Foreword by Gurdeep Singh Pall

Corporate Vice President, Office Communications Group, Microsoft Corporation

Programming for
Unitled
Communications

with Microsoft® Office Communications Server 2007 R2

Rui Maximo, Kurt De Ding, Vishwa Ranjan,
Chris Mayo, Oscar Newkerk, and the
Microsoft Office Communications Server Team

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2009 by Microsoft Corporation (All)

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Control Number: 2009927403

Printed and bound in the United States of America.

123456789 QWT 432109

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International directly at
fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, Access, Active Directory, ActiveX, Expression, Forefront, IntelliSense, Microsoft Dynamics,
MS, MSDN, Outlook, RoundTable, SharePoint, SQL Server, Visual Basic, Visual C#, Visual C++, Visual Studio, Win32,
Windows, Windows Mobile, Windows N'T, Windows PowerShell, Windows Server, Windows Vista and WinFX are either
registered trademarks or trademarks of the Microsoft group of companies. Other product and company names mentioned
herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail address,
logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ben Ryan

Developmental Editor: Devon Musgrave

Project Editor: Victoria Thulman

Editorial Production: Custom Editorial Productions, Inc.

Technical Reviewer: Mitch Duncan; Technical Review services provided by Content Master, a member of CM Group, Ltd.
Cover: Tom Draper Design

Body Part No. X15-53123

Contents at a Glance

Part |

Part Il
3

4

Part 1l

Understanding Unified Communications
Microsoft Unified Communications. 3
Microsoft Unified Communications APIs Foundation......... 13

Office Communicator Automation API

Programming a Microsoft Office Communicator
Automation APl Application............. 49

Embedding Contextual Collaboration...................... 87

Unified Communications Managed APl Workflow
Unified Communications Managed APl (UCMA) Workflow. .. 113
Business Process Communication......................... 149

Unified Communications Managed API
Structure of a UCMA Application......................... 183
Publishing Custom Presence with UCMA 205

Debugging, Tuning, and Deploying Unified
Communications Applications

Preparing the UC Development Environment 219
Debugging a Unified Communications Application 293

Table of Contents

FOrewordt e e e Xi
Acknowledgments. i . xiii
Introduction i e Xvii
Why We Wrote This Book. XVii
What This Book Is About XVii

Who This Book IS For. Xviii
Companion Content Xviii
Hardware and Software Requirementsoiooo.... Xix

S VIS L ettt e Xix

Client ComMPULErS.t Xix

Database Requirementst XX
Office Communications Server 2007 R2 XX
Administrative ToOls XX
Development ToOIs XX

Sample Test Topology.t XXi

Find Additional ContentOnline........... XXi
Support for This Book XXi
Questionsand Comments XXi

part| Understanding Unified Communications

1 Microsoft Unified Communications......................... 3
Unified Communications: Challenges and Opportunities. 3
Challenges in Unified Communications..................., 4

Opportunities in Unified Communications 5

The Unified Communications Platform 7

Unified Communications APIs 8
SUMMATY . e e 12
Additional ReSOUICES.t 12

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and
learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey

vi Table of Contents

2 Microsoft Unified Communications APIs Foundation......... 13
Unified Communications Managed API 2.0.............................. 13
SCENANIOS . o oot 14
Considerationsottt 14
APl Architecture. 16
Object Model 17
UCMA 2.0 Workflow APL. 18
SCENAIIOS . o oot 19
Windows Workflow Foundation.................................. 20
Considerationst 21
Workflow Architecture 22
Object Model 22
Office Communicator Automation APL 23
SCENANIOS . o oot 23
Considerationst 24
Application Architecture. 24
Object Model 25
Unified Communications Client APl, 27
SCBNANIOS . o oo 27
Considerations 28
Application Architecture. 28
The UCC API Object Modelo 29
Unified Communications AJAX APL. 32
SCBNANIOS . o ot 32
Considerationst 32
Application Architecture. 33
XMLModel 34
Office Communications Server 2007 Speech Server Developer
EditioNn .. 37
SCBNAIIOS o v ettt et e 38
Considerationsttt 40
Application Architecture. 40
SUMIMIAY et e e e e 46

Additional ReSOUICes. 46

Table of Contents vii
Part I Office Communicator Automation API

3 Programming a Microsoft Office Communicator

Automation API Application............. 49
Signing In to and Out of Office Communicator.......................... 49
Using the Messenger Class. ... 49
Determining Whether Office Communicator Is Running............. 50
Checking Local User Status, 51
Signing In to Office Communicatoro ... 52
Signing Out of Office Communicator.............................. 54
Putting It All Together. 55
Working with Contact Information and Contact Presence................. 58
Displaying Local User Information 58
Retrieving Contact Information. 63
Publishing and Subscribing to Contact Presence.................... 68
Putting It All Together. ... 72
Working with the Office Communicator Contact List..................... 77
Putting It All Together. 79
Starting Conversationst 81
Using the IMessengerAdvanced Interface 81
Putting It All Together. 83
SUMIMAIY et e e 85
Additional ReSOUICeS.ot 85
4 Embedding Contextual Collaboration...................... 87
Introduction to Contextual Collaboration............................... 87
SCENAMIO . . .ottt 90
Business Value. 90
Choice of Technology 91
Test Environment 91
Overall Code Structure 92
Displaying Application-Specific Contact Lists....................... 92
Starting Application-Specific Conversations. 97
Accepting Application-Specific Conversations..................... 104
SUMIMAIY .« .o e e 110

Additional ResouUrces. 110

viii

Table of Contents

Part Il Unified Communications Managed API

Workflow
5 Unified Communications Managed APl (UCMA)

Workflow e 113
UCMA Workflow. 113
Using Project Templates........... ..., 114
Selecting a Workflow Language, 115
Using Workflow Designer.o 115
Workflow Runtime Services......... ... i 116
General ActiVities. 120
Call Control Activities 126
Dialog Activities. 128
Command Activities 137
Call Control Communications Event Activities 141
Dialog Communications Event Activities. 144
Presence-Related Activity. i i i 147
SUMMIAIY et e e e 148
Additional ReSOUICeS. oo 148
6 Business Process Communication......................... 149
SCENANIO . . ot 149
Business Value. 149
Choice of Technology 150
Overall Code Structure 150
Test Environment 150
Building the Application i 151
Task 1: Create a New Communication Workflow Project............ 151

Task 2: Configure the Application to Connect to Office
Communications Server 151
Task 3: Allow User Input to the Workflow Instance 152
Task 4: Get the Approver's Presence Information................... 154

Task 5: Implement Branching Logic Based on

the Approver's Presence.coouiiiiiiniiiiiiiiiine.. 155
Task 6: Update cantBeContactedBranch. 157
Task 7: Update canBeContactedBranch 158
SUMMIAIY .« .t e e e e 179

Additional ReSOUICES.o 179

Table of Contents

Part IV Unified Communications Managed API

7 Structure of a UCMA Application......................... 183
Creating a UCMA Applicationo 183
CollaborationPlatform. i 184

ENdpoints ... 187

Conversation, Call, and Call Flow i .. 190

Creating Calls 191

CONfErENCES . .o 195

Publish and Subscribe to Presence........... i, 197

SUMIMIAIY et e e e 203
Additional Resources. 204

8 Publishing Custom Presence with UCMA 205
Creating Custom Presence Categories.coouiiiiiinniininnn. 205

Common Custom Presence Application Scenario 206

Choice of Technologyo 206

Overall Code Structure 207

Test Environment 207

Detailed Code. 208

SUMIMAIY .« .o 216
Additional RESOUICES. 216

partV Debugging, Tuning, and Deploying Unified
Communications Applications

9 Preparing the UC Development Environment 219
UC Application Development Environment Components 219
AD DS for Managing a Networko i 221
Office Communications ServerRoles............................. 223
UC APIS 224
Deploying Office Communications Server Standard Edition.............. 226
Buildingan AD DS Forest. ... 226
Preparing AD DS forUC i 237
Configuring DNS for Automatic Sign-In 245
Setting Up the Office Communications Server Host Computer 248
Installing and Configuring Office Communications Server
Standard Edition. ... 251
Configuring UC User Accounts, 272

Validating Server Functionality o L. 278

Table of Contents

Configuring Application Development Components 279
Configuring the Office Communicator Automation API............. 280
Configuring UCMA COre. . ..ot 281
Configuring UCMA Workflow 291

SUMIMaAIY .« e e e 291

Additional Resources. 292

10 Debugging a Unified Communications Application 293

Debugging inthe UCPlatform i .. 293
Sources of Errors and Failureso i i 293
Error Codes and Exception Classes. ..., 294
Session Initiation Protocol Error Codes, 295
TraCiNg . o oo 296
Debugging Tools for UC Applications 297
Best Practice for Debugging or Troubleshooting a UC Application301

Debugging Office Communicator Automation APl Applications 302
Enabling Tracing.o 302
Handling Exceptions Using HRESULT Error Codes.................. 305
Troubleshooting Office Communicator Automation
AP Applications. 307

Debugging UCMA Core Applications. i ... 314
Enabling Tracing.o oo 314
Handling Exceptions Using the UCMA Core Exception Model 316
Debugging UCMA Core Applications., 321

Debugging UCMA Workflow Applications 330
Enabling Tracing. 330
Handling Exceptions Using the Fault Handler Activity 332
Debugging UCMA Workflow Applications 333

SUMMAIY .« . e e e e 338

Additional ReSOUICES.ttt 339

GlOSSarY . . ettt e e e e 341
INdeX .o e 371

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and
learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey

Foreword

The Microsoft Unified Communications (UC) platform, which includes Microsoft Exchange
Server and Office Communications Server, provides a unified infrastructure for communi-
cation and offers a single-user experience for e-mail, instant messaging (IM), Voice over
Internet Protocol (VolIP), application sharing, audio/video (A/V), and Web conferencing.
This user experience is centered on a single identity (provided by Active Directory Domain
Services) combined with an inbox (managed by Exchange Server) and enhanced presence
(provided by Office Communications Server). This integrated solution realizes the unified
view in UC as opposed to a collection of disparate solutions. As a software-based platform,
UC provides a rich and open API set for developers to extend the UC platform. In fact, our
own products are built using these same APIs. These APls make presence, e-mail, IM, and
VolP a programmable platform that developers can use to create innovative solutions easily.

With rich and open APIs, we're infusing UC into new business applications, workflow
technologies, and content management. This effort wouldn’t be possible without the rapidly
growing number of Microsoft Most Valued Professionals (MVPs), developer partners who
are building these enterprise applications for customers. It is, therefore, important to help
the developer community by providing the necessary information, training, and support

to make them successful. Already, many customers have enhanced Office Communications
Server with custom applications. This book launches an important series that UC developers
will want to add to their library of programming books. Written by experts from the Unified
Communications Group at Microsoft, you'll find informative and valuable technical coverage,
complete with examples to illustrate best practices.

| want to recognize the efforts of members of the Unified Communications Group who
demonstrated perseverance and dedication in producing this book. Publishing this title
required vision and commitment from Tim Toyoshima, Ben Ryan, Rui Maximo, Susan Bradley,
Kurt De Ding, Vishwa Ranjan, Oscar Newkerk, Chris Mayo, Albert Kooiman, Victoria Thulman,
Mitch Duncan, 15 technical reviewers, and a large support crew.

It is my pleasure to introduce the first book on programming for Office Communications
Server.

Gurdeep Singh Pall
Corporate Vice President
Unified Communications Group

xi

Acknowledgments

The authors of Programming for Unified Communications with Microsoft Office
Communications Server 2007 R2 want to thank the numerous members of the Office
Communications Server product team, Microsoft Learning team, and numerous other key
contributors who helped make this first edition of the book as thorough, comprehensible,
and accurate as possible. These individuals have contributed their time and effort to this
project in several important ways, which include:

Reviewing each chapter for technical accuracy and completeness

Providing project management, technical management, lab management, art manage-

ment, and editorial support

Providing vision, leadership, advice, encouragement, resource support, and funding

support

We acknowledge and thank the following product experts for their extensive and invaluable
technical reviews:

If we have forgotten anyone, please forgive us!

Ajay Soni

Chloe Brussard
Dongkyun Nam
Ellen Zehr
George Durzi
John Austin

K. Ganesan
Marshall Harrison
Niko Schuessler
Sara Morgan
Srivatsa Srinivasan
Srividya Mohan
Vincent Bannister

Weimin Li

xiii

xiv

Acknowledgments

We acknowledge and thank the following key contributors, without whom this book would
be a dream rather than a reality.

Rui Maximo, senior technical writer, for his role as technical lead for the first-ever program-
ming book about Office Communications Server. Rui worked with dedication, perseverance,
and passion, reviewing each chapter draft multiple times and working closely with authors
to ensure technical accuracy, logical presentation, consistency, cohesion, and coherence
across 10 chapters, 7 writers, and 20 reviewers. Rui, we could not have delivered this book
without you.

Chris Mayo, UC technical evangelist, for his role in creating and managing the lab environ-
ment used by authors to take their screenshots.

Diane Forsyth, senior technical editor, for her role as glossary and forward link editor.
Thanks to Diane's earlier efforts, we have a glossary with an extensive list of key terms and
definitions as well as links that point to the latest resources.

Janet Lowen, lead technical editor, for her thorough editorial reviews and oversight, as well
as her able assistance with the glossary, forward links, template, and style guidelines.

Kate Gleeson, technical editor, for her editorial assistance during the end game when
chapters were flying so fast that we could barely keep up with them.

Victoria Thulman, Microsoft Learning project editor, for managing our delayed deliveries,
endless rounds of questions, and hundreds of e-mails a day with good humor and focused
professionalism. Vicky, this would have been a far more difficult journey without your exper-
tise and support.

John Clarkson, senior programming writer, for his role in managing the art across all
chapters and ensuring that all art met quality standards and guidelines.

Mitch Duncan, Microsoft Learning technical reviewer, who tested all procedures and identi-
fied errors so that this book is an accurate and comprehensive resource for our customers.

Susan S. Bradley, senior content project manager and “Master of the Universe,” who man-
aged this project from inception to delivery. Her infectious laughter and positive energy
kept everyone motivated to work through the details of producing the book and tracking
to the finish line. The number of moving parts to track across a large cast is mind-numbing.
Without her leadership and perseverance, this book wouldn't exist.

Ben Ryan, Microsoft Learning lead product manager, who championed and supported this
first-edition book and new authoring team. Without Ben'’s vision and support, Programming
for Unified Communications with Microsoft Office Communications Server 2007 R2 would
not exist.

Acknowledgments XV

Juan-Carlos Rivas, Office Communications Group senior group manager, for believing in
the value of this book and for allocating writers from his team to assist with writing, chapter
reviews, and art review and management.

Tim Toyoshima, Office Communications Group user assistance principal group manager,

for envisioning the need for this book, evangelizing that need, and sponsoring this cross-
team project. Without Tim's vision, leadership, and continuing support, which included both
funding and resources for this book, Programming for Unified Communications with Microsoft
Office Communications Server 2007 R2 would not exist.

We also thank our outstanding and dedicated editorial team at Microsoft Learning, including
Devon Musgrave, our development editor. Thanks also to Custom Editorial Productions,
who handled the production aspects of this book, and to Susan McClung, our copy editor.

—The Author Team

Personal Acknowledgments

Rui Maximo | want to thank my coauthors, who endured multiple rigorous reviews and
incorporated my feedback into their chapters. To Susan Bradley, thank you for managing this
project as well as previous projects. It's a pleasure to be your sidekick as we work together
on ever more ambitious projects. I've really enjoyed working with you since we started work-
ing together on the first edition of the Microsoft Office Communications Server 2007 Resource
Kit. To Mitch Duncan, you've become a good friend and respected colleague. To Vicky and
Janet, whom we've been fortunate to work with over the past two books, thank you! To Tim
Toyoshima, thanks for your continual support and for trusting in me to deliver. To my friends
in the product group, thank you for reviewing and sharing your expertise. These books are
dedicated to the great work you do on Office Communications Server. To my wife and kids,
you are my inspiration.

Kurt De Ding First, | want to express my gratitude to all current and former members of the
Unified Communications Group who helped me understand and appreciate the technolo-
gies of the Office Communications Server products family. In particular, | want to thank Sam
Bedekar, Subbu Chandrasekaran, K. Ganesan, Adrian Potra, and Stephane Taine for their
insights, their helpfulness, and their patient explanations. My gratitude also goes to Sara
Morgan for her insightful comments and expert suggestions on the earlier drafts of Chapters
9 and 10. | want to thank Juan-Carlos Rivas for giving me the opportunity to contribute to
this book and creating a supportive work environment. | also want to thank Tim Toyoshima
for letting me be part of this wonderful team working on interesting UC technologies. Finally,
for my colleagues on the SDK documentation team, thank you for all your support.

Xvi

Acknowledgments

Vishwa Ranjan | have to start by thanking my wife, Rajpreet, who was very patient with

me while | worked on this book during the last month of her pregnancy. | would also like to
thank my brother, Peeyush, without whose efforts | would not be in the computer industry. |
would like to thank all my peers on the product team, especially Dongkyun Nam, for making
sure that the right technical content went into the book. Finally, | would like to extend my
gratitude to all the team members working on this project who helped me through the
rigors of writing a book. A special thanks to Rui Maximo for turning the pile of information
that | put on paper into something that is comprehensible and to Susan S. Bradley for driving
us in the right direction.

Chris Mayo In 1981, Naperville School District 203 purchased computers for my elementary
school. My third-grade science teacher, Mike Manolakes, taught me how to write software
after school. That investment in technology in the classroom and the extra effort by a gener-
ous teacher changed my life forever. My parents, Calvin and Judy, were way ahead of their
time when they bought me my first computer in 1983, a time when a computer in the home
was truly a luxury. That luxury turned an interest into a career | truly love. Marg and Bill
Brannen listen with genuine interest when | blather on for hours about computers, software,
and new technologies and deal with constant “upgrades” that often break something that
worked previously. | appreciate their patience and hope | fix more things than | break. With
regard to this book, Susan Bradley, Rui Maximo, Kurt De Ding, Diane Forsyth, Janet Lowen,
Kate Gleeson, John Clarkson, and George Durzi did the impossible by taking something

| wrote and turning it into something worth reading. That was no small feat. Kerry Brannen
supported me through the long hours | spent locked in my office working on this book.

| couldn’t have done it without her. She makes anything possible and everything more fun.

Oscar Newkerk Thanks to all the people in the Unified Communications Group for the
opportunity to work with such talented people on such a fun product. | want to especially
thank Kyle Marsh for his help, knowledge, and all the brainstorming sessions.

Introduction

Why We Wrote This Book

Microsoft Office Communications Server is a relatively new product. Although it has its
origins in the Enterprise Instant Messaging products, such as Exchange Instant Messaging,
Live Communications Server 2003, and Live Communications Server 2005, it has evolved to
become a comprehensive platform for all real-time communications. The current release,
Office Communications Server 2007 R2, not only supports enterprise instant messaging (IM)
and rich presence, but also offers a powerful Voice over Internet Protocol (VOIP)-based
telephony system, multiparty audio conferencing, Web conferencing, and application
sharing. This server offers tangible benefits in direct cost savings (for example, by eliminating
costly audio conferencing services provided by telecom carriers) and improves productivity
by providing more efficient ways for people to contact each other. Office Communications
Server is one of the fastest-growing server products in Microsoft history, with tens of millions
of licenses sold.

Office Communications Server is a software-based solution that runs on standard computing
and networking hardware. This server offers a rich, open API platform, making it an open
and extensible part of the Microsoft Unified Communications (UC) platform. There are
many opportunities for developers to build new applications on this platform. We know
that developers are looking for resources to help them develop applications using the UC
APIs, and this book is the only one on the market today that addresses this need. Written by
experts from the product group, Programming for Unified Communications with Microsoft
Office Communications Server 2007 R2 offers an easy-to-read exploration of the APIs. We
hope it serves you well.

