где $\boldsymbol{\Sigma} t_{\text {поп }}$ - дополнительное время работы бригад по приемке и сдаче локомотивов (в пунктах A, D, B, б, 8$)$.

На приемку и сдачу локомотива устанавливается время не более 30 мин на станции основнюго депо и в пунктах оборота локомотивов, а в промежуточных пунктах смены локомотивных бригад - не более 20 мин (при этом надо учесть, что работают две бригады - принимающая и сдающая)

Для схемы обслуживания участков локомотивными брига дами, приведенной на рис. 1, имеем:

$$
\begin{equation*}
\Sigma t_{\text {non }}=(0,5 \cdot 2 \cdot 4+0,33 \cdot 4) n \text { ч, } \tag{22}
\end{equation*}
$$

пде n - размеры движения на участке в парах поездов за сутки (см. табл. 2).
С учетом подмены бригад, находящихся в отпуске, командировке, больных и т. д., определяется списочное число бригад

$$
\begin{equation*}
B_{6 \mathrm{p}}^{\mathrm{cmuc}}=1.13 E_{\mathrm{op}}^{\mathrm{as}} . \tag{23}
\end{equation*}
$$

Средняя часовая производительность локомотивной бригады в ткм/ч

$$
\begin{equation*}
m=\frac{2\left(l_{1}+l_{2}\right) n Q}{\Sigma T_{\sigma p}} \tag{24}
\end{equation*}
$$

Месячная выработка локомотивнойбригады, выраженная в километрах (км/месяц)

$$
\begin{equation*}
L_{\text {op }}^{u}=\frac{30 \cdot 2\left(l_{1}+l_{2} i n\right.}{5_{6 \mathrm{p}}^{\mathrm{cnuc}}} . \tag{25}
\end{equation*}
$$

10. Для поддержания локомотивов в исправном состоянии, абеспечения устойчивости работы и повышения их надежности в эксплуатация приказом МПС № 10Ц от 16 февраля 1981 г. установлены следующие виды планово-предупредительного технического обслуживания и реманта электровозов и тепловозов.

Техническое обслуживание ТО-1, ТО-2, ТО-3 - для предупреждения появления неисправностей и поддержания локомотивов в работоспособном и надлежащем санитарно-гигиеническом состоянии, обеспечивающим их бесперебойную работу и безопасность движения.

Техническое обслуживание ТО-4 - для обточки бандажей колесных пар без выкатки их из-под ложомотивов с целью поддержания оптимальной величины проката.

Текущий ремонт TP-1, TP-2, TP-3 - для восстановления основных эксплуатационных характеристик и работоспособности локомотивов в соответствующих межремонтных периодах путем ревизии, ремонта и замены отдельных деталей, узлов и агрегатов, регулировки и испытания, а также частичной модернизации.

Капитальный ремонт КР-1 - для восстановления эксплуатационных характеристик, исправности и ресурса (срока службы) путем замены, ремонта изношенных и поврежденных агрегатов, узлов и деталей, а также модернизании.

Капитальный ремонт КР-2-для восстановления эксплуатационных характеристик, исправности и полного ресурса всех апрегатов, узлов и деталей, включая базовые, полной замены проводов и кабелей, а также модернизации.

Техническое обслуживание ТО-1 вылолняется локомотившыми бригадами в соответствии с перечнем работ, утвержден ным начальником службы локомотивного хозяйства дороги приписки локомотивов.

Техническое обслуживание TO-2 поездных локомотивов выполняется высококвалифицированными слесарями в пунктах технического обслуживания, оснащенных необходимым оборудованием, приспособлениями, инструментом и обеспеченных технологическим запасом деталей м материалов.

Техническое обслуживание ТО-3 и ТО-4, текущий ремонт TP-1, ТР-2, ТР-3 локомотивов выполняются в депо приписки комплекоными и специализированными бригадами. При отсутствии в депо приписки необхолимой ремонтной базы текущий ремонт TP-2 и TP-3 выполняется в других (специаливированных) депо дороги.

Капиталыный ремонт KP-1 и KP-2 локомотивов выполняется на специализированных локомотиворемонтных заводах МПС.

Среднесетевые межремонтные пробеги локомотивов, а также нормы продолжительности технического обслуживания : ремопта, установленные приказом МПС № 10Ц, приведены в табл. 3.

По данным табл. 3 составляетоя схема цикличности выполнения ремонтов локомотивов (пример такой схемы представлен на рис. 2-см. вклейку).
11. Годовую программу ремонтов и технического обслужнвания ТО-3 локомотивов можно определить по следующим формулам (локомотивов/г):

капитальный ремонт КР-2

$$
\begin{equation*}
N_{\mathrm{kr}-2}=\frac{L_{\mathrm{roI}}}{L_{\mathrm{kp}-2}} \tag{26}
\end{equation*}
$$

капитальный ремонт KP-1

$$
\begin{equation*}
N_{\mathrm{kp}-1}=\frac{L_{\mathrm{roI}}}{L_{\mathrm{kp}-1}}-\frac{L_{\mathrm{roz}}}{L_{\mathrm{k} p-3}} \tag{27}
\end{equation*}
$$

текущий ремонт TP-3

$$
\begin{equation*}
N_{\mathrm{rp}-3}=\frac{L_{\mathrm{rot}}}{L_{\mathrm{rp}-3}}-\frac{L_{\mathrm{ron}}}{L_{\mathrm{xp}-1}} \tag{28}
\end{equation*}
$$

Пробеги локомотивов между ремонтами и нормы продолжнтельности ремонтов	Таблица 3
и технического обслуживания	

Пробеги локомотивов между ремонтами и нормы продолжительности рем

Локомотив	Виды технического обслуживания и ремонта					
	Техническое обслуживание TO-3	Текущий ремонт			Капитальный ремонт	
		TP-1	TP-2	TP-3	KP-1	KP-2
$Э$ лектровоз ы;						
постоянного тока (ВЛ8, ВЛ10, ВЛ11)	12500 kM 6 4	25000 kM 15	175000 км 1,5 суток	350000 км 3,5 суток	$\begin{align*} & 700000 \text { км } \tag{30}\\ & 20 \text { суток } \end{align*}$	$\begin{array}{r} 2100000 \mathrm{KM} \tag{29}\\ 23 \text { cytok } \end{array}$
переменного тока (ВЛ60 ${ }^{\text {к, }}$, ВЛ8 ${ }^{\text {п }}$)	-	14000 kM 15 q	200000 kM 1,5 суток	$\begin{equation*} 400000 \text { км } \tag{31} \end{equation*}$ 3,5 суток	800000 км 20 суток	$\begin{gathered} 2400000 \text { км } \\ 25 \text { суток } \end{gathered}$
ТЭ3	7500 kM 8 y	30000 km 36 q	120000 км 4,5 суток	240000 км 5 суток	720000 kM 18 суток	$\begin{gathered} 1440000 \text { км } \\ 22 \text { суток } \end{gathered}$
2TЭ10B, 3TЭ10M	$\begin{gathered} 7200 \mathrm{~km} \\ 10 \mathrm{y} \end{gathered}$	$\begin{gather*} 29000 \text { км } \tag{32}\\ 36 \text { ч } \end{gather*}$	$115000 \text { км }$ $5 \text { суток }$	230000 км 6 суток	690000 kM 19 суток	$\begin{gathered} 1380000 \text { км } \\ 22 \text { суток } \end{gathered}$
2ТЭ116, 2TЭ121	$\begin{aligned} & 8000 \text { км } \\ & 10 \text { ч } \end{aligned}$	40000 km 36 q	200000 km 5 cуток	$\begin{gathered} 400000 \text { км } \\ 6 \text { суток } \end{gathered}$	$\begin{aligned} & 800000 \text { км } \\ & 19 \text { суток } \end{aligned}$	$\begin{gathered} 1600000 \mathrm{kм} \\ 22 \text { суток } \end{gathered}$