What This Book Is About

This book is organized into five parts.

Part I, “"Understanding Unified Communications,” introduces the UC platform and provides
an overview of the APIs.

Part I, "Office Communicator Automation API," explains the Office Communicator
Automation API in depth and provides a detailed walkthrough of an example.

Xvii

xviii

Introduction

Part Ill, “Unified Communications Managed APl Workflow,” explains the UCMA Workflow API
in detail and walks through an example of a business process communication.

Part IV, “Unified Communications Managed API," covers the Unified Communications
Managed API architecture and shows how to extend the Office Communications Server
Enhanced Presence model by using this API.

Part V, “Debugging, Tuning, and Deploying Unified Communications Applications,” explains
how to debug, tune, and deploy UC applications.

Who This Book Is For

This book is intended for developers who want to create enterprise applications that include
communications functionality built on the UC platform. Familiarity and experience with
Microsoft Windows COM, Microsoft .NET Framework, and Windows Workflow Foundation
development is recommended. This book is written on the assumption that the reader has
this knowledge. Code examples in this book are written in C# unless otherwise noted. For
clarity and to better illustrate how to use the APIs, the code samples are not written with
defensive coding practices in mind. Please apply defensive code practices when reusing the
samples in your own production applications.

For an in-depth resource on the internals of Office Communications Server 2007 R2, see the
Microsoft Office Communications Server 2007 R2 Resource Kit (Microsoft Press, 2009), which
you can purchase in a bookstore or order from http.//www.microsoft.com/learning/en/us/
Books/13113.aspx. That book also covers the Office Communications Server Software
Development Kit (SDK), which is intended for administering and controlling compliance

of the conversations (for example, ethical walls and custom disclaimers) with Office
Communications Server, and therefore is outside the scope of this book.

We sincerely hope that you find the technical information within this book useful and
lucrative to your work.

Companion Content

This book features a companion Web site that makes available to you all of the code used in
the book. This code is organized by chapter, and you can download it from the companion
site at http://code.msdn.microsoft.com/programmingocs.

Introduction

Hardware and Software Requirements

Xix

You need the following hardware and software to work with the companion content that is
included with this book:

Servers

Hardware Use only a 64-bit computer that is running a 64-bit edition of Windows Server
(see more about the operating system below). Other technical specifications include the
following:

CPU Dual-core 2.0-gigahertz (GHz) 4-way processor

RAM 2 gigabytes (GB) of memory

Hard drive 100-GB hard drive

Network adapter 100 megabit-per-second (Mbps) network adapter

Operating System Use only the 64-bit edition of Windows Server 2003 SP2, Windows
Server 2003 R2 SP2, or Windows Server 2008. Supported editions include Standard,
Enterprise, and Data Center versions of Windows Server 2003 and Windows Server 2008.

Client Computers

Hardware Use any 32-bit or 64-bit computer that is running Windows Vista SP1. Other
technical specifications include the following:

CPU A minimum 1.6-GHz Pentium Ill+ processor

RAM 1 GB of memory

Hard drive 50-GB hard drive

Network adapter 100-Mbps network adapter

Video A video monitor with 800 x 600 or higher resolution and at least 256 colors
A CD-ROM or DVD-ROM drive

A Microsoft mouse or compatible pointing device

Operating System The 32-bit or 64-bit edition of Windows Vista SP1 or later. Windows
Vista Home Premium Edition, Windows Vista Business Edition, or Windows Vista
Ultimate Edition.

XX

Introduction

Database Requirements

B

Use the 32-bit version of Microsoft SQL Server 2005 Express Edition SP2, which is included
with Office Communications Server 2007 R2.

Office Communications Server 2007 R2

Deploy Office Communications Server 2007 R2 Standard Edition on a private network.

More Info For more information about deployment for the UC test environment, see the
"Deploying Office Communications Server Standard Edition” section in Chapter 9, “Preparing the
UC Development Environment.”

Administrative Tools

Install the Office Communications Server Administrative Tools. The administrative tools can
be installed independent of the Office Communications Server deployment on a computer
that is running the 32-bit or 64-bit edition of Windows Server 2003 SP2, Windows Server
2003 R2 SP2, Windows Server 2008, Windows Vista Business, or Windows Vista Enterprise
with SP1.

Development Tools

The software development environment and tools required to build UC applications include
the following:

B Microsoft Visual Studio 2008 SP1

B Microsoft .NET Framework 3.5 SP1

B Microsoft Visual C++ 2008 Redistributable Package

B Office Communicator Automation API SDK

® Unified Communications Managed APl (UCMA) Core 2.0 SDK

Visual Studio 2008 SP1-supported software includes Visual Studio 2008 Standard Edition,
Visual Studio 2008 Enterprise Edition, Visual C# 2008 Express Edition, and Microsoft Visual
Web Developer 2008 Express Edition.

More Info For more information about configuring the UC software development environment,
see the "Configuring Application Development Components” section in Chapter 9.

Introduction xxi

Sample Test Topology

To build and test the samples included in this book, a typical test topology includes the
following clients and servers:

B A Windows Server 2008 domain controller, including the Domain Name System (DNS)
and Certificate Authority (CA) roles

B Office Communications Server 2007 R2 Standard Edition deployment

B A Windows Server 2008 member server serving as the application server to run the
sample applications

B Two Windows Vista clients running Office Communicator

Find Additional Content Online

As new or updated material becomes available that complements your book, it will be
posted online on the Microsoft Press Online Developer Tools Web site. The type of material
you might find includes updates to book content, articles, links to companion content, errata,
sample chapters, and more. This material is available at www.microsoft.com/learning/books/
online/developer, and the site is updated periodically.

Support for This Book

Every effort has been made to ensure the accuracy of this book and the contents of
the Web site. As corrections or changes are collected, they will be added to a Microsoft
Knowledge Base article.

Microsoft Press provides support for books and companion content at the following
Web site:

http://www.microsoft.com/learning/support/books/.

Questions and Comments

If you have comments, questions, or ideas regarding the book or the companion content, or
questions that are not answered by visiting the sites mentioned previously, please send them
to Microsoft Press via e-mail to

mspinput@microsoft.com

xxii Introduction

or via postal mail to

Microsoft Press

Attn: Programming for Unified Communications with Microsoft® Communications Server®
2007 R2 Editor

One Microsoft Way

Redmond, WA 98052-6399.

Please note that Microsoft software product support is not offered through these addresses.

Part |
Understanding Unified
Communications

In this part, Chapter 1, “Microsoft Unified Communications,” introduces the Microsoft Unified
Communications (UC) platform. This chapter highlights the challenges of UC and the op-
portunities that these challenges offer developers. UC opens up a new category of applica-
tions that were previously reserved for specialized systems with limited public interfaces. UC
makes it easier to build instant messaging (IM) and voice or video solutions into existing and
new applications. Chapter 1 also provides insight into the future direction of the UC platform.

Chapter 2, "Microsoft Unified Communications APIs Foundation,” provides an overview of
the APIs that are available. If you are unsure which API to use to build your application, this
chapter helps you select the most appropriate one by providing examples of the types of
applications each API can be used to build, the constraints of each API, and a high-level view
of each API’s architecture and object model.

If you are already familiar with the UC platform and know which APl you want to use,
you can skip directly to the chapter that covers that APl in Part Il, “Office Communicator
Automation APL"

Chapter 1
Microsoft Unified Communications

This chapter will help you to:

B Understand the challenges and opportunities for application developers in unified
communications.

B Understand the features and values of the Microsoft Unified Communications (UC)
platform.

Unified Communications: Challenges and Opportunities

What is unified communications? The term unified communications refers to technologies
that integrate various and often disparate communication systems and capabilities in order
to provide a more seamless and enhanced communication experience. The goal of unified
communications can be summarized with the following statement:

Connect to the right individuals at the right time with the right information using the right
capability.

For example, UC technology enables a user to place a call to another user, to receive

a call from another user, and to transfer a call to another user using Microsoft Office
Communicator. This call can be an instant messaging (IM) conversation, a computer-to-
computer audio/video (A/V) call, or a voice call conducted between a computer and a Public
Switched Telephone Network (PSTN) or Private Branch eXchange (PBX) phone. The call

can be between two users or between three or more conference participants. With Office
Communicator, users can make and take calls anywhere with an Internet connection as if
they were using the phone in their office.

Before each call, the user can utilize Office Communicator to check the presence of the called
party and determine whether that user is available and willing to take the call. The presence
information can also include contact information, such as the primary and alternate phone
numbers that can be used to direct an outgoing call. Without knowing a contact’s presence,
callers may have to make several attempts before reaching their contact.

Before getting into the specifics of building UC applications, let's explore the challenges and
opportunities that application developers can seize in the UC space. Applications that help
people and businesses communicate more efficiently can provide a compelling package.

Part | Understanding Unified Communications

Challenges in Unified Communications

Over the last decade, the number of available communication modalities has multiplied
rapidly. A business card today barely has enough space to list them all. Professionals can be
reached on their PBX work phone, work and personal cell phone by voice or Short Message
Service (SMS), work and personal e-mail address, corporate IM address, personal IM provider,
Facebook account, LinkedIn account, blog URL, and many other options. With so many ways
of contacting people, how do you know which method is the most effective to reach them

or what is the best time to reach them? Is the contact in the same time zone (or even in the
same country) as you? Maybe the person is in a meeting and will not respond to a phone call
but will respond to an IM or SMS message. Depending on the modality, the person might be
responsive depending on what he or she is doing at that moment.

In today’s world of high-tech communication, UC is beginning to address three main
challenges:

B Reducing communications overload
B Connecting disparate and disconnected communications systems
B Using communications to improve collaboration

The first challenge is exacerbated by the explosion of media and devices that can be used to
communicate. Therefore, to reach your contact, it's important to understand what methods
of communication are most effective at any given time. The converse of this challenge is also
a problem. Given the various ways you can be reached, how do you make it easy for others
to contact you? It's no wonder that address book management software offers so many fields
that can be filled for each contact. Imagine the frustration your family, friends, coworkers, and
professional contacts experience trying to reach you with all of the various methods you are
providing them. Although the available modalities that can be used to contact a person are
intended to make individuals more accessible, the proliferation of communication modalities
can affect communication negatively.

The second challenge illustrates the state of today’s communications systems. Because of the
explosion of communication solutions, they still work in silos, and it is hard to connect the
communication experience across applications. Communications systems are disconnected.
Until recently, enterprises bought a PBX and phones from one vendor, bought an additional
voice mail system from another vendor or as part of the PBX bundle, and then obtained
audio-conferencing solutions from another vendor. The contact center side of the enterprise
bought an Automatic Call Distributor (ACD) and Interactive Voice Response (IVR) system
from yet a different set of vendors. Meanwhile, the IT side of the enterprise bought an e-mail
system and a corporate IM system, as well as line-of-business applications from yet another
vendor or vendors. Most of these systems offer APIs with limited access to the entire func-
tionality of their platform or APIs that are not designed to exchange data between the silos
to enable them to work together. Consequently, users are forced to learn and work across

Chapter 1 Microsoft Unified Communications 5

different devices or must buy expensive applications to tie together the data from various
communications system for their needs. The interaction between various silo solutions
becomes taxing and reduces efficiency.

The third challenge highlights the difficulty of communicating with remote parties. Whether
communicating by e-mail, phone, or IM, communicating effectively requires sufficient con-
text. Often, context is best conveyed in face-to-face interaction; however, this requires teams
to be collocated or to incur costly travel expenses. As costs, regulations, and personal prefer-
ences make it more and more difficult to relocate workers to the same region, companies
must find ways for employees to work together effectively and productively even if they are
in different places. Remote communication and collaboration can be improved substantially
by making it simpler to share context automatically and easily. Contextual information can
include visually sharing information (application sharing), providing a link to an e-mail of
interest for discussion, or synchronizing the same application across all parties in the call.

Certainly, there are more challenges to effective and efficient communication; however, these
three are the major sources of the frustration that users experience when communicating
and collaborating in remote scenarios.

Opportunities in Unified Communications

Microsoft Office Communications Server and Microsoft Exchange Server are foundational
pieces of UC because they manage two important communication repositories: Enhanced
Presence and the unified inbox.

Office Communications Server uses presence to address the premise that individuals want
actual contact with other users rather than reaching a mechanized inbox, voice mail, or IM
response. Users have no interest in dialing a number only to get a voice mail greeting. Users
do not want to send an e-mail if the likelihood of a timely response is low. To avoid such
scenarios, it's necessary to know the user’s availability. Office Communications Server makes
it possible to expose user presence information so that the contact can be reached more
quickly and easily.

Alternatively, users do not want to be reachable at every moment because they want to
focus on a project, meet with a client, or perform other necessary business functions without
being interrupted. With Office Communications Server, users can control the level of avail-
ability they want to have at any particular time. In the same way that users can control how
their time is allocated through their calendar, users can manage their presence.

Presence information is a set of metadata about a person’s availability or, more precisely,
their willingness to be available to others. Office Communications Server manages

presence as an Extensible Markup Language (XML) schema that can be extended to include
additional information, such as location or skills, which can be relevant to the context of
communications.

Part | Understanding Unified Communications

Now that a user can view your presence (at least the level of presence you're willing to adver-
tise), how does that improve communication? With any of the Office Communications Server
clients, such as Office Communicator, communicating—whether by e-mail, IM, phone, or
application sharing—is only a click away. The user no longer needs to track all of the devices
on which you've published and are accessible. This addresses the first challenge discussed

in the previous section. From the presence icon, users can launch additional modalities of
communication (such as escalating an IM conversation to a voice call or adding application
sharing) without having to start multiple independent applications. Because the process of
communicating becomes simpler, Office Communications Server reduces human latency—
the time it takes to establish a call with another user.

While tens of millions of information workers use Enterprise IM, the majority of enterprise
applications that exist today do not offer embedded presence and the real-time com-
munications functionality that comes with it. There's a wide opportunity to embed Office
Communications Server presence and real-time communications modalities into existing and
new applications. As the popularity increases and enterprises recognize the value that UC
offers, demand for UC-enabled applications will continue to rise.

Microsoft builds UC as a pure software solution running on standard general-purpose com-
puting and networking hardware. Building UC as a software solution overcomes the second
challenge of integrating disparate and disconnected communications systems. By using the
same programming paradigms (such as Component Object Model [COM], Microsoft .NET
Framework, and Web Services) and the same tools (such as Microsoft Visual Studio) familiar
to Microsoft Windows developers, programmers can create and integrate communications
into new and existing applications as easily as developing Windows applications without
having to deal with the deeper underpinnings of communications, such as Session Initiation
Protocol (SIP) protocols, media stacks, and speech technology.

While the key elements of the UC platform are Office Communications Server and Exchange
Server, this software platform integrates and includes many other Microsoft products such as
Microsoft Windows, Microsoft SharePoint, Microsoft Dynamics, Microsoft Office, and Visual
Studio. By extension, this software-based communications experience can be embedded in
any line-of-business application that developers are creating. Because all of UC is built as a
software solution, new innovative scenarios are possible.

When communicating over the phone, IM, or e-mail, explaining the context of what you're
trying to communicate can be laborious at best. Users sometimes have to go into a long
explanation to convey the scenario or problem before they can get into their question.
Conveying context across a modality, whether it is IM, e-mail, or voice, is challenging at
best. Meeting face to face is universally the preferred mode of communication, and for
good reason. However, this is not always possible, and optimizing remote communications is
sometimes necessary. UC tackles this third challenge by providing contextual collaboration.
Contextual collaboration is about sending metadata with the actual communication. This

Chapter 1 Microsoft Unified Communications 7

metadata can be as simple as a link to the e-mail that the caller is interested in discussing.
The caller can click the link to open the specific e-mail in her or his inbox. A caller can set the
subject line so that the recipient of the call knows what the caller wants to discuss before an-
swering the call. Metadata can be more elaborate, such as starting an application-sharing or
A/V session or synchronizing the view of a design within an application used by both parties.
All of these ways of providing context (and more) are possible with Office Communications
Server. Because Office Communications Server uses the data or Internet Protocol (IP) net-
work to send IM, audio, and video, it can be used to send metadata (documents, Web pages,
application-specific protocols, and so on) easily with the communication. Building these con-
textual collaboration experiences is a major opportunity for developers to enhance existing
applications. Contextual collaboration can significantly improve the collaboration experience
and help streamline communications between people.

The UC platform also offers key opportunities to use communications in business processes.
For example, business processes often require human intervention. Business processes can
use communications to cut down the latency period when a human decision is required.
For example, to notify users, you can build alerts and notifications that use the IM or voice
channels supported by Office Communications Server or the e-mail channel offered by
Exchange Server. Such systems provide a push model wherein users no longer need to
check whether a document is ready for signing but can be notified when it's ready for the
user to sign.

Communications also can be automated in reverse: a caller can contact IVR applications
via the telephone or automated agents (query/response bots). This allows organizations to
reduce costs by having automated systems answer customers’ frequently asked questions
(FAQs) instead of using human representatives. The ability to create automated agents
easily is another key capability that comes as an integral part of Office Communications
Server.

There are many more types of applications that developers will undoubtedly imagine and
create using UC APIs. These APIs are discussed in the rest of this chapter.

The Unified Communications Platform

UC is a software-based platform. Integrated with Active Directory Domain Services, this plat-
form provides a unified view of the user’s identity, presence, and inbox. All means of commu-
nications with the user evolve around this single identity and inbox. Users are not interested
in remembering a long list of phone numbers (work, cell, and so on), IM handles (one for
each public IM provider), or e-mail addresses to reach a contact. With Exchange Server and
Office Communications Server, enterprises can create a standardized e-mail, IM address, and
phone number for every user. This is illustrated in Figure 1-1.

8 Part | Understanding Unified Communications

() ()

Application 3e)
Sharing %Calendarmg
/ \.
Single Identity
Contact
88 Management

\
(Web) Single Inbox
Conferencing
\ y,
e < N
SN Audio/Video ' '

‘[@ Conferencing) Voice Mail

\ y,

-
\

Presence Inbox
(, -

\
e \ e
<2 Enterprise = . .
B Telcphony [&B Instant Messagmg] E@ E-mail
\ J \ J

Office Communication Exchange
Server 2007 R2 g

FIGURE 1-1 The UC platform.

Unified Communications APIs

Just as Windows makes it easy to develop graphical user interface (GUI) applications,

Office Communications Server extends this user interface to voice and IM applications.
Because of the software-based nature of the platform and its rich public API set offering,
UC APIs can undoubtedly be used to create many different applications that build on Office
Communications Server and Exchange Server. There are at least three types of applications
that developers can build with UC APIs. These are as follows:

B Contextual collaboration Integrating modalities and context into existing and new
enterprise applications to facilitate communications between humans.

B Business process communications Applications that contact users based on triggers
defined by the business, such as alerts. For example, a server failure in the datacenter
can alert the set of administrators who are currently online and available.

B Anywhere information access Employees using various forms of communication to
obtain information within the enterprise, such as bots and VR systems. For example,
users can use the phone or IM to request information.

The UC platform offers client-side and server-side APIs to fit the type of application that
you want to build. These APIs are either .NET Framework-based or COM-based. The
COM-based APIs integrate into the .NET Framework using the COM-Interoperability
wrappers, which means that you can use any of these APIs in a .NET Framework applica-
tion. Where appropriate, these APIs are well integrated with Visual Studio.

Chapter 1 Microsoft Unified Communications 9

Programming Office Communications Client Applications

The Office Communications Server client APl is UC Client APl (UCC API) 1.0. It is a COM-based
API, although it is accessible to .NET Framework applications through an interop assembly.
The UCC API offers all of the functionality used by Office Communicator, including presence,
IM, voice, video, and conferencing. This API provides signaling, media, and the capability to
traverse firewalls using the Interactive Connectivity Establishment (ICE) standard to connect
media channels. In the Office Communications Server 2007 R2 release, the APl has been
updated with only QFEs (Quick Fix Engineering) to make the UCC API 1.0 compatible with the
new features of R2.