пекущий ремонт ТР-2

$$
N_{\mathrm{Tp}-2}=\frac{L_{\mathrm{roz}}}{L_{\mathrm{Tp}-2}}-\frac{L_{\mathrm{roz}}}{L_{\mathrm{Tp}-3}}
$$

текущий ремонт TP-1

$$
N_{\mathrm{Tp}-1}=\frac{L_{\mathrm{roz}}}{L_{\mathrm{Tp}-1}}-\frac{L_{\mathrm{roz}}}{L_{\mathrm{Tp}-2}}
$$

техническое обслуживание ТО-3

$$
N_{\mathrm{ro}-3}=\frac{L_{\mathrm{roZ}}}{L_{\mathrm{ro}-3}}-\frac{L_{\mathrm{roд}}}{L_{\mathrm{rp}-1}}
$$

В этих формулах:
$L_{\text {rод }}$ - годовой пробег всех поездных локомотивов, км;
$L_{\text {кр-2 }}, L_{\mathrm{kp}-1}, L_{\tau р-3}, L_{\mathrm{rp}-2}, L_{\mathrm{rp}-1}, L_{\mathrm{ro-3}}-$ нормы пробега локомотивов между соответствующими ремонтами и технически ми обслуживаниями.

Фронтом ремонта называется количество локомотивов, одновременно находящихся в данном виде ремонта:

$$
\Phi_{i}=\frac{N_{i} t_{i}}{D}
$$

где N_{i} - годовая программа данного вида ремонта (или технического обслуживания) ;
t_{i} - продолжительность нахождения локомотива в данном виде ремонта или технического обслуживания в сутках (см. табл. 3);
D - расчетное количество рабочих дней в году (260,4 дня при продотжительности смены 8 ч и 254 дня при продолжительности смены 8 ч 12 мин.).*
Фронт ремонта (по каждаму виду) следует вычислять с точностью до второго знака после запятой.**
12. Инвентарный парк локомотивов $N_{\text {инв }}$ состоит из локомотивов экоплуатируемого парка N_{g}, локомотивов, находящихся в ремонте $N_{\text {рем }}$ и локомотивов, находящихся в резер ве управления доропи $N_{\text {рез }}$ и в запасе $М П С ~ N_{\text {san }}$, т. е.

$$
\begin{equation*}
N_{\text {ния }}=N_{\mathrm{o}}+N_{\text {рем }}+N_{\text {рез }}+N_{\text {зап }}, * * * \tag{33}
\end{equation*}
$$

где $N_{\text {рем }}=\Phi_{\text {кр }-2}+\Phi_{\mathrm{kP}-1}+\Phi_{\mathrm{rp}-3}+\Phi_{\mathrm{rp}-1}+\Phi_{\mathrm{\tau p}-2}+\Phi_{\text {то-3 }}$.

[^2]Здесь $\Phi_{\text {кр }-2}, \Phi_{\text {кр }-1}, \Phi_{\text {тр-3 }}, \Phi_{\text {тр-2 }}, \Phi_{\text {тр-1 }}, \Phi_{\text {то-3 }}-ф$ ронты ка. питальных, текущих ремонтав и технического обслуживания TO-3.

Количество локомотивов, находящихся в резерве управления дороги, можно принять равным 10% от экоплуатируемого парка, а число локомотивов запаса МПС - 5\% от экоплуатируемого парка.
13. Состояние локомотивного парка характеризуется отношением количества неисправных локомотивов к парку в распоряжении дороги.

Процент неисправных локомотивов в деповском ремонте

$$
\begin{equation*}
\alpha_{\text {zen }}=\frac{\Phi_{\text {rp }-3}+\Phi_{\text {rp- }-2}+\Phi_{\text {rp- }}+\Phi_{\text {ro }-3}}{N_{\mathrm{t}}+N_{\mathrm{pea}}+N_{\text {pes }}} \cdot 100 \% \tag{34}
\end{equation*}
$$

Общий процент неисправных локомотивов

$$
\begin{equation*}
\alpha_{06 щ}=\frac{N_{\text {pex }}}{N_{\mathrm{s}}+N_{\text {рем }}+N_{\text {pes }}} \cdot 100 \% . \tag{35}
\end{equation*}
$$

14. Назначенне цежов и отделений нокомотивноио дөло подроно рассмотрено в рекомендуемой литературе $[1,2,3,5]$.

II. ВАГОННОЕ ХОЗЯЙСТВО

В этом разделе контрольной работы следует:

1. Рассчитать количество вагонов, проходящих текущий отцепочный ремонт* за сутки, месячную и годовую программу этого вида ремонта вагонов.
2. Определить потребное количество ремонтных мест для текущего отцепочного ремонта и поточных линий для деповского ремонта вагонов.
3. Определить потребность рабочей силы для депо и пунктов техническопо обслуживания.
4. Выपертить пллан варонного пепо с укаэанием всеХ цехов \# отделлнии; указать назначение цехов и отделений.

Исходные данные выбираются из табл. 1 по последней цифре учебного шифра студента и обязательно приводятся в начале раздела.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

1. По заданным размерам движения и среднему весу составов определяется количество вагонов, проходящих текущий отцепочный ремонт за сутки.

* В соответствии с приказіом МПС № 32 Ц-1980 r. этот видд ремонта называется текущим ремонтом ТР-2.

Количество вагонов, проходящих текущий отцепочный ре монт на сортировочных станциях, может быть определено исходя из следующих нормативов:

$$
\begin{aligned}
& \text { от транзита с переработкой } 0,6 \% \\
& \text { » без переработки } \\
& \text { при грузовых операциях }
\end{aligned}
$$

Количество вагонов, проходящих по участку (через ст. A) в течение суток:
четырехосных

$$
\begin{equation*}
m_{4}^{c}=\frac{\alpha Q_{2}}{q_{4}} 2 n ; \tag{1a}
\end{equation*}
$$

шестиосных

$$
\begin{equation*}
m_{6}^{c}=\frac{\beta Q}{q_{6}} 2 n \tag{1б}
\end{equation*}
$$

васьмиасных

$$
\begin{equation*}
m_{8}^{\mathrm{c}}=\frac{\gamma Q}{q_{\mathrm{s}}} 2 n \tag{18}
\end{equation*}
$$

где α, β, γ - соответственно доли (не \%) четырех-, шестии восымиосных вагонов в составе по весу (см. табл. 1);
Q - вес состава грузового поезда (определен в курсовой работе);
q_{4}, q_{6}, q_{8} - вес брутто соответственно четырех-, шести и восьмиоснопо вагонов (см. табл. 1);
n - размеры движения в парах поездов за сутки (см. таббл. 2).
По числу четырех-, шести- и восьмиосных вагонов, проходящих по участку за сутки, и данным, приведенным выше, можно определить количеспво вагонов разных типов, проходя щих текущий отцепочный ремонт за сутки.

Разделение вапонопотока на группы вагонов, проходящих ст. A в поездах, следующих транзитом без переработки, транзитом с переработкой, а также находившихся под грузовыми операциями, выполняется студентом самостоятельно. При этом можно принять, что количество вагонов, проходящих в транзитных поездах без переработки, составляет $15-25 \%$; в поездах, следующих транзитом с переработкой, - $70-75 \%$, находилось под грузовыми операциямя $10-15 \%$ от общего суточного вагонопотока*.