The Office Communicator Automation APl is a client API that uses the business logic built
into Office Communicator. It is an automation API, and its functionality is less comprehen-
sive than the UCC API. With the Office Communicator Automation API, you can program an
Office Communicator instance from a third-party application, as well as extend and custom-
ize user experiences with Office Communicator. The Office Communicator Automation API is
used by the sample presence controls and a sample ActiveX control that Microsoft published
on MSDN, available at http://msdn.microsoft.com/en-us/office/cc718982.aspx, as well as the
Name Control that ships and installs with Office.

In the “"Microsoft Office Communicator 2007 R2 Deployment Guide” located at http.//
go.microsoft.com/fwlink/?LinkID=133744, you can find information on how to customize

the Office Communicator look and feel to some extent. Custom Tabs is one of these
customizable capabilities. A Custom Tab uses a browser window in the lower third of the
Office Communicator main window with the contact list. In Office Communicator 2007 R2,
context-sensitive information related to a person can be linked to a tab button in the Office
Communicator contact card. Note that the functionality is more streamlined in the R2 release
and behaves different from OCS 2007.

The UC Asynchronous JavaScript and XML (AJAX) API is an API that talks to the
Communicator Web Access server role in Office Communications Server 2007. Application
developers can use it to create Office Communicator—compatible clients that allow users

to manage and share presence information, to manage contacts and groups, to send and
receive instant messages, and to search for users within an enterprise. Such clients can be a
browser-based Web application (for example, an ASP or ASP.NET application) or a standalone
network application (for example, a .NET Framework executable). The client applications can
be written in a wide range of programming languages, including JavaScript, C#, Microsoft
Visual Basic .NET, Perl, and C/C++.

The UC AJAX API supports only presence, IM, and call deflection. The APl does not support
voice, video, or conferencing.

In Office Communications Server 2007 R2, the UC AJAX API is deemphasized. It will not
be available in the next release of Office Communications Server. Because the Unified

Understanding Unified Communications

Part |

10

Communications Managed APl (UCMA) scales better than the UC AJAX AP, it is preferable
to use UCMA. Therefore, it's recommended to build your own Web Service using UCMA

server-side to extend the reach to non-Windows platforms.

Figure 1-2 illustrates the client APIs for building client-based applications.

193-31PPIN
apis-juald

N e N
JEVVEIN JEVVEIN
SERRlVAE]) SS90y g9\
L 100z 9bueyox3 AN J03edIunwwoD) AN 24 £00Z 19AI2S SUOIEIIUNWIWOD) 91O)

SIDINIBS oM

0'C IdV pabeuen
SUOIIEDIUNWIWOD) Paljiun

0T IdV 331D
SUOI}EDIUNWIWOD) PaIuN

abueydx3
0T IdV pabeuey 9JINIBS XVIV
FERIIVEINICENYY sUOI}edIUNWIWOD)
abueydx3 pauyiun
uonediddy uofediddy
INOA INOA

uonediddy
INOA

uoned|ddy
INOA

Vs

suoleziwolsn)

¢d £00¢

Jojesiunuwiwo)

NDYO
~————

IdV uonewony
Jojeslunwwo)

uoiediddy
INoA

1913-9|PPIN
opis-qusld

FIGURE 1-2 Client APIs.

Chapter 1 Microsoft Unified Communications 11

Programming Office Communications Server Applications

On the server side, the UCMA offers a SIP stack, a media stack, and powerful speech engines
for both Automatic Speech Recognition (ASR) and speech synthesis (Text-to-Speech [TTS]).
UCMA 2.0 can be used to build outbound applications, such as alerts, notifications, and
surveys, and inbound applications, such as conferencing services, IVR solutions, automated
agents (query response bots), and ACDs, which perform skill-based routing. The API provides
access to the presence information available in Office Communications Server 2007 R2 and
can be used to build role agents that use this presence information to streamline communi-
cations between people.

The UCMA 2.0 Workflow APl is a higher API abstraction layer of UCMA, which provides
Windows Workflow Activities for Office Communications Server. UCMA 2.0 Workflow

builds on top of the .NET Framework 3.5 SP1 Windows Workflow Foundation. This VUCMA
Workflow APl workflow defines new Workflow Activities for querying presence and creating
IM and voice dialogs in workflow-based applications. Simple drag-and-drop operation
development is now possible to build sophisticated applications. UCMA Workflow simplifies
development of voice and IM-based communications into applications that facilitate business
processes. Ideally, developers start developing a project on the UCMA 2.0 Workflow and
then fall back to the lower-level UCMA in case the UC Workflow Activities do not offer the
capabilities they required.

The Microsoft Office Communications Server 2008 Speech Server APIs target the
development of Interactive Voice Response applications using the UC platform. Speech
Server includes speech recognition and speech synthesis engines. Speech Server (2007)
provides the following APIs:

B Speech Server Workflow Activities

B Speech Server Managed API

B VoiceXML (VXML) 2.1

B Speech Application Language Tags (SALT) 1.0

Speech Server (2007) is certified for VXML 2.0/2.1 by the VoiceXML Forum. And Speech
Server (2007) Developer Edition (http.//go.microsoft.com/fwlink/?LinkID=70208) comes with
a comprehensive toolset for building speech applications and is tightly integrated with Visual
Studio 2005.

Speech Server (2007) is the last release of a standalone voice recognition platform.
Applications developed using VXML 2.1 are supported on UCMA. The tools for developing
speech grammars, lexicons, tuning tools, and other elements is integrated with UCMA.

Figure 1-3 illustrates the server APIs for building server-based applications.

12 Part| Understanding Unified Communications

Your Your Your Your
Application Application Application Application
Windows
Workflow
Activities and
VoiceXML/SALT
UC Workflow Speech Server E)E)cgange
API Managed API Jieb Services
g Managed API
Unified Communications Exchange
Managed API 2.0 Ui Web Services

Office Communications Server N (OCS 2007 N (Exchange 2007)
2007 R2 Speech Server Client Access

Server

© 3

FIGURE 1-3 Server APIs.

Summary

With Office Communications Server 2007 R2, Microsoft innovates by using the .NET
Framework and tools familiar to developers, such as the Visual Studio Integrated
Development Environment (IDE), to provide a development platform familiar to Windows
developers. The UC platform makes it easy for Windows developers to extend their expertise

into building IM-based and voice-based applications previously reserved to developers with
a very specialized skill set.

Additional Resources

B “Microsoft Office Communicator 2007 R2 Deployment Guide” (http.//go.microsoft.com/
fwlink/?LinklD=133744)

B Office Communications Developer Portal (http://go.microsoft.com/fwlink/
?LinkID=133627)

Chapter 2
Microsoft Unified Communications
APIs Foundation

This chapter will help you to:
B Understand the scenarios that you can build using the API.

B Understand the considerations to help you determine whether this APl meets your
requirements.

B Understand the API's architecture.

B Understand the API's design model.

This chapter provides a technical overview of the Microsoft Unified Communications (UC)
APIs so that you can understand them, how they relate to each other, and what purpose
they serve.

The intent of this chapter is to provide you with sufficient information to help you decide
which UC APIs best fulfill your needs. If you already know which APIs meet your needs, you
can look only at the sections that cover the APIs of interest to you, or skip this chapter alto-
gether if you wish.

Unified Communications Managed API 2.0

The Unified Communications Managed APl (UCMA) is a code platform managed by
Microsoft .NET Framework, which provides access to presence, instant messaging (IM),
telephony, and audio/video (A/V). UCMA is a Session Initiation Protocol (SIP)-based plat-
form. SIP is a signaling protocol that is used for setting up and tearing down multimedia
communication sessions. This APl abstracts the details of the communication protocols
used by Microsoft Office Communications Server.

13

14 Part| Understanding Unified Communications
Scenarios

UCMA is used to build scalable middle-tier applications that work with Office
Communications Server 2007 R2, provide large-scale message throughput, and represent
multiple endpoints. You can use this API to build the following types of applications:

B Highly scalable notification and alert systems that perform the following actions:
0 Send outbound alert messages.

0 Use the Enhanced Presence feature of the Office Communications Server 2007 R2
platform to determine the appropriate channel and media to deliver alerts, such
as instant messages, e-mail, or voice calls.

B [nteractive automated agents (query/response bots) that perform the following actions:
0 Respond to user requests for information by means of IM or voice sessions.
0 Create custom call routing and interactive voice response systems.

More advanced applications include the following:

B Contact center or help desk applications that do the following:
0 Route incoming communications sessions to available agents.

0 Use the Enhanced Presence capabilities of the Office Communications Server
2007 R2 platform to route to agents based on specific skill sets.

@ Provide “music on hold” functionality for voice sessions.

0 Create back-to-back user agents (B2BUAs) for help desk scenarios; for example,
so that the specific identity of the help desk agent is not exposed to the
customer.

B Conferencing portal applications that do the following:
0 Create custom conference bridging.
0 Record the contents of conference calls.

0 Schedule and manage instances of conferences.

Considerations

UCMA 2.0 is considered a middle-tier APl written completely in C#. Therefore, it runs
only in environments where the .NET Framework is supported. It provides the following
characteristics:

B Scalability UCMA 2.0 is able to support thousands of endpoints and concurrent
communications and collaboration sessions. It is designed for building server

Chapter 2 Microsoft Unified Communications APls Foundation 15

applications (the recommended operating system is Microsoft Windows Server 2008
on 64-bit hardware). UCMA 2.0 is multithreaded, and operations are performed asyn-
chronously to maximize throughput.

B Availability The deployment model supports running multiple instances of the
UCMA 2.0 application for load balancing and failover across multiple computers with
the use of hardware load balancers.

B Extensibility New modalities can be added in the conversation framework. Extension
headers and Uniform Resource Identifier (URI) parameters can be supplied and
consumed through the APIs to support the creation of custom sessions.

UCMA 2.0 supports two types of SIP endpoints that are designed for distinct applica-
tion scenarios: the ApplicationEndpoint class and the UserEndpoint class. You use the
ApplicationEndpoint class in applications that represent automated applications, such as
bots that interact with users. You use the UserEndpoint class in applications that connect
to Office Communications Server on behalf of users and perform operations on behalf of
those users.

To configure Office Communications Server to trust connections from UCMA applications
that use the ApplicationEndpoint and UserEndpoint classes, the application provisioning
process must define a Globally Routable User Agent URI (GRUU). For more information
about GRUUs, see Chapter 9, "Preparing the UC Development Environment.” This is all that

is necessary if the application creates only UserEndpoints. After the application has authenti-
cated the user, it does not need to supply those credentials to Office Communications Server
for authentication. For applications that create ApplicationEndpoints, the provisioning process
also must create a Contact object that defines the application’s SIP URI. You also have the
option to create a display name and a TEL URI. The ApplicationEndpoint uses this Contact
object to register with Office Communications Server.

Examples of applications that use the ApplicationEndpoint class are Automatic Call
Distributor (ACD), interactive IM or voice bots, and conference bridges. For more information
about these applications, see the “UCMA 2.0 Workflow API" section later in this chapter.
These applications use a Contact object to identify the application in Active Directory
Domain Services. The Contact object specifies the application’s SIP URI and phone number.
Examples of applications that use the UserEndpoint class are those that publish additional
presence information. Examples of additional presence information include showing a Global
Positioning System (GPS) location on behalf of a user or acting as a proxy when the user is
not available and routing incoming IM messages through a Short Message Service (SMS)
gateway.

16

Part | Understanding Unified Communications

API Architecture

UCMA is composed of the following two interfaces:

® UCMA 2.0 Core API
B UCMA 2.0 Speech API

This architecture can be represented as shown in Figure 2-1.

Unified Communications Managed API 2.0

UCMA 2.0 Core API | | UCMA 2.0 Speech API
Signaling Stack Media Stack R feseen [
ecognition Engine Engine

FIGURE 2-1 UCMA version 2.0 architecture.

UCMA 2.0 Core API

The UCMA 2.0 Core API hides the complexity of most of the Office Communications

Server SIP/SIMPLE (Session Initial Protocol for Instant Messaging and Presence Leveraging
Extensions)-Based protocols by offering an API that exposes almost all of the features of the
protocol but is simpler to understand and use.

The UCMA Core API provides access to the signaling and media stack as follows:

B The SIP stack in UCMA 2.0 offers a managed code SIP endpoint API.

B The Media stack in UCMA 2.0 provides a protocol abstraction over the multiple
real-time media protocols. This protocol abstraction is exposed in the Microsoft.Rtc.
Collaboration namespace. This interface provides access to the following functionality:

0 Publication of and subscription to Enhanced Presence

o Creation and management of multiparty conference sessions
@ Creation, modification, and deletion of Contacts and Groups
@ Call Control for routing audio sessions

0 Management of audio media in sessions

UCMA 2.0 Speech API

The UCMA 2.0 Speech APl is a server-grade speech API that allows developers to build mul-
tichannel speech recognition— and speech synthesis—enabled applications using Microsoft

Chapter 2 Microsoft Unified Communications APls Foundation 17

state-of-the-art speech technology. The UCMA 2.0 Speech API supports 12 different
languages, including English (North America, United Kingdom), French (France, Canada),
German, American Spanish, Portuguese (Brazil), Italian, Japanese, Korean, and Chinese
(Simplified and Traditional).

The Speech API provides access to the Automatic Speech Recognition (ASR) engine and Text-
to-Speech (TTS) engine that ship as part of UCMA 2.0:

B ASR Engine This state-of-the art speech recognizer supports triphone phonetics, as
well as whole-word modeled speech recognition, for optimal speech recognition, not
only for natural language recognition but also for command and control and number
recognition.

B TTS Engine This very accurate speech synthesizer uses Hidden Markov Model
(HMM)-based Speech Synthesis (HTS) for maximum intelligibility.

Object Model

In UCMA 2.0 Core API, the entry point class is CollaborationPlatform. An application can
create multiple CollaborationPlatform instances. Each instance can host multiple endpoints.
An endpoint is the basis for communication and collaboration functionality with Office
Communications Server. The properties and methods of these classes provide access to the
functionality of the collaboration sessions.

The CollaborationPlatform class can be used to:

B |nitiate and manage a conversation (Conversation class).

B Schedule and manage conferences (ConferenceServices class).

B Subscribe to the presence of remote users (RemotePresence class).

B Publish presence for the endpoint owner (LocalOwnerPresence class).
B Manage contacts and groups (ContactGroupServices class).

Figure 2-2 shows the relationships among the principal classes of the architecture, as well as

the personas involved in each type of object. The numbers shown between two objects indi-
cate the mapping between classes. For example, one local endpoint object can be associated
with zero or more Presence Subscription objects.

18 Part| Understanding Unified Communications

CollaborationPlatform

1
0+
Local Owner LocalEndpoint
1 1 1 1 1
0+ 1 0+
Conference Presence
Conversation Scheduling and o
M Publication
anagement
Local Participant Organizer Local Presentity
Remote Participant Conference Participant 0+ —I 0+
Contacts and Presence
Groups Subscription
Contact Remote Presentity
Communication Collaboration

FIGURE 2-2 UCMA 2.0 Object Model.

In UCMA 2.0 Speech API, Microsoft.Speech is the main namespace. It is modeled very closely
after the System.Speech client namespace in the .NET Framework, yet it provides the ability
to run many recognizers and synthesizers in parallel.

The two key classes in this namespace are:
B Microsoft.Speech.Recognition This class controls the Recognizer.

B Microsoft.Speech.Synthesis This class controls the Synthesizer.

Microsoft.Speech.Recognition.SrgsGrammar provides a class to optimize performance of
handling speech recognition grammars.

UCMA 2.0 Workflow API

The UCMA Workflow APl and Workflow Activities extend the Windows Workflow Foundation
with additional activities that provide access to UCMA functionality. This API consists of a

set of custom workflow activities and supporting classes on top of the Windows Workflow
Foundation of .NET Framework 3.5 SP1. It consists of the following items:

B A set of custom activities for unified communications (for example, AcceptCall)

Chapter 2 Microsoft Unified Communications APls Foundation 19

B Two Workflow Runtime services (CommunicationsWorkflowRuntimeService and Tracking-
DataWorkflowRuntimeService) that enable the custom activities to run

Scenarios

The UCMA Workflow APl and Workflow Activities are a higher-level API built on top of
UCMA 2.0. Using the .NET Framework 3.5 SP1 Windows Workflow Foundation, it offers
developers an abstraction layer of UCMA that is easier to use.

UCMA Workflow Activities can add value at communication points in business processes. You
can use the UCMA Workflow API to build the following types of applications:

B Presence queries for individuals
B Alerts and notification applications that use the IM or voice channel
B |[M-based automated agents (query/response bots)

B Speech- or dual-tone multifrequency (DTMF)—enabled, voice-based automated agents
(simple Interactive Voice Response [IVR] applications)

When writing a presence-aware application, the business logic in the workflow can make
presence-based, intelligent modality decisions. For example, it is better to send an instant
message to a person who is in the middle of a phone call than to call the person.

Alerts and notifications can make more intelligent decisions based on the user’s presence
state, such as whether to start a phone call or IM session with a user when triggered by an
event.

IM-based automated agents understand text-based input using grammar-modeled speech
technology. IM-based automated agents can be used to navigate through menu-based
systems as well as provide information services, such as querying a database or knowledge
base system. For example, an automated IM bot can spell out acronyms, such as converting
"MSFT" to “Microsoft.”

Incoming voice calls can be understood using the same grammars used for IM calls, powered
by ASR using UCMA 2.0 Speech APl and DTMF-based touch-tone input. UCMA Workflow
voice applications respond by prerecorded speech, or speech synthesis.

The UCMA Workflow API creates sophisticated voice- and text-based dialogs easily. It
provides a great dialog experience to the user by understanding commands (for example,
“Help” or "Repeat”) or by providing guidance in its intelligent responses for invalid inputs
(for example, “I'm sorry | didn't understand you").

The UCMA Workflow API provides a set of Workflow Activities for call control, such as
accepting incoming IM invitations, transferring a call to another party, and disconnecting
the call.

Part | Understanding Unified Communications

Windows Workflow Foundation

To better understand UCMA Workflow, it is important to understand the Windows Workflow
Foundation. The Windows Workflow Foundation is a framework, available as part of NET
Framework 3.0, .NET Framework 3.5, and .NET Framework 3.5 SP1, that enables developers to
create applications that can be modeled as a workflow. These workflows can be automated
(for example, a workflow that alerts an administrator about specific events) or can require hu-
man interaction (for example, an expense report—processing workflow that requires human
approval). The Windows Workflow Foundation API supports the Microsoft Visual Basic .NET
and C# languages. It consists of the following high-level components:

m A workflow runtime Provides capacity to the host application for the executing
workflows.

m A workflow compiler Used to compile workflows, developed using C#, Visual Basic
.NET, or Microsoft Extensible Application Markup Language (XAML), into an assembly.

B A graphical Workflow Designer A graphical user interface that you can use to design
the workflow. You can drag the activities to this designer canvas to define the flow of
the application logic. The Workflow Designer can also be rehosted in any application
outside Microsoft Visual Studio. For more information about rehosting the Workflow
Designer, see http://msdn.microsoft.com/en-us/library/cc835242.aspx.

B A workflow debugger A debug engine that enables you to debug a workflow appli-
cation. You can also use this to set breakpoints on the activities on the designer canvas.

B Arules engine Conditions in workflow (for example, as used in if-else or while con-
structs) can be specified either in code or as a declarative rule condition. You use the
rules engine to evaluate these conditions at run time.

B A set of Windows Workflow Activities An out-of-the-box set of activities that range
from simple activities, such as the Code, IfElse, and While activities, to a more complex
set of activities like Conditional Group Activity. An activity is the building block of a
workflow. A custom activity, such as the ones defined in UCMA Workflow Activities,
is a class that is derived from the Activity class defined in the Windows Workflow
Foundation. You can create the workflows either by using code or markup language.
The framework also provides an extensible model to build custom activities that you
can reuse across projects. For details about Windows Workflow Foundation, see the
Windows Workflow Foundation tutorials at http.//msdn.microsoft.com/en-us/library/
ms735927.aspx.

Note Even though Windows Workflow Foundation is available in .NET Framework 3.0 and
.NET Framework 3.5, UCMA Workflow Activities is supported only on .NET Framework 3.5 SP1.

Chapter 2 Microsoft Unified Communications APls Foundation 21

For more information about these components, see http://msdn.microsoft.com/en-us/
netframework/aa663328.aspx.

Considerations

The Windows Workflow Runtime must satisfy two requirements for the UCMA Workflow
Activities to execute. These requirements are as follows:

The Windows Workflow Runtime must allow custom Workflow Runtime services, such
as the UCMA Workflow Activities, to be added.

The two Workflow Runtime services (CommunicationsWorkflowRuntimeService and
TrackingDataWorkflowRuntimeService) provide infrastructure for the UCMA Workflow
Activities to execute. Therefore, you should configure the workflow run time to allow
these services to be added for UCMA Workflow Activities to execute properly.

Disable persistence during the execution of UCMA Workflow Activities.

Some workflow run times allow persistence by using custom workflow services that

are derived from the WorkflowPersistenceService class. You use these services to store
workflow state information on disk when idle and then recreate it when needed. UCMA
Workflow Activities do not support persistence. Therefore, persistence should be dis-
abled when running these activities.

From a high level, UCMA Workflow Activities offers the following functionalities:

Call control functionalities for both phone and IM calls (for example, accepting the call,
disconnecting the call, or creating an outbound call).

Specific call control functionalities for phone calls (for example, blind transfers, hold
events, and retrieve events).

Play messages to the user over the phone. These messages can be recorded prompts or
can be synthesized by using the TTS engine.

Recognize user input over the phone, both by means of speech and DTMF.
Send, receive, and recognize messages over an IM channel.
Query for presence information from the workflow.

Enable moving the execution of the workflow from one activity to another using a
GotoActivity object.

Support for multiple calls (that is, phone or IM) in one workflow.

You should use UCMA Workflow Activities to create or enhance applications that are state
engine workflows. Examples of such applications are applications that interact with the user
over the phone or IM channel.

22

Part | Understanding Unified Communications

Workflow Architecture

Figure 2-3 illustrates a high-level architecture of UCMA Workflow and its dependencies.

| UC Workflow Activities |

| UC Workflow Runtime Services |

Windows Workflow Unified Communications
Foundation Managed API 2.0

| .NET Framework |

FIGURE 2-3 UCMA Workflow architecture.

® Windows Workflow Foundation The Windows Workflow Foundation is a framework
that is part of .NET Framework 3.0 and .NET Framework 3.5.

B UCMA This API consists of the following interfaces:

0 UCMA Core The UCMA 2.0 collaboration platform. It provides functionalities
such as calling, presence, and conferencing.

0 UCMA Speech The UCMA 2.0 speech platform. It provides functionalities such
as TTS, speech recognition, and DTMF recognition.

B UCMA Workflow Runtime Services These are custom Workflow Runtime services
built on top of the Windows Workflow Foundation that enable UCMA Workflow
Activities to execute properly. For details about these run-time services, see Chapter 4,
“Embedding Contextual Collaboration.”

B UCMA Workflow Activities These are custom activities that encapsulate UCMA Core
(for example, call and IM) and UCMA Speech (for example, recognizing user input and
TTS synthesis) functionality into an activity format. Examples of such functionalities are
having a question-and-answer-based dialog with the user over the phone call or IM
session. However, all functionalities of UCMA Core and UCMA Speech are not provided
in the form of workflow activities as part of UCMA Workflow Activities. Developers can
create their own custom workflow activities to capture the functionalities not available
from UCMA Workflow Activities.

Object Model

The UCMA Workflow provides managed classes, events, and enumerations to allow you to
build communication-enabled workflow applications.

Chapter 2 Microsoft Unified Communications APls Foundation 23

When you install the UCMA Software Development Kit (SDK), the following two libraries are
included:

B Microsoft.Rtc.Workflow.dll This library contains all of the workflow activities and
custom Workflow Runtime services that are used in the development of the communi-
cations-enabled workflow application.

B Microsoft.Rtc.Workflow.Toolbox.dll This library contains the package that is installed
in Visual Studio so that the UCMA Workflow Activities show up in the Visual Studio
toolbox.

Office Communicator Automation API

The Office Communicator Automation API provides programmatic access to Microsoft Office
Communicator 2007 R2 so that you can automate this software running on the client. It

is a quick and easy way to integrate Office Communicator functionality into your applica-
tions. This APl is used in Microsoft Office 2007 and Microsoft SharePoint 2007 to integrate
presence information and real-time communications from Office Communicator into these
products.

Scenarios

The Office Communicator Automation API provides access to most of the functionalities in
Office Communicator 2007 R2 programmatically. Your code can sign in the user to Office
Communicator and perform actions on behalf of this user (for example, starting an IM ses-
sion or calling a contact), change user preferences (for example, tagging a contact), and
manage contacts (for example, retrieving the contact list, adding and removing contacts
from the list, and working with contact groups). The API can also raise events from Office
Communicator to alert you to things like changes in contact presence or an incoming call.

With these capabilities in mind, the following examples are the types of features that you can
add to your applications using the API:

B Embedding presence with application-specific contact lists You can use the API to
add Office Communicator contact presence to your applications by building a custom
contact list. This application-specific contact list can show the presence of contacts
even if they are not in the user’s Office Communicator contact list.

B Enhancing communications You can enhance your applications by using the API to
allow users to communicate by IM, voice, and video directly from your application.

B Creating application context-specific communications You can use the APl to in-
tegrate data from your application into the conversations your application creates to
provide application-specific context for the conversation.

24

Part | Understanding Unified Communications

Considerations

The Office Communicator Automation APl was created for integrating presence and commu-
nication features into client applications. The APl is not appropriate for server-side solutions
because it requires Office Communicator to be running on the local machine and signed in
to Office Communications Server 2007 R2 with a valid user account.

Because the Office Communicator Automation APl automates Office Communicator, very
little code is required to provide sophisticated communication features. While this increases
your productivity as a developer by allowing you to create communication features quickly,
keep in mind that the API requires Office Communicator to be installed on the client ma-
chine for communication features built with the API to work. Also note that when using this
API, your code shows elements of the Office Communicator user interface (Ul) (for example,
when you add a contact or start a voice conversation) rather than allowing you to provide
your own Ul for these actions.

Consider using the Office Communicator Automation API if you want to integrate presence
and collaboration functionality into your application quickly without having to write your
own client or to understand SIP and real-time communications protocols.

Application Architecture

Only a single instance of Office Communicator 2007 R2 can be installed and run on the client.
Office Communicator (that is, Communicator.exe) is a Component Object Model (COM)
server that runs out of process with your application and provides a programmatic interface
to Office Communicator by using the libraries supplied by the API. The Office Communicator
Automation API libraries (that is, CommunicatorAPIl.dll and CommunicatorPrivate.dll) run in
your application process. Figure 2-4 illustrates the run-time architecture of your application
when using the API.

Applicationl.exe Application2.exe
— CommunicatorAPI.dll CommunicatorAPLdIl H—
L CommunicatorPrivate.dll CommunicatorPrivate.dll H

Communicator.exe

FIGURE 2-4 Office Communicator Automation API application architecture.

Chapter 2 Microsoft Unified Communications APls Foundation 25

For more information about COM and interoperating with COM from managed code, see the
“Additional Resources” section at the end of this chapter.

Note The Office Communicator Automation APl automates either Office Communicator 2007
R2 or Office Communicator 2007 depending on which client is installed on the computer.

Object Model

The Office Communicator Automation API provides two classes, Messenger and
MessengerPriv. Each of these classes exposes interfaces for you to build your communication
features.

Figure 2-5 shows the relationship between the classes supported by the APl and the
interfaces each class implements.

IMessenger

IMessenger2

IMessenger3

IMessengerAdvanced IMessengerPrivate
Messenger Class MessengerPriv Class

FIGURE 2-5 Messenger class and MessengerPriv class interface implementation.

The Messenger Class

The Messenger class represents the instance of Office Communicator 2007 R2 running on the
local computer and is the entry point to most of the information and functionalities you can
access in the API by using the interfaces it supports. Messenger also supports a number of
key events for keeping your application in sync with Office Communicator. When using the
Messenger class, some methods display Office Communicator dialog windows (for example,
calling the method to add a contact shows the Add Contact dialog box).

Messenger class interfaces The Messenger class implements the following interfaces:

B /Messenger interface Supports the most basic features of the API, such as working
with the local user’s information (that is, displayed name and phone number) and
contact list.

B /Messenger?2 interface Inherits from the IMessenger interface (and thus supports
all of its properties and methods) and adds methods and properties for working with
Office Communicator contact groups.

26

Part |

Understanding Unified Communications

IMessenger3 interface Inherits from the IMessenger2 interface (and thus supports all
of its properties and methods) and adds two unsupported properties. This interface is
not used.

IMessengerAdvanced interface Inherits from the IMessenger3 interface (and there-
fore inherits all of the properties and methods of IMessenger3, IMessenger2, and
IMessenger) and adds a method for starting conversations programmatically.

Note Because IMessengerAdvanced includes all of the properties and methods available
in the Messenger class, it is the interface used most often with UCMA.

Specialized Messenger class interfaces The following Messenger class interfaces provide
specialized interfaces to access contacts, contact groups, and active IM conversations:

IMessengerContactAdvanced interface Represents a contact in Office Communicator
and allows you to work with contact information (that is, displayed name and phone
number) and presence information for that contact programmatically.

IMessengerContacts interface Provides access to the contacts list in Office
Communicator 2007 R2 by letting you iterate through the contact list as well as remove
contacts from the contact list. Contacts are added to the contact list by using the
IMessengerAdvanced interface.

IMessengerGroup interface Provides programmatic access to an individual contact
group defined in Office Communicator 2007 R2, including enabling you to change the
name of the group and to manage contacts within that group programmatically.

IMessengerGroups interface Provides access to the collection of contact groups
in Office Communicator as a collection of IMessengerGroup by enabling you to
access the collection of groups, retrieve an individual group (that is, as an instance
of IMessengerGroup), and remove a group from the collection. Groups are added to
Office Communicator by using the IMessengerAdvanced interface.

IMessengerConversationWndAdvanced interface Provides methods and properties
for working with an active conversation in Office Communicator, including the ability to
send IM text and read the IM conversation history.

Note The conversations are multimodal, so IMessengerConversationWndAdvanced applies
to all conversation modalities (that is, IM, voice, and video).

The MessengerPriv Class

Like the Messenger class, the MessengerPriv class represents the instance of Office
Communicator 2007 R2 running on the local computer. However, when using the

Chapter 2 Microsoft Unified Communications APls Foundation 27

MessengerPriv class, your method calls suppress any Office Communicator Ul and performs
each action silently. The MessengerPriv class supports a single interface, IMessengerPrivate,
which provides the ability to add contacts to the signed-in user’s contact list without showing
the Office Communicator Add Contact dialog box.

Unified Communications Client API

The Unified Communications Client (UCC) API is a comprehensive client-side API that
provides connectivity and access to the functionality of Office Communications Server. It's
the API that is used to build Office Communicator, and it is a SIP-based application framework
for building and deploying real-time communications client applications against Office
Communications Server 2007. In addition to the standard features (such as IM, voice calling,
video chatting, contact managing, and presence tracking), this framework allows the applica-
tion to provide users with telephony integration, conferencing, encrypted A/V calls, and the
publication and subscription of custom presence information and other application-specific
data. The flexible publication and subscription framework makes the application framework
appealing for custom applications that do not need to expose the full functionality of Office
Communicator 2007 or use the SIP protocol in innovative ways to provide new features.

Scenarios
This APl enables you to create the following types of applications:

B A custom Office Communications Server client Similar to Office Communicator, but
customized for your specific application. For example:

a Call center client
@ Conference-only client

B [ntegrated real-time communications into line-of-business applications For
example, UC client functionality can be deeply integrated into CAD/CAM applications,
financial trading applications, and other line-of-business applications. You can create
custom presence categories and clients that use these custom categories in innovative
ways. For example:

0 A collaboration client that synchronizes three-dimensional views between remote
medical imaging applications.
0 Enhance user attributes with GPS information.
B A standalone Office Communications Server—enabled application Unlike the Office
Communicator Automation API, the UCC API enables you to redistribute the UCC

dynamic link libraries (DLLs) with your application. This enables you to ship your appli-
cation as a standalone Office Communications Server—enabled application.

28

Part | Understanding Unified Communications

Considerations

Before embarking on building your solution using the UCC API, it is advisable to consider
the intended purpose of this API. The APl is intended to be used for client-side, single end-
point Windows applications. Office Communicator 2007 was built using the UCC API, and
consequently the UCC API provides access to all of the functionality available in Office
Communicator 2007 and more. The UCC APl is a low-level client-side API. It does not include
any of the business logic that is embedded in Office Communicator. Developers must build
their own business logic and user experience. To embed presence and real-time communi-
cations into existing applications, therefore, it is advisable to use the Office Communicator
Automation API instead of the UCC API. The Office Communicator Automation API requires
less code to embed a UC experience into an existing application. For more information, see
the "Office Communicator Automation API” section earlier in this chapter.

Application Architecture

The UCC API encapsulates two major functional features in real-time communications: signal-
ing and media handling. Signaling is responsible for setting up and tearing down multimedia
communication sessions, such as voice and video calls over an Internet Protocol (IP) network
in this context. Media refers to the various real-time modes of communication: audio, video,
IM, or e-mail. The encapsulation of signaling provides a higher-level object abstraction of the
following protocols:

m S|P
B Centralized Conferencing Control Protocol (CCCP)
B Computer Supported Telephony Applications (CSTA)

The UCC API also provides a set of signaling interfaces for developers interested in working
at a lower SIP abstraction level. The encapsulation of media handling provides an object
representation of the following protocols:

B Real-Time Transport Protocol (RTP)

B Real-Time Transport Control Protocol (RTCP)
B Secure Real-Time Transport Protocol (SRTP)

B Interactive Connectivity Establishment (ICE)

The UCC API design separates the signaling and media handling between an application and
the underlying SIP stack and media management over the RTP stack. Figure 2-6 illustrates
the UCC API application architecture stack.

Chapter 2 Microsoft Unified Communications APls Foundation 29

(J(Contacts &J
Presence
Groups
Generic
Data

Publish/Subscribe
Infrastructure

Unified Communications Client API
Conference State
Control Notifications

Conferencing

Instant

=
(]

Communication
Modalities

Audio &
Video

)
)

Generic
Modalities

Media

Codecs
(RTP, RTCP)

Signaling

Conferencing Protocol
(CCCP)

Telephony Integration
(CSTA)

Session Initiation Protocol
(SIP)

Encryption
(SRTP)

NAT/FW
Traversal (ICE)

FIGURE 2-6 UCC API architecture.

The SIP stack handles signaling following the standard SIP. It is responsible for carrying out all
low-level SIP operations, such as sending a session request, dispatching and receiving provi-
sional responses, and accepting, forwarding, or rejecting an invitation. These operations are
necessary for establishing communications and conference sessions in which participants can
communicate and collaborate with each other.

The media stack (that is, Media Manager) is responsible for the low-level media management
functions, including establishing communication channels to transmit audio, video, or other
application data between endpoints.

The UCC API exposes a set of COM-based APIs encapsulating the low-level functionalities
and provides applications with SIP and media functionalities in object-oriented programming
patterns. With the UCC API, developers can create unified multimodal communication appli-
cations, including IM, voice calling (computer-to-computer, computer-to-phone, and phone-
to-phone), video chatting, application sharing, and conferencing. It also works with Office
Communications Server 2007 and other SIP registrar or proxy servers to manage presence
information, and it facilitates communications among communication parties.

The UCC API Object Model

UCC API objects can be grouped logically into the following feature-based categories:

B Platform objects

B Endpoint objects

and collaborations.

The entry point to all other UCC API functionalities.

The object representation of a user in real-time communications

30 Part| Understanding Unified Communications

B Session objects Encapsulation of signaling and collaboration sessions, including IM,
A/V, application-sharing, and conference.

B Publication and Subscription objects Encapsulation of the general framework for
publishing and subscribing to data or information.

B Device Management objects Encapsulation of the management functionalities for
local devices to render media.

B Media Connectivity objects Encapsulation of the management functionality for
enabling media transmission across firewalls.

Figure 2-7 illustrates a diagram of the UCC API object model.

Unified Communications Client API Architecture
Platform
|
| |
. Device
Endpoint Manager
|
| | | |
Session Med'? . Publication Subscription
Connectivity
| | I_I_I
Media
Connectivity Category Media Device
Server Instance
| Instant |
Messaging
—— Audio/Video Participant — Presence State
1
L Participant
—— Application |— Endpoint — Group
1
— Conference |— Media Channel — Contact

FIGURE 2-7 The UCC API object model.

The Platform object corresponds to the UCC API application framework. It is the starting
point for such an application to access API functionalities, including the following:

B Enabling an endpoint When you enable an endpoint, you are registering a user with
Office Communications Server. An enabled endpoint means a user who is logged on to
the UC network successfully.

Chapter 2 Microsoft Unified Communications APIs Foundation

31

Creating a session to invite other participants and communicate with each other using

text messaging, A/V calls, and other communication means

unless an endpoint is enabled.

Publishing, subscribing, or querying category instances

No session can be created

A user cannot publish,

subscribe, or query category instances unless its endpoint is enabled.

Maintaining media connectivity for establishing media channels across

firewalls

This also requires that the endpoint be enabled.

Managing local devices for rendering or capturing media

Figure 2-8 shows the UCC API interfaces.

Q UccPlatform
Wnknown Q)

1WecEndpoint

z

Endpoint
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

'
Queryinterface

Get/Set

O _iUccPlatformevents

IUccMediaConnectivityserver (3
o

IUceMediaEndpointSettings

Media Connectivity Server

_UccEndpointévents Add

Session Manager

1UccMediaDeviceSettings
IUccMediaDeviceManager

IUccSessionManager

) IUccSessionManagerEvents

Create

IWeclnstantMessagingSession
U

1Unknown

IUccsessionEvents
_IUcclnstantMessagingSessionEvents

IM Session

IUccAudioVideoSession

JecSessionP:

IUcclnstantMessagingParticipant
IWecSessionParticipant
Wnknown Q)

Create

=
1M Partcipant

Add

_UccSessionParticipantEvents

1WecSession
1Unknown
 IUccSessionévents

_IUcchudioVideoSessionEvents
1UceSessionP:

AV Session

WecSubscrption

Subscription

IUecSubscriptionManager Add
Create
_IUccSubscriptionManagerEvents
Create
LN

IUccCategorylnstance

Contact

Create 1Unknown O)

IWecContacts

_UccSubscriptionEvents

WWecPresentity ()

O UccPresentityEvents

IWecCategoryContext ()

Category Context O lUccCategoryContextevents

_IUccPublicationEvents

2 cPublcationfvents

Add

O IUccCategorylnstancetvents

_IUccCategorylnstanceEvents
_UccContactvent:

Create

IUccMediaDevice ()
Wnknown Q)

>
Media Device

1UceVideoMediaDevice
IUccMediaDevice ()
Iunknown ()

Video Media Device

IWecCategorylnstance

Group

IUccCategorylnstance ()

IUecGroup

O _UccCategoryinstanceEvents

_IUccCategorylnstanceEvents

Wnknown Q)

Container

1UccContainer ()

O _UccContainerévents

FIGURE 2-8 UCC API interfaces.