Если, например, в общем вагонопотоке вагоны, следующие в транзитных поездах без переработки, составляют 20%; ва-

[^3]оны, следующие в транзитных поездах с переработкой,-70\% и вагоны, находившиеся под грузовыми олерациями, -10%, то количество вагонов, проходящих текущий отцепочный ремонт за сутки, составит:

четырехосные ваганы

$$
\begin{equation*}
m_{4 \text { Tek }}^{\mathrm{c}}=m_{4}^{\mathrm{c}}(0,2 \cdot 0,002+0,7 \cdot 0,006+0,1 \cdot 0,012) \tag{2a}
\end{equation*}
$$

шестиосные вагоны

$$
\begin{equation*}
m_{6 \text { tek }}^{\mathrm{c}}=\boldsymbol{m}_{6}^{\mathrm{c}}(0,2 \cdot 0,002+0,7 \cdot 0,006+0,1 \cdot 0,012) \tag{2б}
\end{equation*}
$$

восьмиосные вагоны

$$
\begin{equation*}
m_{8 \text { res }}^{\mathrm{c}}=m_{8}^{\mathrm{c}}(0,2 \cdot 0,002+0,7 \cdot 0,006+0,1 \cdot 0,012) \tag{2~B}
\end{equation*}
$$

Зная количество вагонов, проходящих текущий отцепочный ремонт за сутки, легко определить месячную и годовую пропрамму ремонта. Результаты расчета целесообразно свести в табллицу следующей формы:

Виды ремонта	Программа	
	месячная	годовая
восьмиосных вагонов шестиосных		
шестиосных четырехосных		
Деповский ремонт (задан-		E
см. табл. 1):		
восьмиосных щестиосных		
четырехосных		

2. Вагонные депо являются основными линейными предприятиями вагонного хозяйства. Они предназначены для текущепо и деповского ремонта вагонов и обслуживания ваго нов в экоплуатации.

Потребное количество ремонтных мест для выполнения текущего отцепочного ремонта вагонов

$$
\begin{equation*}
H=\frac{N_{\mathrm{ro}} t_{\mathrm{ro}} K}{24 \cdot 365} \tag{3}
\end{equation*}
$$

где $N_{\text {то }}$ - общая годовая программа текущего отцепочного ремонта вагонов;
$t_{\text {ro }}$ - норма простоя вагона в текущем отцепочном ремонте;
24 - число часов в сутках;
365 - количество дней в году;
K - коэффнциент неравномерности поступления вагонов в ремонт, принимаемый для текущего отцепочного ремонта равным 1,2.
Нормы простоя грузовых вагонов в разллчных видах ремонта приведены в табл. 4.

Таблища 4

Вид ремонта	Простой грузовых вагонов в ремонте, प		
	четырехосные	шестиосные	восьмиосные
Деповской (с полной окраской)	12	14	16
Текущий отцепочный . . .	3,5	3,5	3,5

Примечание. Нормы, указанные в таблице, являются максимальными и в каждом конкретном случае их можно уменьшать.

При поточном методе деповского ремонта, который является пропрессивной формой организации ремонта, вагоны передвигаются в процеосе ремонта через определенные промежутки времени с одной позиции на другую. Рабочие, находящиеся на рабочих местах, выполняют на каждом вапоне ремонтные операции, установленные для данной позиции.

Потребное количество поточных линий определяется по формуле

$$
\begin{equation*}
n_{\text {пот }}=\frac{r N_{\mathrm{B}}}{F_{\mathrm{p}}} \tag{4}
\end{equation*}
$$

где $\quad r$ - ритм потока (промежуток времени между выпуском с поточной линии двух следующих один за другим вагонов), ч;

$$
\begin{equation*}
r=\frac{t_{\mathrm{R}}}{c} ; \tag{5}
\end{equation*}
$$

t_{B} - норма простоя вагона в ремонте, ч;
c - количество позиций поточной линии, на которых протекает ряд процессов, составляющих данный цикл (объем работ); обычно принимают с равным 3 или 4;
F_{p} - действительный годовой фонд работы поточной линии, ч;

$$
\begin{equation*}
F_{\mathrm{p}}=F_{\mathrm{H}} K_{n} \tag{}
\end{equation*}
$$