IWecApplicationSession
UecSession

IWecAudioVideoSessionParticipant
IUccSessionParticipant
Wnknown Q)

Create

==
Add

_IUccAudioVideoSessionParticipantEvents
O UccSessionParticipantévents

Add O _lUccMediaChannelEvents

1Unknown

_IUccSessionEvents.
_UceSessionParticipantCollectionvents

App Session

lUccConferenceSession

IUccApplicationsessionParticipant
WWeeSessionParticipant
Wnknown Q)

Create

L=
App Particpant

Add

O _IUccapplicationsessionParticipantEvents
O UccSessionParticipantévents

1WecSession
1Unknown
 IUccSessionEvents
U
_IUccSessionP:

IUccConferenceSessionParticipant ()
1WecSessionParticipant Q)
O

Create

ECLN
Conference Partiipant
Add

1WecSessionCallControl
jccSessi

O_UccConferenceSessionParticipantEvents
_UccSessionParticipantEvents

IUnknown

_IUccSessionEvents.
_IUccSessionCallControlEvents

Remote Call Control

_IUccSession:

IUccSessionParticipant O
O

Create

==

Add

O _IUccsessionParticipantEvents

O_IUccInstantMessagingSessionParticipantEvents
O

O _IUccAudioMediaChannelevents

32 Part| Understanding Unified Communications

Unified Communications AJAX API

The UC Asynchronous JavaScript and XML (AJAX) APl is an API to the Office Communicator
Web Access server. Although it is not Simple Object Access Protocol (SOAP)-based, it is a
Web service API for building applications against the Office Communicator Web Access
server, which in turn communicates with Office Communications Server 2007 and Office
Communications Server 2007 R2. These APIs allow the application to provide users with

IM, presence tracking, publication and subscription of custom presence information, and

call deflection. These APIs are based on JavaScript, Extensible Markup Language (XML),

and the browser's support for the XMLHTTPRequest API or for the .NET C# System.Net.
HttpWebRequest API. The client sends requests to the server in the form of XML payloads, and
the server returns XML responses.

The UC AJAX API supports only presence, IM, and call control capabilities. It does not offer
A/V, Web conferencing, or telephony support.

Scenarios

The UC AJAX API enables you to create your own non-Windows and Web-based clients,
similar to the Office Communicator Web Access client.

The following examples are the types of applications that you can create:

B Mobile/phone clients

B Web applications that combine information from different Web services into a single
user interface (known as a mashup)

B |M- and presence-enabled Web portals

B High-touch customer service by means of a personalized Web portal

Considerations

Before deciding to build your solution using the UC AJAX AP, it is advisable to consider the
intended purpose of this API. This APl is targeted at building client-side, single-endpoint
Web or non-Windows applications. The UC AJAX APl makes it possible to build Office
Communicator—like applications for users running operating systems that are not Windows
and access a subset of the functionalities available in Office Communicator.

The UC AJAX API is supported only on Office Communications Server 2007. For Office
Communications Server 2007 R2 deployments, customers are required to deploy an Office
Communications Server 2007, Office Communicator Web Access Server to use your UC AJAX
API-based application. This lack of forward compatibility occurs because the UC AJAX APl is
being deemphasized in the Office Communications Server 2007 R2 release and will not be
supported in future releases.

Chapter 2 Microsoft Unified Communications APls Foundation 33

Due to the performance aspects, these APIs are not intended for multiendpoint applications
that need to scale out. A better choice is the UCMA.

Application Architecture

The UC AJAX API architecture consists of XML messages sent over two Hypertext Transfer
Protocol Secure (HTTPS) channels to the Office Communicator Web Access servers that
are persistent for the duration of the session while the user is logged on. The user logs on
to Office Communicator Web Access, which authenticates the user by using integrated
Windows authentication (NT LAN Manager [NTLM]), forms-based authentication, or a cus-
tom single sign-on method, and then an authentication (Auth) ticket is issued to the user.
This Auth ticket must be provided in every request to the server. The server can refresh this
Auth ticket anytime during the lifetime of the user session. Therefore, it is important that
the application always uses the latest Auth ticket sent by the server. Note that the user is
logged on to only Office Communicator Web Access, not Office Communications Server.
Office Communicator Web Access connects to the user’'s home computer running Office
Communications Server once a session is initiated and retrieves the user’s contact list, in-
band provisioning settings, and so on, which it then sends to the client application.

After the user is authenticated, the application must establish two secure channels (HTTPS)
to Office Communicator Web Access. The XMLHTTPRequest browser APl is used to establish
these communication channels with the server. One channel is used to issue requests to the
server. This is referred to as the command channel. The client application uses the command
channel to send commands to the server. It is recommended to batch requests before
issuing the command to the server. When a command is sent to Office Communicator Web
Access, the server immediately responds to acknowledge whether the request was received
successfully or whether an error occurred. The servicing of the client request is performed by
the server asynchronously. This response is sent by the server by using another communica-
tion channel. Figure 2-9 illustrates the UC AJAX APl communications architecture.

HTTP(S) XML
Command Channel
https://cwaserver/cwa/MainCommandHandler.ashx Application
Send <cwaRequests>, Receive <cwaResponses> uses 2 HTTPS

Data Channel connections

. https://cwaserver/cwa/AsyncDataChannel.aspx
Dl oo icator Open Connection, Receive <cwaEvents>

Web Access

FIGURE 2-9 The UC AJAX APl communications architecture.

For the server to be able to push events to the client application (for example, responses
to requests sent over the command channel), the client must create a long-held HTTPS
connection with the server named the data channel. Anytime Office Communicator Web

34

Part | Understanding Unified Communications

Access has an event for the user, it sends it immediately on the data channel without the
client application having to request it explicitly. The server holds this connection open for
up to 35 seconds. If there are no events for the client application, the server dynamically
requests the client to delay the next open GET call on the data channel. This mechanism
(referred to as Comet) makes it possible for the server to push events to a Web client.

All of the APIs are defined as an XML schema. When the client application logs on the user,
the user is signed in to Office Communicator Web Access only. After the user is logged

on, the user can create multiple sessions. Each session represents an endpoint registered
with Office Communications Server. At this point, user presence is made known to Office
Communications Server by means of the server running Office Communicator Web Access.
Because Office Communicator Web Access does not keep user state, it transforms SIP traffic
from Office Communications Server into XML payloads that are sent to the Web clients. The
client must cache any information that Office Communicator Web Access returns (for exam-
ple, contact list, in-band provisioning settings, and roaming user settings). All caching must
be performed on the client side.

XML Model

When communicating with Office Communicator Web Access, the client application uses
the following URLs where <server> refers to the base URL of the server running Internet
Information Services (IIS). The Logon channel is used to sign in the user. Depending on the
type of authentication used, this URL is slightly different. After the user is signed, this chan-
nel is no longer needed. The Command and Data channels persist for the duration of the
session. Each session begins with the XML request, cwaRequests, that contains the initiate-
Session element and ends with another XML request, cwaRequests, that contains the termi-
nateSession element. Every request and response occurs within a session.

Logon channel:
B Forms-based authentication: https://<server>/forms/logon.htm/
B Integrated Windows authentication: https.//<server>/iwa/logon.html

B Custom single sign-on authentication: https.//<server>/sso/logon.html

Command channel:

B https.//<server>/cwa/MainCommandHandler.ashx

Data channel:

B https.//<server>/cwa/AsyncDataChannel.ashx?Sid=<sid>&Ackld=<ackld>&UA=<ua>

Chapter 2 Microsoft Unified Communications APls Foundation 35

UC AJAX APIs are defined as XML elements. These XML elements are organized into the fol-

lowing categories:

B cwaRequests This element defines the type of requests a Web client application can
submit to the Office Communicator Web Access server on the Command channel.

B cwaResponses This element defines the response that Office Communicator Web
Access returns immediately after receiving a request. The server returns only whether
the request was accepted or rejected and why it was rejected.

B cwaEvents This element defines the type of events the application can expect to
receive from Office Communicator Web Access. These events are the results from the
request sent to the server. Because the result is returned asynchronously to the applica-
tion, there needs to be a way to match the event to the request. This is done by matching
the event ID (eid) with the request ID (rid) of the corresponding cwaRequests element.

cwaRequests

Every request to the server is a cwaRequests element of type CwaRequestsType. This complex
type consists of a sid attribute of type CwaSessionld (unsigned long) and one or more of the

subelements listed in Table 2-1.

TABLE 2-1 Subelements for CwaRequestType

Element

Logon

initiateSession
terminateSession
addGroup
updateGroup
deleteGroup
addContact
updateContact
deleteContact
acknowledgeSubscriber
conference
updateContainer
publishSelfPresence
subscribePresence
unsubscribePresence
queryPresence
publishRawCategories

Search

Type

CwalogonRequestType
CwalnitiateSessionRequestType
CwaRequestBaseType
CwaAddGroupRequestType
CwaUpdateGroupRequestType
CwaDeleteGroupRequestType
CwaContactRequestType
CwaContactRequestType
CwaUriRequestType
CwaUriRequestType
CwaRequestBaseType
CwaUpdateContainerRequestType
CwaPublishSelfPresenceRequestType
CwaUriListRequestType
CwaUriListRequestType
CwaUrilistRequestType
CwaPublishRawCategoriesRequestType
CwaSearchRequestType

36

Part | Understanding Unified Communications

Each of the types listed in Table 2-1 inherits from the base type CwaRequestBaseType. This
complex type, CwaRequestBaseType, consists of a single attribute, rid, which is a request ID
that is used to uniquely identify every request. The XML schema (xsd) defines this attribute to
be of type CwaRequestld (string).

cwaResponses

Office Communicator Web Access immediately responds to cwaRequests to indicate the
status of the request. These statuses are defined as elements of the cwaResponses element,
which is of type CwaResponsesType. The element CwaResponses is composed of the attribute
requestProcessed and zero or more of the subelements listed in Table 2-2.

TABLE 2-2 Subelements for CwaResponses

Element Type

requestSucceeded CwaRequestSucceededType
requestAccepted CwaRequestAcceptedType
requestFailed CwaRequestFailedResponseType
requestRejected CwaRequestFailedResponseType
Error CwafFailureType

Each of the types listed in Table 2-2 inherits from the base type CwaResponseBaseType, with
the exception of the complex type CwafailureType. This complex type, CwaResponseBaseType,
consists of a single attribute, rid, which is the ID of the matching request. The XML schema
(xsd) defines new complex types for these subelements.

cwaEvents

Office Communicator Web Access returns the results of each cwaRequests item as a
cwaEvents element. A cwaEvents element, which is of type CwaEventsType, is transmitted

by Office Communicator Web Access on the data channel. The element CwaEvents is
composed of the attributes sid, ackld, pollWaitTime, sessionTimeout, and zero or more of the
subelements listed in Table 2-3.

TABLE 2-3 Subelements for CwaEvents

Element Type

pollFailed CwafFailureType
requestSucceeded CwaRequestSucceededEventType
requestFailed CwaRequestFailedEventType
requestCancelled CwaRequestCancelledEventType
contactGroup CwaContactGroupEventType

Subscribers CwaSubscribersEventType

Chapter 2 Microsoft Unified Communications APIs Foundation

TABLE 2-3 Subelements for CwaEvents

Element
Conference
Containers
selfPresence
userPresence
selfRawCategories
userRawCategories
presenceSubscriptionState
Configuration
searchResult
locationProfiles

contactGroup

Each of the types listed in Table 2-3 inherits from the base type CwaEventBaseType. This

Type

CwaConferenceEventType
CwaContainerListEventType
CwaSelfPresenceEventType
CwaUserPresenceEventType
CwaSelfRawCategoriesEventType
CwaUserRawCategoriesEventType
CwaPresenceSubscriptionStateEventType
CwaConfigurationsEventType
CwaSearchResultsEventType
CwalocationProfilesEventType

CwaContactGroupEventType

37

complex type, CwaEventBaseType, consists of a single attribute, erid, which is a unique 1D of
the event. The XML schema (xsd) defines new complex types for these subelements.

Office Communications Server 2007 Speech Server

Developer Edition

Using Speech Server (2007) APIs, developers can build applications by using managed code,
.NET Framework 3.0-based Windows Workflow Foundation Activities, and Web-based stan-

dards, such as the World Wide Web Consortium (W3C) specifications for VoiceXML 2.1 or
Speech Application Language Tags (SALT) 1.0, as used in Speech Server 2004 and Speech

Server 2004 R2.

Dialog flows can be implemented by using any of the following techniques:

B NET Framework 3.0-based Windows Workflow Foundation Speech Dialog Workflow

Activities

B The Speech Server Managed API

® \oiceXML 2.1
m SALT10

The Speech Dialog Workflow Activities available with Speech Server (2007) are very elaborate.
They can be used to perform a wide variety of activities related to telephone call management,
dialog flow, and application logic and structure.

38

Part | Understanding Unified Communications

In case the Workflow Activities do not suffice, developers can use the lower-level Speech
Server Managed API. The Speech Server Managed API covers the following core areas, which
are needed to produce speech-enabled telephony applications:

B Speech synthesis When the application prompts the caller for information or simply
provides the caller with information, the prompt is handled through the Synthesizer
property. This property is a reference to a SpeechSynthesizer instance, which provides
capabilities for converting text into speech.

B Speech recognition When a caller responds to a prompt, the recognition is
handled through the SpeechRecognizer property. This property is a reference to a
SpeechRecognizer instance, which parses speech by using a set of grammars and by ex-
tracting meaningful information.

B Call handing and control The TelephonySession property provides methods for call
control, such as answering or transferring a call.

B DTMEF processing When a caller presses a keypad button (DTMF input), the application
processes it by using the DtmfRecognizer property.

B Application hosting With the IApplicationHost and IHostedSpeechApplication
interfaces, Speech Server manages the lifetime of an application instance.

Speech Server (2007) is a VoiceXML Forum—certified platform that supports the W3C
VoiceXML 2.1 standard. For more information about the VoiceXML standard, see the W3C
site at http://www.w3.org/TR/voicexml20/ and MSDN at http://msdn.microsoft.com/en-us/
library/bb857664.aspx.

Speech Server 2004 and Speech Server 2004 R2 support the ASP.NET-based SALT 1.0
standard. Speech Server (2007) still supports running these SALT applications for backward
compatibility.

Scenarios

Office Communications Server 2007 Speech Server (Speech Server 2007) is the IVR plat-
form that is part of Office Communications Server 2007 and Office Communications Server
2007 R2. The Developer Edition is available as a free download and contains the Speech
Server APIs, speech technology tools that are fully integrated into Visual Studio 2005, and
a data warehousing solution for processing call log files. The product is licensed as Office
Communications Server when it is deployed.

Speech Server (2007) supports sophisticated speech technology, such as Conversational
Understanding. This technology is suitable for building sophisticated speech-enabled IVR
applications that support human interaction with callers. It supports mixed-initiative form
filling that lets users control dialog flow by providing all needed information in a single

Chapter 2 Microsoft Unified Communications APls Foundation 39

utterance or as a sequence of utterances. By using the mixed-initiative style to fill a form

(a FormFillingDialog instance), a user can answer multiple questions at once. The applica-
tion can accept an answer in response to a specific question, but it can also accept and fill a
form with extra answers that apply to questions the application has not yet asked. This style
enables a nonsequential dialog. Each question-and-answer cycle includes one question and
one or more answers. Mixed-initiative dialogs are typically more difficult to design than
system-initiative dialogs (in which the system asks a question and expects a single answer),
but they provide users with greater flexibility when answering questions. Mixed-initiative
dialogs simulate human interaction more closely than system-initiative dialogs and can
recognize either DTMF keypad presses or speech input. Speech Server (2007) is the most
appropriate API for building complex IVR applications, such as Voice Portal applications that
include multislot speech recognition where callers enter multiple items all in one utterance.
Of course, Speech Server (2007) also supports simple call routing applications and DTMF
menu-driven applications.

Speech Server (2007) differs from the UCMA 2.0 Workflow speech capabilities not only in the
conversational understanding technology used, but also in its support of different types of
IVR and speech technology-specific tools. Speech Server (2007) provides a Conversational
Grammar Builder, a Prompt Recording and Editing tool, lexicon tools, and tuning tools, such
as tools that detect words in utterances that are outside the grammar.

Speech Server supports speech recognition and speech synthesis in five languages:

B English (North America, United Kingdom)
B American Spanish

B Canadian French

B German

Speech Server supports DTMF applications and speech synthesis in nine additional
languages:

B Australian English
B French
B Castilian Spanish

B Portuguese (Brazil)

m [talian
B Japanese
® Korean

B Chinese (Simplified and Traditional)

40

Part | Understanding Unified Communications

Considerations

Before you create an interactive voice response telephony application, consider the following
points:

B Complexity of the speech technology For simple speech applications, often the
UCMA Workflow API suffices. For more sophisticated speech technology, such as
conversational understanding, use Speech Server (2007).

B Standards support Currently, VoiceXML support is not available on UCMA, so if
VoiceXML support is mandatory, Speech Server (2007) provides the functionality.

B Language support Speech Server supports ASR and TTS in 5 languages, and UCMA
supports 12 languages. Depending on your language needs, one or both might be a
better fit.

Application Architecture

Figure 2-10 illustrates the Speech Server components and the relationships between them
as applied to the design stage of application development. This diagram assumes that you
have a single computer that is running Visual Studio 2005, Speech Server, and Web server
software.

The SIP peer represents all possible client endpoints, including IP Private Branch eXchange
(IP/PBX) telephony clients, Voice over Internet Protocol (VolP) gateways, SIP phones and soft-
phones, and Telephony Interface Manager Connector (TIMC). The SIP peer communicates
with the application by using SIP for signaling data and RTP for audio data.

The developer uses Visual Studio 2005 to create a speech application, choosing one of the
following application types:

B Voice Response Workflow Application To create a managed code interactive voice
response application, choose this application type from the New Project dialog box.

B Voice Response Web Application To create a Web-based SALT interactive voice
response application, choose this application type from the New Web Site dialog box.

B VoiceXML Speech Application To create a Web-based VoiceXML application, choose
this application type from the New Web Site dialog box.

41

Chapter 2 Microsoft Unified Communications APls Foundation

Ped INOIN

(£002) 19n195 Yyosads

aul1bug ydwoud 19zIubod9y
J9Z1uboday
2 SISOUIUAS yooads :
yoaads dnewony inia

suonedl|ddy gap

17V 10 TAIX32I0A pue
‘mLmEEmgmu \muQEO‘_n_

auoyd
dIS

auoyd
HosS

AdsS
(£002) 1anI3s yoaads

sjualpd dIs

1IN'dSV

S92IAIRS Bulioday
19M13S T0OS

DD

sjuaIp
Auoydsja)

10 Speech Server (2007) components.

FIGURE 2-

42

Part |

Understanding Unified Communications

Application Components

Following the Web model for which they are designed, SALT voice response applications
and VoiceXML applications are deployed to the Web server. However, because the code
that drives a managed code assembly from one state to the next is located on the computer
running Speech Server, the assembly must be deployed to the computer running Speech
Server itself.

After deploying the application, the developer tests it with a connected SIP peer or simulator.

The principal application components depicted in Figure 2-10 are described in the next two
sections.

ASP.NET Components The ASP.NET run time hosts IVR applications in any of four types:

Speech Server Managed APl Runs the assembly that contains the code that is used
by the managed code IVR application. The Speech Server Managed API is the lowest-
level API. It includes the signaling stack (UCMA 1.0) and provides access to speech and
media resources.

Dialog Workflow Run Time For a Dialog Workflow—based application, the Dialog
Workflow run time executes dialog workflow activities. The Dialog Workflow activities
are based on the .NET Framework 3.0 Windows Workflow Foundation.

VoiceXML Interpreter For a VoiceXML speech application, the VoiceXML interpreter
is responsible for loading, parsing, and running VoiceXML code, which is stored on the
Web server.

SALT Interpreter For a Voice Response Web application, the SALT interpreter
manages dialog flow with the caller and controls telephone calls as it interprets SALT
code, which is stored on the Web server.

Web Server Components A Web server running IS 6.0 or IIS 7.0 is an integral part of a
complete Speech Server deployment. IIS is included with Windows Server 2003, Microsoft
Windows XP Professional SP2, and Windows Vista. However, you must install 1IS explicitly the
first time it is used with Speech Server.

Grammars A grammar file contains a structured list of words and phrases that the
Speech Server API parses for the Speech Engine Services (SES) speech recognition
engine. Grammars are specific to applications developed for Speech Server.

Prompts A prompt database is an application-specific repository of prerecorded
sound files used by the SES speech output engines. To improve prompt quality and
therefore the quality of the speech output, consider hiring a professional to record the
prompts for the database.

Chapter 2 Microsoft Unified Communications APls Foundation 43

B VoiceXML Code Developer-written VoiceXML code for the Web-based voice
response application.

B SALT + JScript + HTML Code Developer-written SALT, JScript, and Hypertext Markup
Language (HTML) code for the Web-based voice response application.

Object Model

A simplified Speech Server APl object model is shown in Figure 2-11. At the top of the
hierarchy is a SpeechSequentialWorkflowActivity object, which has an ApplicationHost
property (as well as others not shown in the illustration), which in turn has a TelephonySession
property. Three of the properties on the TelephonySession object are DtmfRecognizer,
SpeechRecognizer, and Synthesizer. These properties are references to instances of the
DtmfRecognizer, SpeechRecognizer, and Synthesizer classes, respectively. An application can
use these TelephonySession properties to access the members of these classes. Each of the
two Recognizer objects has a Grammars property, which is a collection of Grammar objects
that can be used by the Recognizer. Each Grammar object contains one or more rules that a
speech recognizer or DTMF recognizer can use to extract semantic meaning from user input.

(SpeechSequentialWorkflowActivity]
[
(ApplicationHost J
I
(TelephonySession

I I I

(DtmfRecognizer J(SpeechRecognizerJ(Synthesizer J
I I

(Grammars J (Grammars J

FIGURE 2-11 Simplified Speech Server object model.

Speech Server API

The Speech Server API, shown in Figure 2-12, consists of five namespaces that developers can
use to create managed-code voice response applications.

44

Part | Understanding Unified Communications

Speech Server
Visual Studio + Tools Web Server
Dialog Workflow Speech Controls
Designer
Grammars
Speech Grammar
Editor — Prompts
Speech Prompt ASP.NET
Editor Application Code
VRA Debugger SALT+
VoiceXML | | JScript+
HTML
1
HTTP HTTP
ASP.NET
Managed
Code
Assembly
SIP Speech VoiceXML
> Server API Interpreter
SIP Peer
caller endpoint
(point) Speech SALT
RTP Controls Interpreter
(Audio)

FIGURE 2-12 Speech Server API.

B Microsoft.SpeechServer namespace Provides low-level control of core speech
services, such as creating hosted application containers, creating telephony and con-

ference sessions, manipulating caller information, controlling logging, and controlling
recording.

B Microsoft.SpeechServer.Dialog namespace Provides a number of classes derived
from Windows Workflow Foundation activities. Applications can use the classes
provided in the Microsoft.SpeechServer.Dialog namespace to do any of the following:

0 Perform tasks related to managing phone calls, such as answering a call,
disconnecting a call, transferring a call to a third party, and recording a call.
These classes are AnswerCallActivity, MakeCallActivity, BlindTransferActivity,

Chapter 2 Microsoft Unified Communications APls Foundation 45

DeclineCallActivity, DisconnectCallActivity, RecordAudioActivity,
RecordMessageActivity, and DetectAnsweringMachineActivity.

0 Perform tasks related to dialog flow, such as issuing simple prompts, responding
to commands or requests for help, asking a question and receiving an answer,
specifying how silences or nonrecognitions are handled, playing a menu of choices
from which the user can select one, playing a list of choices through which
the user can navigate, validating user input, and responding to system events.
These classes are StatementActivity, CommandActivity, HelpCommandActivity,
RepeatCommandActivity, QuestionAnswerActivity, GetAndConfirmActivity,
ConsecutiveNolnputsSpeechEventActivity, ConsecutiveNoRecognitionsSpeech-
EventActivity, ConsecutiveSilencesSpeechEventActivity, MenuActivity, FormFilling
DialogActivity, NavigableListActivity, ValidatorActivity, SpeechEventActivity, and
SpeechEventsActivity.

@ Support complex application logic with activities for branching, grouping related
activities into tasks, and partitioning applications into modules. These classes are
GoToActivity, SetTaskStatusActivity, InvokeWorkflowActivity, SpeechSequenceActivity,
SpeechCompositeActivity, SpeechSequentialWorkflowActivity, SaltinterpreterActivity,
and VoiceXMLlInterpreterActivity.

B Microsoft.SpeechServer.Recognition namespace Provides a number of classes that
can be used in conjunction with grammars to parse user speech and extract semantic
information from it. The classes in this namespace can be used to do any of the
following:

0 Create instances of speech or DTMF recognizers
0 Construct and load grammar objects into a speech or DTMF recognizer

0 Create objects that contain recognized words and phrases as well as recognition
results

B Microsoft.SpeechServer.Recognition.SrgsGrammar namespace The classes in
this namespace provide the ability to create and compile grammars that adhere to
the Speech Recognition Grammar Specification (SRGS). Most of the classes in this
namespace map directly to SRGS elements, such as item, one-of, rule, and ruleref.

Grammars can be created manually using a text editor, programmatically in an application,
or dynamically at run time and can be compiled to binary context-free grammar (CFG)
files for optimization purposes.

B Microsoft.SpeechServer.Synthesis namespace The classes in this namespace can
be used to create TTS output. The text can take the form of character strings and can
include Speech Synthesis Markup Language (SSML) markup, bookmarks, “say as” infor-
mation, pronunciation cues, and audio output. For speech output, there are a variety of
options, such as voice gender, age, speaking rate, culture, and others.

46 Part |

Understanding Unified Communications

Summary

The Microsoft UC platform offers several APIs that you can choose among depending on
your development needs, whether they are client-side or server-side, Windows-based or
non-Windows-based, and so on. This chapter provides a condensed technical overview of
each of these APIs to help you decide which API or APIs best suit your application needs.
From this starting point, you can refer to the individual APl SDK documentation for more
in-depth details of every method, event, and property that the APl exposes.

Additional Resources

“Microsoft Office Communications Server 2007 R2 Developer References”
(http://technet.microsoft.com/en-us/library/dd425166(Office.13).aspx)

Microsoft Unified Communications AJAX SDK download (http://go.microsoft.com/
fwlink/?Linkld=142478)

Microsoft Unified Communications Client API SDK download (http://go.microsoft.com/
fwlink/?LinkID=141197)

"Office Communicator 2007 and Office Communicator 2007 R2 Automation AP
Documentation” (http://msdn.microsoft.com/en-us/library/bb758719.aspx)

Microsoft Unified Communications Managed API 2.0 SDK (32 bit) download
(http://go.microsoft.com/fwlink/?LinkID=140790)

Microsoft Unified Communications Managed API 2.0 SDK (64 bit) download
(http://go.microsoft.com/fwlink/?LinkID=139195)

Microsoft Office Communications Server 2007 Speech Server Developer Edition
download (http.//go.microsoft.com/fwlink/?LinkID=70208)

"Office Communications Developer Portal” (http.//msdn.microsoft.com/ocdev)
"W3C VoiceXML 2.0 Introduction” (http://msdn.microsoft.com/en-us/library/bb857664.aspx)
"W3C VoiceXML Version 2.0" (http://www.w3.0org/TR/voicexmI20/)

“WF Scenarios Guidance: Workflow Designer Re-Hosting” (http://msdn.microsoft.com/
en-us/library/cc835242.aspx)

“Getting Started with Workflow Foundation” (http.//msdn.microsoft.com/en-us/
netframework/aa663328.aspx)

“Using Unified Communications Client API" (http.//msdn2.microsoft.com/en-us/library/
bb878217.aspx)

Integrating Web Chat Functionality - Microsoft Unified Communications AJAX API
Sample (http://www.microsoft.com/downloads/details.aspx?Familyld=C8C3F762-
7BE4-4541-9B18-82499DB61293&displaylang=en)

Part [l
Office Communicator
Automation API

After reviewing the APIs that are available in the Microsoft Unified Communications (UC)
platform in Part |, “Understanding Unified Communications,” Part Il covers the Microsoft
Office Communicator Automation API, as shown in the following figure.

Your Your Your
Application Application Application

Office Communicator

Automation API

(Office)
Communicator 2007 R2 UC Workflow
— AP|

Customizations

\ Y,
UCMA 1.0 Unified Communications Managed API 2.0

e N

Office Communications Server 2007 R2

(@)

| J

Chapter 3, "Programming a Microsoft Office Communicator Automation API Application,”
explains how to use this API. Chapter 4, "Embedding Contextual Collaboration,” covers

an example of how to embed contextual collaboration into an application and includes a
complete walkthrough of the source code.

Chapter 3

Programming a Microsoft Office
Communicator Automation API
Application

This chapter will help you to:

B Sign in and sign out of Microsoft Office Communicator 2007 R2 programmatically and
react to sign-in status events.

B Work with local user and contact information programmatically.

B Subscribe to presence events for the local user and contacts to display up-to-date
presence in applications.

B Manage the contact list programmatically.

B Start conversations using instant messaging (IM), audio, and video.

Signing In to and Out of Office Communicator

Chapter 2, "Microsoft Unified Communications APIs Foundation,” introduces the Office
Communicator Automation APl and the classes, interfaces, and events that you can use to
automate Office Communicator. In this chapter, you learn how to use this API.

When using the Office Communicator Automation API, you can provide Office
Communicator features in your application. For your code to automate Office Communicator
successfully, you must meet the following conditions:

B Office Communicator is running on the local computer.

B The local user is signed in to Office Communicator.

Using the Messenger Class

The Messenger class encapsulates Office Communicator 2007 R2 running on the local
computer and is the main entry point to the API. The Messenger class supports a number of
properties, methods, and events for keeping track of the sign-in state of the local user.

After installing the Office Communicator 2007 Software Development Kit (SDK) and referencing
the Office Communicator Automation AP, the first thing you need to do is instantiate the
Messenger class, as follows.

49

50

Part Il Office Communicator Automation API

Messenger _messenger = new Messenger();

The Messenger class, like all classes in the Office Communicator Automation API, is an
unmanaged Component Object Model (COM) class that you access from the Microsoft

.NET Framework’s managed code by using COM Interop. This means that you must explic-
itly release every reference of the Messenger class and other classes instantiated from this
API. The reference can be released by calling the System.Runtime.InteropServices.Marshal.
ReleaseComObject() method and then setting the reference to NULL, as shown in the follow-
ing code example.

Messenger _messenger = new Messenger();

System.Runtime.InteropServices.Marshal
.ReTeaseComObject(_messenger);

_messenger = null;

If you fail to call Marshal.ReleaseComObject() and set the reference to NULL, this results in
memory leaks in your application.

Note You must release references in this manner for all references that you create using the
Office Communicator Automation API.

Determining Whether Office Communicator Is Running

To determine whether Office Communicator is running on the local computer, you can use
the HKEY_CURRENT_USER\Software\IM Providers\Communicator registry key. When Office
Communicator is running, the UpAndRunning value of that key is set to 2.

Use the following code to determine whether Office Communicator is running on the local
computer.

// OC Automation API class can't be instantiated unless

// Office Communicator is running.

if (Convert.ToInt32(Microsoft.Win32.Registry.CurrentUser
.OpenSubKey ("Software") .0OpenSubKey ("IM Providers")
.OpenSubKey ("Communicator")
.GetValue("UpAndRunning", 1)) == 2)

{
Console.WriteLine("Office Communicator is running.");

}

else

{

% s

Console.WriteLine("Office Communicator is *not*

running.");

Chapter 3 Programming a Microsoft Office Communicator Automation API Application 51

Checking Local User Status

The Messenger class provides the MyStatus property to determine the sign-in status of the
local user. Office Communicator displays the status of the user to the right of their name, as
shown in Figure 3-1.

,T Chris D. Mayo Avaiiable —I0== B Statys
v .
-/ B Type 2 note G-

——n

 Recent Contacts

4 Other Contacts

@ James Alvord Available
Amy Strande Offline
4 Developers
@ Adam Barr Availzble
Rebecca Laszlo Offline

FIGURE 3-1 The status of the user in Office Communicator.

MyStatus returns a value from the MISTATUS enumeration. The values defined in MISTATUS
are shown in Table 3-1.

TABLE 3-1 MISTATUS Enumeration Values

Element Value

MISTATUS_UNKNOWN 0x0000
MISTATUS_OFFLINE 0x0001
MISTATUS_ONLINE 0x0002
MISTATUS_INVISIBLE 0x0006
MISTATUS_BUSY 0x000A
MISTATUS_BE_RIGHT_BACK 0x000E
MISTATUS_IDLE 0x0012
MISTATUS_AWAY 0x0022
MISTATUS_ON_THE_PHONE 0x0032
MISTATUS_OUT_TO_LUNCH 0x0042
MISTATUS_IN_A_MEETING 0x0052
MISTATUS_OUT_OF_OFFICE 0x0062
MISTATUS_DO_NOT_DISTURB 0x0072
MISTATUS_IN_A_CONFERENCE 0x0082

MISTATUS_ALLOW_URGENT_INTERRUPTIONS 0x0092

52

Part Il Office Communicator Automation API

TABLE 3-1 MISTATUS Enumeration Values

Element Value

MISTATUS_MAY_BE_AVAILABLE 0x00A2
MISTATUS_CUSTOM 0x00B2
MISTATUS_LOCAL_FINDING_SERVER 0x0100
MISTATUS_LOCAL_CONNECTING_TO_SERVER 0x0200
MISTATUS_LOCAL_SYNCHRONIZING_WITH_SERVER 0x0300
MISTATUS_LOCAL_DISCONNECTING_FROM_SERVER 0x0400

By using the following code, you can use the MyStatus property to check whether the local
user is in any of the online states such as Available, In a Call, or In a Meeting.

Messenger _messenger = new Messenger();

// Check if the user is already signed in to

// Office Communicator.

if ((_messenger.MyStatus & MISTATUS.MISTATUS_ONLINE) ==
MISTATUS.MISTATUS_ONLINE)

{
Console.WriteLine(""Local user is signed in to
Office Communicator");

}

else

{
Console.WriteLine("Local user is *not* signed in to
Office Communicator");

}

This code performs a logical bitwise AND of Messenger.MyStatus and the MISTATUS.
MISTATUS_ONLINE value. If Messenger.MyStatus returns any of the status values that rep-
resent an online state (that is, any value from Table 3-1 other than MISTATUS_UNKNOWN
or MISTATUS_OFFLINE), this operation is equal to MISTATUS.MISTATUS_ONLINE.

Signing In to Office Communicator

The Messenger class provides methods and events to sign the local user in to and out of
Office Communicator.

Messenger.Signin() Method

The Messenger.Signin() method signs the local user in to Office Communicator using a given
Session Initiation Protocol (SIP) Uniform Resource Identifier (URI) and password. For example,
the following code signs in a user with the SIP URI chrism@uc.contoso.com and “password”
as the password.

Chapter 3 Programming a Microsoft Office Communicator Automation API Application 53

Messenger _messenger = new Messenger();

_messenger.Signin(0, "sip:chrism@uc.contoso.com",
"password");

Messenger.AutoSignin() Method

The Messenger.AutoSignin() method signs in the local user based on the credentials cached
in Office Communicator. For example, the following code signs in the local user automatically
using the last used credentials.

Messenger _messenger = new Messenger();

_messenger.AutoSignin();

Messenger.OnSignin Event

Signing in to Office Communicator is performed asynchronously. When you call Messenger.
Signin() or Messenger.AutoSignin(), you are making a request to Microsoft Office
Communications Server 2007 R2 to sign in the local user to Office Communicator. When the
local user is signed in successfully, the Messenger class raises the OnSignin event. The follow-
ing code shows you how to subscribe to the OnSignin event using the DMessengerEvents_
OnSigninEventHandler event handler.

Messenger _messenger = new Messenger();
_messenger.0OnSignin += new

DMessengerEvents_OnSigninEventHandler(
_messenger_OnSignin);

void _messenger_OnSignin(int hr)

{
if Chr == 0)
{
Console.WriteLine("OnSignin()");
}
}

The Messenger.OnSignin event passes a single parameter, an integer to represent the success
of the sign-in, to the corresponding event handler. A value equal to O represents a successful
sign-in.

Note The Messenger.OnSignin event fires every time the local user signs in either through Office
Communicator or the Office Communicator Automation API.

54

Part Il Office Communicator Automation API

Signing Out of Office Communicator

The following sections describe the methods and events associated with signing out of Office
Communicator.

Messenger.Signout() Method

The Messenger.Signout() method signs out the local user from Office Communicator. Use the
following code to sign out the local user.

Messenger _messenger = new Messenger();

_messenger.Signout();

Messenger.OnSignout Event

Similar to signing in, signing out of Office Communicator is done asynchronously. When you
call Messenger.Signout(), you are making a request to Office Communications Server 2007
R2 to sign the local user out of Office Communicator. When the local user is actually signed
out, the Messenger class raises the OnSignout event. The following code shows you how to
subscribe to the OnSignout event using the DMessengerEvents_OnSignoutEventHandler event
handler.

Messenger _messenger = new Messenger();

_messenger.0OnSignout += new
DMessengerEvents_0OnSignoutEventHandler (
_messenger_OnSignout) ;

void _messenger_OnSignout()

{
Console.WriteLine("OnSignout(");

3

Note The Messenger.OnSignout event fires every time the local user signs out either through
Office Communicator or the Office Communicator Automation API.

Messenger.AppShutdown Event

If the local user shuts down Office Communicator, the Office Communicator Automation
API raises the Messenger.OnSignout event, followed by the Messenger. AppShutdown event.
The following code shows you how to subscribe to the AppShutdown event using the
DMessengerEvents_AppShutdownEventHandler event handler.

Chapter 3 Programming a Microsoft Office Communicator Automation API Application 55

Messenger _messenger = new Messenger();

_messenger.OnAppShutdown += new
DMessengerEvents_OnAppShutdownEventHandTer (
_messenger_OnAppShutdown) ;

void _messenger_OnAppShutdown()

{
Console.WriteLine("OnAppShutdown()");

3

Putting It All Together

Using the concepts from the preceding sections, you can quickly put together code to
determine whether Office Communicator is running, as well as the sign-in status of the
local user. In this section, you create a console application and use the Messenger class by
performing the following steps:

1. Download and install the Office Communicator 2007 SDK. For details, see the
“Additional Resources” section later in this chapter.

2. Start Microsoft Visual Studio 2008 and create a new Microsoft Visual C# Windows
console application named SignInSignOut.

3. In Solution Explorer, right-click the References node, click Add Reference, and then,
from the COM tab, add references to Microsoft Office Communicator 2007 API Type
Library.

4. Open Program.cs and add the following using statements.

using CommunicatorAPI;
using System.Runtime.InteropServices;

This code brings the Office Communicator Automation APl and InteropServices
namespaces into scope.

5. Add the following static declarations inside the Program class.

private static Messenger _messenger;

private static bool _signedIn = false;
The _messenger member variable provides an instance of the Messenger class.
The _signedin variable represents the signed-in state of the local user in Office
Communicator.