$F_{\text {и }}$ - действительный годовой фонд работы поточной линии, ч;
K_{n} - коэффициент, учитывающий время, связанное с перемещением вагонов по позициям, репламентированным отдыхом и другими неизбежными поте рями ($K_{n}=0,85 \div 0,95$);
$F_{\mathrm{B}}^{\mathrm{I}}=8 \cdot 260,4=2083$ ч (при работе в одну смену);
$F_{\mathrm{H}}^{\mathrm{I}}=8 \cdot 260,4 \cdot 2=4166$ ч (при работе в две смены)
Здесь 260,4 - среднее расчетное количество рабочих дней в году при продолжительности смены 8 ч.
3. Определение потребности рабочей силы для депо и пунктов технического обслуживания.

Численнасть основных производственных рабочих депо определяется по трудоемкости ремонта

$$
\begin{equation*}
R_{\mathrm{cn}}=\frac{N_{\mathrm{n}} H_{\mathrm{n}}}{F_{\mathrm{cn}}^{\mathrm{con}} K_{\mathrm{B}}^{-}}, \tag{7}
\end{equation*}
$$

где $\quad R_{\text {cи }}$ - описочное коничество производственных рабочих;
$N_{\text {в }}$ - годовая программа ремонта вагонов (по видам ремонта, типам и осности вагонов);
$H_{n}{ }^{\text {² }}$ - нормированные затраты времени соответственно по видам ремонта, типам и осности ватонов, нор-Мо-ч (табл. 5)

Таблица 5

Tип и осность вагона	Трудоемкость ремонта нормо-ч	
	деповского	текущего отцепочного
Четырехосные крытые .	60	11
Четырехосные полувагоны	56	12
Шестиосные полувагоны	71	14
Восьмиосные полувагоны	84	17
Четырехосные платформы	50	

$F_{\mathrm{cn}}^{\text {год }}$ - годдовой фонд времени адного списочного рабочего, ч;
K_{n} - коэффициент, учитывающий перевыполнепие установленных норм ($K_{\text {н }}=1,08 \div 1,12$);
$F_{\mathrm{cn}}^{\mathrm{rog}}=(365-104-8-15-3) 8=1880$ ч.
Здесь 365 - количество дней в году; 104 -число суббот них и воскресных дней в году; 8-число праздничных дней в году; 15-ореднее количество отпускных дней в году; 3среднее число дней в году, затрачиваемых на выполнение различных пражданских и общественных обязанностей

Расчет рабочей силы для пунктов технйческого оболуживания пронзводится из условий, что работы по осмотру и текущему безотцепочному ремонту* вагонов выполняются круглооуточно, в четыре омены при 12 -часовом непрерывном дежурстве работников смен, с тем однако, чтобы не превышать месячной нормы часов работы (173,4 ч) .

Потребное количество работников в одной бригаде

$$
\begin{equation*}
R_{\mathrm{rex}}=\frac{m_{4}{ }^{\prime} H_{\mathrm{rex}}}{k t_{\mathrm{ocx}}} \tag{8}
\end{equation*}
$$

где
m_{4}^{\prime} - среднее количество вагонов в составе (
четырехосном исчислении);

$$
\begin{equation*}
m_{4}^{\prime}=\frac{Q}{q_{4}} \tag{9a}
\end{equation*}
$$

или

$$
\begin{equation*}
m_{4}^{\prime}=\frac{\alpha Q}{q_{4}}+\frac{\beta Q}{q_{6}} \cdot 1,5+\frac{\gamma Q}{q_{8}} \cdot 2 \tag{9б}
\end{equation*}
$$