56 Part Il Office Communicator Automation API
6. Add the following method to the Program class.

static bool IsCommunicatorRunning()

{
return Convert.ToInt32(
Microsoft.Win32.Registry.CurrentUser
.OpenSubKey ("Software™) .OpenSubKey ("IM Providers")
.OpenSubKey ("Communicator")
.GetValue("UpAndRunning", 1)) == 2;
}

If Office Communicator is running, the IsCommunicatorRunning() method returns True.

7. Add the following code to the Main() method in the Program class.

static void Main(string[] args)
{
// OC Automation API classes can't be instantiated unless
// O0ffice Communicator is running.
if (IsCommunicatorRunning())
{

Console.WriteLine("Office Communicator is running.");
_messenger = new Messenger();

_messenger.OnAppShutdown += new
DMessengerEvents_OnAppShutdownEventHandler (
_messenger_OnAppShutdown) ;

_messenger.0OnSignin += new
DMessengerEvents_OnSigninEventHandler(
_messenger_OnSignin);

_messenger.0OnSignout += new
DMessengerEvents_OnSignoutEventHandler(
_messenger_OnSignout) ;

// Check if the user is already signed in to

// Office Communicator and sign in if they are not.

if ((_messenger.MyStatus & MISTATUS.MISTATUS_ONLINE) ==
MISTATUS.MISTATUS_ONLINE)

{
_signedIn = true;
Console.WriteLine("Local user is signed in to
Office Communicator");

}

else

{

_signedIn = false;
Console.WriteLine("Local user is signed in to
Office Communicator");

Console.WriteLine("Signing in local user to Office
Communicator via AutoSignin().");

_messenger.AutoSignin();

Chapter 3 Programming a Microsoft Office Communicator Automation API Application

// Sign out of Office Communications Server
_messenger.Signout();

Console.WriteLine("\nPress Enter key to exit the
application.\n");
Console.ReadLine();

_messenger.OnAppShutdown -= new
DMessengerEvents_OnAppShutdownEventHandler(
_messenger_OnAppShutdown) ;

_messenger.OnSignin -= new
DMessengerEvents_OnSigninEventHandler
_messenger_OnSignin);

_messenger.0OnSignout -= new
DMessengerEvents_OnSignoutEventHandler (
_messenger_OnSignout) ;

Marshal.ReleaseComObject(_messenger);
_messenger = null;

}

else

{
Console.WriteLine("Office Communicator is *not*
running.");
Console.WriteLine("Please start Office Communicator and
run the application again.");
Console.WriteLine("\nPress Enter key to exit the
application.™);
Console.ReadLine();

}

}

In the preceding code, the IsCommunciatorRunning() method checks to see whether

57

Office Communicator is running. If sCommunicatorRunning() returns True, an instance of
the Messenger class is created and event subscriptions are established for the OnSignin,
OnSignout, and AppShowdown events. Next, Messenger.MyStatus checks the status of the

local user and sets the _signedIn variable. If the local user is not signed in, Messenger.
AutoSignin() signs the local user in to Office Communicator. Messenger.Signout() is

called to sign out the local user. When the user exits the application, references to the

Messenger class are released using Marshal.ReleaseComObject().

8. Add the following code to the Program class to define the event delegates defined in

Main().

static void _messenger_OnSignout()

{
_signedIn = false;
Console.WriteLine("OnSignout()");

58 Part Il Office Communicator Automation API

static void _messenger_OnSignin(int hr)

{
if Chr == 0)
{
_signedIn = true;
Console.WriteLine("OnSignin()");
}
}
static void _messenger_OnAppShutdown()
{
Console.WriteLine("OnAppShutdown()");
}

In the preceding code, the _signedin variable is set to False when the local user is
signed out. The variable is set to True when the user signs in. Note that the _signedin
variable does not need to be set when the OnAppShutdown event fires because that
event is always preceded by the OnSignout event.

9. Run the application by clicking Debug on the Visual Studio menu, and then click Start
Debugging.

10. Sign in to and sign out of Office Communicator, noting the effect of these actions in
the console application.

11. Close the console application and save your work in Visual Studio.

This console application provides the logic to create Office Communicator API classes only
when Office Communicator is running and manages a variable to keep track of the current
signed-in state of the local user.

Working with Contact Information and Contact Presence

With the Office Communicator Automation API, you can display information from Office
Communicator for the local user and her or his contacts. This information includes information
such as name, phone number, and presence.

Displaying Local User Information

The Messenger class has properties and methods to provide programmatic access to
information about the local user signed in to Office Communicator. Use these properties
to display information about the local user in your applications. The Messenger class also
provides events to notify your application of changes to this information so you can keep
information up to date in your application.

Chapter 3 Programming a Microsoft Office Communicator Automation API Application 59

Messenger.MySigninName Property

You can get the sign-in name (or SIP URI) for the local user by using the Messenger.
MySigninName property. For example, the following code writes the local user’s sign-in
name to the console.

Messenger _messenger = new Messenger();

Console.WriteLine("MySigninName: {0}",
_messenger.MySigninName) ;

Messenger.MyFriendlyName Property

You can get the friendly name (that is, a name readable by humans) for the local user using
the Messenger.MyFriendlyName property. For example, the following code writes the local
user’s friendly name to the console.

Messenger _messenger = new Messenger();

Console.WriteLine("MyFriendlyName: {0}",
_messenger.MyFriendlyName) ;

Messenger.OnMyFriendlyNameChange Event

If the friendly name of the local user changes, the Messenger class raises the
OnMyfFriendlyNameChange event. The following code shows how to subscribe to the
OnMyfFriendlyNameChange event by using the DMessengerEvents_OnMyFriendlyNameChange-
EventHandler event handler.

Messenger _messenger = new Messenger();

messenger.OnMyFriendlyNameChange += new DMessengerEvents
OnMyFriendTyNameChangeEventHandler(_messenger_OnMyFriendlyNameChange) ;

static void _messenger_OnMyFriendlyNameChange(int hr,
string bstrPrevFriendlyName)

{
if (hr == 0)
{
Console.WriteLine(
"OnMyFriendlyNameChange: PrevFriendlyName: {0}
MyFriendlyName: {1}",
bstrPrevFriendlyName,
_messenger.MyFriendlyName);
}
}

When the OnMyfFriendlyNameChange event is raised, an integer is passed that represents the
success of the change (that is, a value equal to 0 represents success) and the previous friendly
name of the local user is passed as a string.

60

Part Il Office Communicator Automation API

Messenger.get_ MyPhoneNumber Property

You can get the phone numbers for the local user using the Messenger.get_ MyPhoneNumber
property. An enumeration named MPHONE_TYPE is used to specify which phone number
is returned by the method. For example, the following code writes the local user’s phone

numbers to the console.

Messenger _messenger = new Messenger();

Console.WriteLine("\tMyPhoneNumber (Work): {03}",
_messenger.get_MyPhoneNumber (
MPHONE_TYPE . MPHONE_TYPE_WORK)) ;

Console.WriteLine("\tMyPhoneNumber (Mobile): {0}",
_messenger.get_MyPhoneNumber (

MPHONE_TYPE .MPHONE_TYPE_MOBILE));

Console.WriteLine("\tMyPhoneNumber (Home): {0}",
_messenger.get_MyPhoneNumber(

MPHONE_TYPE .MPHONE_TYPE_HOME)) ;

Console.WriteLine("\tMyPhoneNumber (Other): {0}",
_messenger.get_MyPhoneNumber(

MPHONE_TYPE .MPHONE_TYPE_CUSTOM)) ;

Messenger.OnMyPhoneChange Event

If the phone number of the local user changes, the Messenger class raises the
OnMyPhoneChange event. The following code shows how to subscribe to the

OnMyPhoneChange event by using the DMessengerEvents_ OnMyPhoneChangeEventHandler

event handler.

_messenger = new Messenger();

_messenger.OnMyPhoneChange += new
DMessengerEvents_0OnMyPhoneChangeEventHandler (
_messenger_OnMyPhoneChange) ;

static void _messenger_OnMyPhoneChange(MPHONE_TYPE PhoneType,
string bstrNumber)

Console.WriteLine("OnMyPhoneChange: PhoneType: {0} Number:
{1}", PhoneType.ToString(), bstrNumber);
}

When the OnMyPhoneChange event is raised, a MPHONE_TYPE value is passed to specify
which phone number changed (that is, work, mobile, home, or other) along with the new

phone number as a string.

Chapter 3 Programming a Microsoft Office Communicator Automation API Application 61

Putting It All Together

Using the concepts in this section, you can display local user information in your applica-
tion and keep that information up to date easily by using the events raised by the Messenger
class. In this section, you create a console application and use the Messenger class to display
local user information and react to changes in that information.

1. Start Visual Studio (if it's not already running) and create a new Visual C# Windows
console application named LocalUserInfo.

2. In Solution Explorer, right-click the References node, click Add References, and then,
from the COM tab, add a reference to Microsoft Office Communicator 2007 API Type
Library.

3. Open Program.cs and add the following using statements.

using CommunicatorAPI;
using System.Runtime.InteropServices;

The preceding code brings the Office Communicator Automation APl and
InteropServices namespaces into scope.

4. Add the following declaration inside the Program class.

private static Messenger _messenger;

5. Add the following code to the Main() method in the Program class.

static void Main(string[] args)

{

_messenger = new Messenger();

_messenger.0OnMyFriendlyNameChange += new
DMessengerEvents_OnMyFriendlyNameChangeEventHandler(
_messenger_OnMyFriendlyNameChange) ;

_messenger.0OnMyPhoneChange += new
DMessengerEvents_OnMyPhoneChangeEventHandler(
_messenger_OnMyPhoneChange) ;

Console.WriteLine("Local User Info for {0}:",
_messenger.MyFriendlyName) ;
Console.WriteLine("\tMySigninName: {0}",
_messenger.MySigninName) ;
Console.WriteLine("\tMyPhoneNumber (Work): {03}",
_messenger.get_MyPhoneNumber(
MPHONE_TYPE .MPHONE_TYPE_WORK)) ;
Console.WriteLine("\tMyPhoneNumber (Mobile): {0}",
_messenger.get_MyPhoneNumber(
MPHONE_TYPE .MPHONE_TYPE_MOBILE));
Console.WriteLine("\tMyPhoneNumber (Home): {0}",
_messenger.get_MyPhoneNumber(
MPHONE_TYPE .MPHONE_TYPE_HOME)) ;

62 Part Il Office Communicator Automation API

Console.WriteLine("\tMyPhoneNumber (Other): {0}",
_messenger.get_MyPhoneNumber (
MPHONE_TYPE .MPHONE_TYPE_CUSTOM)) ;

Console.WriteLine("\nPress Enter key to exit the
application.\n");
Console.ReadLine();

_messenger.0OnMyFriendlyNameChange -= new
DMessengerEvents_OnMyFriendlyNameChangeEventHandler (
_messenger_OnMyFriendlyNameChange) ;

_messenger.0OnMyPhoneChange -= new
DMessengerEvents_0OnMyPhoneChangeEventHandler(
_messenger_OnMyPhoneChange) ;

Marshal.ReleaseComObject(_messenger);
_messenger = null;
}
The preceding code uses the Messenger class to write the friendly name, sign-in name,
and phone numbers for the local user.

6. Add the following code to Program.cs to define the event delegates for the local user
information events.

static void _messenger_OnMyPhoneChange (MPHONE_TYPE PhoneType,
string bstrNumber)

Console.WriteLine("OnMyPhoneChange: PhoneType: {0}
Number: {1}", PhoneType.ToString(), bstrNumber);

static void _messenger_OnMyFriendlyNameChange(int hr,
string bstrPrevFriendlyName)

if (hr == 0)

{
Console.WriteLine("OnMyFriendlyNameChange:
PrevFriendlyName: {0} MyFriendlyName: {1}",
bstrPrevFriendlyName, _messenger.MyFriendlyName);

3

7. Run the application by clicking Debug on the Visual Studio menu, and then click Start
Debugging.

8. Change the phone numbers listed in Office Communicator to see the result of the
event being raised in the console application.

9. Close the console application and save your work in Visual Studio.

This console application provides the logic to display local user information and present
updated information in the event of changes.

Chapter 3 Programming a Microsoft Office Communicator Automation API Application 63

Retrieving Contact Information

The IMessengerContactAdvanced class represents a contact in Office Communicator and
enables you to display contact information, such as the contact’s name and phone numbers.

Messenger.GetContact() Method

To obtain an instance of IMessengerContactAdvanced, you pass the SIP URI of the contact
to the Messenger.GetContact() method. For example, the following code gets an instance of
IMessengerContactAdvanced for the contact with the SIP URI adamb@uc.contoso.com.

Messenger _messenger = new Messenger();

IMessengerContactAdvanced contact =
(IMessengerContactAdvanced)
_messenger.GetContact("sip:adamb@uc.contoso.com",
_messenger.MyServiceld);

In the preceding code, note the use of the Messenger.MyServicelD property. This property
provides a globally unique identifier of the Office Communications Server 2007 R2 instance
that the local user has signed in to.

Getting Contact Information

The IMessengerContactAdvanced class supports properties to display the friendly name,
sign-in name, and phone numbers of a contact in a way that resembles the Messenger class
support of similar properties for the local user. For example, the following code displays
contact information for the contact adamb@uc.contoso.com.

Messenger _messenger = new Messenger();

IMessengerContactAdvanced contact =
(IMessengerContactAdvanced)
_messenger.GetContact("sip:adamb@uc.contoso.com",
_messenger.MyServiceld);

if (contact != null)
{
Console.WriteLine("Contact Info for {0}:",
contact.FriendlyName);
Console.WriteLine("\tSigninName: {0}",
contact.SigninName) ;

try
{
Console.WriteLine("\tPhoneNumber (Work): {0}",
contact.get_PhoneNumber(
MPHONE_TYPE .MPHONE_TYPE_WORK)) ;
Console.WriteLine("\tPhoneNumber (Mobile): {0}",
contact.get_PhoneNumber(
MPHONE_TYPE .MPHONE_TYPE_MOBILE));

64 Part Il Office Communicator Automation API

Console.WriteLine("\tPhoneNumber (Home): {0}",
contact.get_PhoneNumber (
MPHONE_TYPE .MPHONE_TYPE_HOME)) ;
Console.WriteLine("\tPhoneNumber (Other): {0}",
contact.get_PhoneNumber (
MPHONE_TYPE .MPHONE_TYPE_CUSTOM)) ;

}
catch
{
// Exception logic goes here.
}

Note Office Communications Server 2007 R2 and Office Communicator 2007 R2 support the
implementation of a new presence model named Enhanced Presence. With Enhanced Presence,
the local user has access to contact information based on the level of access granted by the
contact. For example, if the local user has been granted team-level access by a contact, the local
user has access to the work and mobile phone numbers, but not the home phone number of the
contact. When calling IMessengerContactAdvanced.get_ PhoneNumber on a contact, the method
throws an exception when trying to access the home phone number. Therefore, it is important
to wrap such calls in a try/catch block. For more information about the different levels of access
defined by Office Communicator, see Office Communicator Help at http.//go.microsoft.com/
fwlink/?linkid=143210.

Messenger.OnContactFriendlyNameChange Event

If the friendly name of a contact in the local user’s contact list changes, the Messenger class
raises the Messenger.OnContactFriendlyNameChange event. The following code shows how
to subscribe to this event by using the DMessengerEvents_OnContactFriendlyNameChange-
EventHandler event handler.

Messenger _messenger = new Messenger();

_messenger.OnContactFriendlyNameChange += new
DMessengerEvents_OnContactFriendlyNameChangeEventHandler(
_messenger_OnContactFriendlyNameChange) ;

static void _messenger_OnContactFriendlyNameChange(int hr,
object pMContact, string bstrPrevFriendlyName)
{
IMessengerContactAdvanced contact =
(IMessengerContactAdvanced)pMContact;

Chapter 3 Programming a Microsoft Office Communicator Automation API Application 65

if Chr == 0)
{
Console.WriteLine("OnMyFriendlyNameChange for {0}:
\n\tPrevFriendlyName: {1} FriendlyName: {2}",
contact.FriendlyName, bstrPrevFriendlyName,
contact.FriendlyName);

3

When the OnContactfFriendlyNameChange event is raised, an instance of IMessengerContact-
Advanced is passed as an object in the pMContact parameter. By casting this parameter to be
of type IMessengerContactAdvanced, you provide access to a reference of the contact.

Note The Messenger.OnContactFriendlyNameChange event fires only for contacts in the local
user's contact list in Office Communicator.

Messenger.OnContactPhoneChange Event

If the phone number for a contact in the local user’s contact list changes, the Messenger
class raises the Messenger.OnContactPhoneChange event. The following code shows how to
subscribe to this event using the DMessengerEvents_OnContactPhoneChangeEventHandler
event handler.

Messenger _messenger = new Messenger();

_messenger.0OnContactPhoneChange += new
DMessengerEvents_OnContactPhoneChangeEventHandler(
_messenger_OnContactPhoneChange) ;

static void _messenger_OnContactPhoneChange(int hr,
object pContact, MPHONE_TYPE PhoneType, string bstrNumber)
{
IMessengerContactAdvanced contact =
(IMessengerContactAdvanced)pContact;

if (hr == 0)
{
Console.WriteLine("OnContactPhoneChange for {0}:
\n\tPhoneType: {1} Number: {2}", contact.FriendlyName,
PhoneType.ToString(), bstrNumber);

66

Part Il Office Communicator Automation API

When the OnContactPhoneChange event is raised, an instance of IMessengerContactAdvanced
is passed as an object in the pContact parameter. By casting this parameter to be of type
IMessengerContactAdvanced, you provide access to a reference of the contact.

Note The Messenger.OnContactPhoneChange event fires only for contacts in the local users
contact list in Office Communicator. Furthermore, the Messenger.OnContactPhoneChange event
fires only for phone numbers that the local user has access to by using Enhanced Presence. For
example, the Messenger.OnContactPhoneChange event fires for changes to the work and mobile
numbers if the local user has been granted team-level access by the contact and does not fire
when the contact changes her or his home phone number.

Putting It All Together

Using the concepts in this section, you can add contact information to your application
and keep that information up to date easily by using the events raised by the Messenger
class. In this section, you create a console application and use the Messenger class and its
IMessengerContactAdvanced interface to display contact information by performing the
following steps:

1. Start Visual Studio (if it's not already running) and create a new Visual C# Windows
console application named ContactInfo.

2. In Solution Explorer, right-click the References node, click Add References, and then,
from the COM tab, add a reference to Microsoft Office Communicator 2007 API Type
Library.

3. Open Program.cs and add the following using statements.

using CommunicatorAPI;
using System.Runtime.InteropServices;

4. Add the following declaration inside the Program class.

private static Messenger _messenger;

The _messenger member variable provides an instance of the Messenger class.