Q - вес состава грузового поезда;
q_{4}, q_{6}, q_{8} - вес брутто соответственню 4-, 6- и 8-осного вагонов;
$H_{\text {tex }}$ - затрата (трудоемкость) чел.-мин на осмотр и текущий безотцепочный ремонт одного ватона; (приннмается $15-16$ чел.-мин. на один четырехосный вагон);
$\kappa=0,85 \div 0,9-$ коэффициент, учитывающий неравномерность прибытия поездов и непроизводительные переходы ремонтных бритад;
$t_{\text {осм }}$ - простой состава под оемотром и безотцепочным ремонтом, не превышающий 25-30 мін.
Таких бригад должно быть две в каждую смену - для четных и нечетных поездов. Таким образом, общее явочное число работников на пункте техническопо обслуживания составит:

$$
\begin{equation*}
R_{\mathrm{gro}}^{\mathrm{as}}=4 \cdot 2 R_{\text {тex }}, \tag{10a}
\end{equation*}
$$

а списочное

$$
\begin{equation*}
R_{\mathrm{aro}}^{\mathrm{cmi}}=1,13 R_{\pi \mathrm{mro}}^{\mathrm{ga}} . \tag{10б}
\end{equation*}
$$

[^4]Распределение рабочих пункта технического обслуживания по прафессиям принять следующим (в \%):

4. Maтерналы, необходимые для выполненнй этоо пункта

 задания, приведены в $[1,4,6]$.
Рекомендуемая литература

1. Подвижной состав и тяга поездов. Под ред, д-ра техн, наук, проф. Н. А. Фуфрянского и канд. техн. наук, доц. В. В. Деева. М., «Транопорт», .
2. Кр югер П. К., Айзинбуд С. Я. и др. Тепловозное хозяйство *Транопорт», 1980.
3. Горнов О. Ф. и др. Эксплуатация и ремонт подвижного состава электрических железных дорог, М., «Транюпорт», 1968
4. Криворучко Н. З. н др. Вапонное хозяйство. М., «Транспорт», 1976
5. Тучкевич Т. М. и др. Экономика, организация и планированиие локомотивного хозяйства. М., «Транспорт», 1977.
6. Гридюшко В. И. и др. Экономика, организация и планирование вагонного хозяйства. М., «Транслорт», 1980.
7. Подвижной состав и тяговое хозяйство железных дорог. Под ред. д-ра техн. наук, проф. А. П. Третьякова. М., \&Транспорт», 1971.

गИIOZEHYE 4

ПРИТОХЕННЕ 2

1324

Графоик оборои, аа зпектровозов на участке $\overline{b-A}-B$

1324

РАСПИСАНИЕ ДВИЖЕННЯ ПОЕЗДОВ НА УЧАСТКЕ ОБРАЩЕНИЯ $B-A-B$

[^0]: * На обложже контрольной работы в этом случае должна быть оде лана нащпнсь: «Работа исправлена» или «На повторное рецензирование».

[^1]: * Если в учебном шифре после букв, обозначающих специальность, стоит лишь одна цифра, то эта шифра считаетоя последней, а предпполедней цифрой буцет 0 .

[^2]: * При подсчете фронта технического об́служивания ТО-3, а также ка митальных ремонтов принимать $\mathrm{A}=365$ дней.
 если просой боря, надо выдерживать соответствые размерностей велияин: если проотой берется в сутках, то ин в знаменателе формулы (32) ставится тисло суток (365,254 или 260,4) ; если же простой представляется в ча***
 ** Зпиачения $N_{\text {рем }}, N_{\text {рез и }} N_{\text {зап }}$ должны быть округлены,

[^3]: * Сумма принятых значений должна, разумеется, равняться 100%.

[^4]: * В соответствии с приказом МПС № 32 Ц-1980 г. этот вид ремонта называется техническим обслуживанием (ТО).