5. Add the following code to the Main() method in the Program class.

static void Main(string[] args)

{

_messenger = new Messenger();

_messenger.OnContactFriendlyNameChange += new
DMessengerEvents_OnContactFriendlyNameChangeEventHandTer(
_messenger_OnContactFriendlyNameChange) ;

_messenger.OnContactPhoneChange += new
DMessengerEvents_OnContactPhoneChangeEventHandTer(
_messenger_OnContactPhoneChange) ;

Chapter 3 Programming a Microsoft Office Communicator Automation API Application 67

IMessengerContactAdvanced contact =
(IMessengerContactAdvanced)_messenger.GetContact(

"sip:adamb@uc.contoso.com", _messenger.MyServiceld);
if (contact != null)
{
Console.WriteLine("Contact Info for {0}:",
contact.FriendlyName);
Console.WriteLine("\tSigninName: {0}",
contact.SigninName) ;
try
{
Console.WriteLine("\tPhoneNumber (Work): {0}",
contact.get_PhoneNumber(
MPHONE_TYPE .MPHONE_TYPE_WORK)) ;
Console.WriteLine("\tPhoneNumber (Mobile): {0}",
contact.get_PhoneNumber(
MPHONE_TYPE .MPHONE_TYPE_MOBILE));
Console.WriteLine("\tPhoneNumber (Home): {0}",
contact.get_PhoneNumber(
MPHONE_TYPE .MPHONE_TYPE_HOME)) ;
Console.WriteLine("\tPhoneNumber (Other): {0}",
contact.get_PhoneNumber(
MPHONE_TYPE .MPHONE_TYPE_CUSTOM)) ;
}
catch
{
//Your exception logic goes here.
}
}

Console.WriteLine("\nPress Enter key to exit the
application.\n");
Console.ReadLine();

_messenger.OnContactFriendlyNameChange -= new
DMessengerEvents_OnContactFriendlyNameChangeEventHandler(
_messenger_OnContactFriendlyNameChange) ;
_messenger.OnContactPhoneChange -= new
DMessengerEvents_OnContactPhoneChangeEventHandTer (
_messenger_OnContactPhoneChange) ;

Marshal.ReleaseComObject(_messenger);

_messenger = null;

Marshal.ReleaseComObject(_contact);

_contact = null;

}

The preceding code uses Messenger.GetContact() to get an instance of the IMessenger-
ContactAdvanced interface of a contact with the SIP URI adamb@uc.contoso.com.
Then, the code writes contact information to the console. Also, the Messenger class is
used to subscribe to event changes to the contact’s information.

68 Part Il Office Communicator Automation API

6. Add the following code to Program.cs to define the event delegates for the contact
information.

static void _messenger_OnContactPhoneChange(int hr,
object pContact, MPHONE_TYPE PhoneType, string bstrNumber)

{

if (hr == 0)

{

Console.WriteLine("OnContactPhoneChange for {0}:
\n\tPhoneType: {1} Number: {2}", contact.FriendlyName,
PhoneType.ToString(), bstrNumber);

}

}

static void _messenger_OnContactFriendlyNameChange(int hr,
object pMContact, string bstrPrevFriendlyName)

{
IMessengerContactAdvanced contact =
(IMessengerContactAdvanced)pMContact;
if (hr == 0)
{
Console.WriteLine("OnMyFriendlyNameChange for {0}:
\n\tPrevFriendlyName: {1} FriendlyName: {2}",
contact.FriendlyName, bstrPrevFriendlyName,
contact.FriendlyName);
}
}

In each delegate implementation, note that an instance of IMessengerContactAdvanced
is passed as an object in the pMContact parameter. Cast this pMContact to IMessenger-
ContactAdvanced to use that instance.

7. Run the application by clicking Debug on the Visual Studio menu, and then click Start
Debugging.

8. Change the Work phone number for a contact in the local user’s contact list.

9. Close the console application and save your work in Visual Studio.

This console application provides the logic to display contact information for a contact and
changes to contact information for any contact in the local user’s contact list. By running the
preceding code, you display the information for the contact with the sign-in name adamb@
uc.contoso.com and display changes to the friendly name or phone number for any contact
in the user’s contact list.

Publishing and Subscribing to Contact Presence

The IMessengerContactAdvanced interface provides access to presence information for both
the local user and his or her contacts. The Messenger class provides events that are raised
when presence information changes, which enables your application to subscribe to presence

Chapter 3 Programming a Microsoft Office Communicator Automation API Application 69

for the local user and his or her contacts. By using both of these features of the API, you can
display up-to-date presence information in your application.

When using Office Communicator, you can see elements of presence for the local user, as
shown in Figure 3-2.

- Office Communicator T

= Chris D. Mayo Inacal —e=q— Status
_e = [E] Thisis my Presence Nobe..._lg'_ — Presence Note
@ Busy
@ Do NotDisturb
) BeRight Back

Availability —

) Away
Reset Status
Inacal

Options... Offiine

Sign Out

FIGURE 3-2 The user’s presence information in Office Communicator.

Similarly, you can see presence information for the user’s contacts in the contact list within
Office Communicator.

IMessengerContactAdvanced.PresenceProperties Property

Use the IMessengerContactAdvanced.PresenceProperties property to access presence
information for any contact, including the local user. For example, the following code gets
the presence information for the local user and then writes the status to the console.

IMessengerContactAdvanced _contact =
(IMessengerContactAdvanced)
_messenger.GetContact(_messenger.MySigninName,
_messenger.MyServiceld);

object[] presenceProps =
object[])_contact.PresenceProperties;

// Sign In Status.

Console.WriteLine("Local User Status: {0}",
(MISTATUS)presenceProps[
(int)PRESENCE_PROPERTY.PRESENCE_PROP_MSTATE]) ;

IMessengerContactAdvanced.PresenceProperties returns an array of objects that holds each
of the presence values for a contact. The array can be indexed by using the PRESENCE_
PROPERTY enumeration. Table 3-2 explains each PRESENCE_PROPERTY enumeration value.

70

Part Il Office Communicator Automation API

TABLE 3-2 PRESENCE_PROPERTY Enumeration Values

Element Explanation

PRESENCE_PROP_MSTATE Gives the status of the contact as a value in the enumera-
tion MISTATUS. Read-only.

PRESENCE_PROP_AVAILABILITY Gives the availability of the contact as an integer. Read/
write for the local user. Read-only for contacts.

PRESENCE_PROP_IS_BLOCKED Represents whether the contact is blocked by the local user.
Boolean value.

PRESENCE_PROP_PRESENCE_NOTE Presence note as displayed in Office Communicator as a
string. Read/write for the local user; read-only for contacts.

PRESENCE_PROP_IS_OOF Represents whether the contact has set their out of office
state. Boolean value. Read-only.

PRESENCE_PROP_TOOL_TIP Tooltip displayed in Office Communicator for a contact as a

string. Read-only.

PRESENCE_PROP_CUSTOM_STATUS_ Custom status string for the contact as a string. Read-only.
STRING

IMessengerContactAdvanced.PresenceProperties returns presence information for any
contact, but it returns current presence information only for contacts in the local user’s contact
list. If the contact is not in the user’s contact list, calling IMessengerContactAdvanced.
PresenceProperties returns presence information that is up to two minutes old. To get up-to-
date presence information, add the contact to the local user’s contact list. Calls to IMessenger-
ContactAdvanced.PresenceProperties return only presence information based on the level of
access granted to the user by the contact.

You can use IMessengerContactAdvanced.PresenceProperties to publish presence information
for the local user. For example, the following code sets the availability for the signed-in user
to available.

IMessengerContactAdvanced _localUser =
(IMessengerContactAdvanced)_messenger.GetContact(
_messenger.MySigninName, _messenger.MyServiceId);

// Set the local user to available (3000).
object[] _presProps = new object[8];

_presProps[(int) PRESENCE_PROPERTY.PRESENCE_PROP_AVAILABILITY]
= 3000;

_TocalUser.PresenceProperties = (object)_presProps;

Note /MessengerContactAdvanced.PresenceProperties can set presence information for the
settings that the local user can set from Office Communicator.

Chapter 3 Programming a Microsoft Office Communicator Automation API Application 71

Messenger.OnMyStatusChange Event

The Messenger class raises the OnMyStatusChange event if any element of the local user’s
presence changes. The following code shows how to subscribe to the OnMyStatusChange
event by using the DMessengerEvents_OnMyStatusChangeEventHandler event handler.

Messenger _messenger = new Messenger();

_messenger.OnMyStatusChange += new
DMessengerEvents_OnMyStatusChangeEventHandler (
_messenger_OnMyStatusChange) ;

static void _messenger_OnMyStatusChange(int hr,
MISTATUS mMyStatus)
{

// Your code to work with presence goes here...

3

Note The Messenger.OnMyStatusChange event passes a parameter, mMyStatus, of type
MISTATUS when the event is raised. The mMyStatus parameter specifies the presence status
of the local user. Because the Messenger.OnMyStatusChange event is raised when any ele-
ment of the local user’s presence changes (for example, the local user’s presence note), use
the IMessengerContactAdvanced.PresenceProperties property rather than mMyStatus because
PresenceProperties provides full access to the presence information for a contact. For details,
see step 7 in the next “Putting It All Together” section.

Messenger.OnContactStatusChange Event

The Messenger class raises the OnContactStatusChange event if any element of presence for a
contact in the local user’s contact list changes. The following code shows how to subscribe to
the OnContactStatusChange event by using the DMessengerEvents_OnContactStatusChange-
EventHandler event handler.

Messenger _messenger = new Messenger();

_messenger.OnContactStatusChange += new
DMessengerEvents_OnContactStatusChangeEventHandler(
_messenger_OnContactStatusChange);

static void _messenger_OnContactStatusChange(object pMContact,
MISTATUS mStatus)

{
// Your code to work with presence goes here...

}

72

¥

Part Il Office Communicator Automation API

Note The MessengerOnContactStatusChange event fires only for contacts in the local user’s
contact list.

Tip Like Messenger.OnMyStatusChange, Messenger.OnContactStatusChange passes a param-
eter mStatus of type MISTATUS when the event is raised. Use the IMessengerContactAdvanced.
PresenceProperties property rather than mMyStatus when subscribing to presence information.

Putting It All Together

By using the concepts in this section, you can add local user and contact presence informa-
tion to your application by using IMessengerContactAdvanced and keep that information up
to date easily by using the events raised by the Messenger class. In this section, you create a
console application, use the Messenger class and IMessengerContactAdvanced interface to
display presence information for the local user and a contact, and display changes to pres-
ence information for contacts in the local user’s contact list, as follows:

1. Start Visual Studio (if it's not already running) and create a new Visual C# Windows
console application named ContactPresence.

2. In Solution Explorer, right-click the References node, click Add References, and then,
from the COM tab, add references to Microsoft Office Communicator 2007 API Type
Library.

3. Open Program.cs and add the following using statements.

using CommunicatorAPI;
using System.Runtime.InteropServices;

4. Add the following declaration inside the Program class.

private static Messenger _messenger;
The _messenger member variable provides an instance of the Messenger class.

5. Add the following code to the Main() method in the Program class.

static void Main(string[] args)

{

_messenger = new Messenger();

_messenger.OnContactStatusChange += new
DMessengerEvents_OnContactStatusChangeEventHandler(
_messenger_OnContactStatusChange);

_messenger.0OnMyStatusChange += new
DMessengerEvents_OnMyStatusChangeEventHandler(
_messenger_OnMyStatusChange) ;

Chapter 3 Programming a Microsoft Office Communicator Automation API Application 73

IMessengerContactAdvanced _localUser =
(IMessengerContactAdvanced)_messenger.GetContact(
_messenger.MySigninName, _messenger.MyServiceId);

if (_localUser != null)
{
DisplayContactPresence(_localUser);

}

// Set the Tocal user to Available (3000) in code.
object[] _presProps = new object[8];
_presProps[
(int) PRESENCE_PROPERTY . PRESENCE_PROP_AVAILABILITY]
= 3000;

_TlocalUser.PresenceProperties = (object)_presProps;

IMessengerContactAdvanced _contact =
(IMessengerContactAdvanced)_messenger.GetContact(
"adamb@uc.contoso.com", _messenger.MyServiceld);

if (_contact != null)
{

DisplayContactPresence(_contact);

}

Console.WriteLine("\nPress Enter key to exit the
application.\n");
Console.ReadLine();

_messenger.0OnContactStatusChange -= new
DMessengerEvents_OnContactStatusChangeEventHandler(
_messenger_OnContactStatusChange) ;

_messenger.0OnMyStatusChange -= new
DMessengerEvents_OnMyStatusChangeEventHandTer (
_messenger_OnMyStatusChange);

Marshal.ReleaseComObject(_messenger);

_messenger = null;

Marshal.ReleaseComObject(_TocalUser);

_localUser = null;

Marshal.ReleaseComObject(_contact);

_contact = null;

}

In the preceding code, the Messenger class is instantiated and used to subscribe to
status event changes for the local user (that is, by using the OnMyStatusChange event)
and the user’s contacts (that is, by using the OnContactStatusChange event). Next, you
use Messenger.GetContact() to get an instance of the local user by using the IMessenger-
ContactAdvanced interface to display presence information. You use the IMessenger-
ContactAdvanced.PresenceProperties property to publish presence for the local user.
You call Messenger.GetContact() again to get an instance of a contact by using the
IMessengerContactAdvanced interface to display presence information for the contact.

74 Part Il Office Communicator Automation API

6. Add the following code to Program.cs to define the event delegates for the presence
information events.

static void _messenger_OnMyStatusChange(int hr,
MISTATUS mMyStatus)

{

DisplayContactPresence((IMessengerContactAdvanced)
_messenger.GetContact(_messenger.MySigninName,
_messenger.MyServiceld));

}

static void _messenger_OnContactStatusChange(object pMContact,
MISTATUS mStatus)

DisplayContactPresence((IMessengerContactAdvanced)
pMContact);
}

7. Implement the DisplayContactPresence method in the Program class by using the
following code.

static void DisplayContactPresence(
IMessengerContactAdvanced contact)

object[] _presenceProps = (object[])
contact.PresenceProperties;

if (contact.IsSelf)

{
Console.WriteLine("Local User Presence Info for {0}:",
contact.FriendlyName);
}
else
{
Console.WriteLine("Contact Presence Info for {0}:",
contact.FriendlyName);
}
// Status.

Console.WriteLine("\tStatus: {0}", (MISTATUS) _presenceProps[
(int)PRESENCE_PROPERTY.PRESENCE_PROP_MSTATE]) ;

Console.WriteLine("\tStatus String: {0}",
GetStatusString((MISTATUS) _presenceProps[
(int)PRESENCE_PROPERTY.PRESENCE_PROP_MSTATE]));

// Status string if status is set to custom.

Console.WriteLine("\tCustom Status String: {0}",
_presenceProps[(int)
PRESENCE_PROPERTY . PRESENCE_PROP_CUSTOM_STATUS_STRING]) ;

// Presence or User state.
Console.WriteLine("\tAvailability: {0}",
_presenceProps[
(int) PRESENCE_PROPERTY.PRESENCE_PROP_AVAILABILITY]);
Console.WriteLine("\tAvailability String: {0}",
GetAvailabilityString((int) _presenceProps[(int)
PRESENCE_PROPERTY.PRESENCE_PROP_AVAILABILITY]));

Chapter 3 Programming a Microsoft Office Communicator Automation API Application 75

}

// Presence note.

Console.WriteLine("\tPresence Note: \n'{0}'",
_presenceProps[(int)
PRESENCE_PROPERTY . PRESENCE_PROP_PRESENCE_NOTE]) ;

// Blocked status.

Console.WriteLine("\tIs Blocked: {0}", _presenceProps[
(int) PRESENCE_PROPERTY . PRESENCE_PROP_IS_BLOCKED]) ;

// OOF message for contact, if specified.

Console.WriteLine("\tIs OOF: {0}", _presenceProps[
(int) PRESENCE_PROPERTY .PRESENCE_PROP_IS_OOF]);

// Tooltip.

Console.WriteLine("\tTool Tip: \n'{0}'\n", _presenceProps[
(int) PRESENCE_PROPERTY . PRESENCE_PROP_TOOL_TIP]);

The preceding code uses the IMessengerContactAdvanced.PresenceProperties property
to retrieve the presence information for a contact and local user.

8. Implement the GetAvailabilityString and GetStatusString methods by adding the follow-
ing code to the Program class.

static string GetAvailabilityString(int availability)

{

}

switch (availability)
{

case 3000:

return "Available";
case 4500:

return "Inactive";
case 6000:

return "Busy";
case 7500:

return "Busy-Idle";
case 9000:

return "Do not disturb";
case 12000:

return "Be right back";
case 15000:

return "Away";
case 18000:

return "Offline";
default:

return "";

static string GetStatusString(MISTATUS mStatus)

{

switch (mStatus)
{
case MISTATUS.MISTATUS_ALLOW_URGENT_INTERRUPTIONS:
return "Urgent interruptions only";
case MISTATUS.MISTATUS_AWAY:
return "Away";
case MISTATUS.MISTATUS_BE_RIGHT_BACK:
return "Be right back";

76 Part Il Office Communicator Automation API

case MISTATUS.MISTATUS_BUSY:
return "Busy";

case MISTATUS.MISTATUS_DO_NOT_DISTURB:
return "Do no disturb";

case MISTATUS.MISTATUS_IDLE:
return "Idle";

case MISTATUS.MISTATUS_INVISIBLE:
return "Invisible";

case MISTATUS.MISTATUS_IN_A_CONFERENCE:
return "In a conference";

case MISTATUS.MISTATUS_IN_A_MEETING:
return "In a meeting";

case MISTATUS.MISTATUS_LOCAL_CONNECTING_TO_SERVER:
return "Connecting to server";

case MISTATUS.MISTATUS_LOCAL_DISCONNECTING_FROM_SERVER:
return "Disconnecting from server";

case MISTATUS.MISTATUS_LOCAL_FINDING_SERVER:
return "Finding server";

case MISTATUS.MISTATUS_LOCAL_SYNCHRONIZING_WITH_SERVER:
return "Synchronizing with server";

case MISTATUS.MISTATUS_MAY_BE_AVAILABLE:
return "Inactive";

case MISTATUS.MISTATUS_OFFLINE:
return "Offline";

case MISTATUS.MISTATUS_ONLINE:
return "OnTline";

case MISTATUS.MISTATUS_ON_THE_PHONE:
return "In a call";

case MISTATUS.MISTATUS_OUT_OF_OFFICE:
return "Out of office";

case MISTATUS.MISTATUS_OUT_TO_LUNCH:
return "Out to Tunch";

case MISTATUS.MISTATUS_UNKNOWN:
return "Unknown";

default:
return string.Empty;

3
The preceding code returns the availability and status information of a contact in
human-readable form as a string.
9. Run the application by clicking Debug on the Visual Studio menu, and then click Start
Debugging.
10. Change the presence information for the local user and one of the local user’s contacts.

11. Close the console application and save your work in Visual Studio.

This console application provides the logic to display presence information for the local user
and her or his contacts. For example, by running the preceding code, you display presence
information for the local user and one of her or his contacts and then change the availability
for the local user to Online.

Chapter 3 Programming a Microsoft Office Communicator Automation API Application 77

Working with the Office Communicator Contact List

The IMessengerContacts interface provides access to the user's contact list in Office
Communicator 2007 R2, as well as the ability to remove contacts from the contact list. You
use the Messenger class to add contacts to the contact list.

Messenger.MyContacts Property

A call to the Messenger.MyContacts property returns an instance of the IMessengerContacts
interface. For example, the following code gets an instance of IMessengerContacts by using
the Messenger class.

_messenger = new Messenger();

IMessengerContacts _contacts = (IMessengerContacts)
_messenger.MyContacts;

IMessengerContacts.ltem() Method

The IMessengerContacts interface provides a collection of IMessengerContactAdvanced
instances, one for each contact in the user’s contact list. You use the IMessengerContacts.Count
property and IMessengerContacts.Item() to iterate though this collection, as illustrated in the
following code.

_messenger = new Messenger();

IMessengerContacts _contacts =
(IMessengerContacts)_messenger.MyContacts;

IMessengerContactAdvanced _contact;
Console.WriteLine("Contact 1ist for the Tlocal user:");
for (int i = 0; i < _contacts.Count; i++)

{

_contact = (IMessengerContactAdvanced) _contacts.Item(i);
Console.WriteLine("\t{0}", _contact.FriendlyName);

Messenger.AddContact() Method

Use the Messenger.AddContact() method to add contacts to the local user’s contact list. For
example, the following code adds a contact with the SIP URI amys@uc.contoso.com.

_messenger = new Messenger();

// Adding a contact to the contact Tist.
_messenger.AddContact(0, "amys@uc.contoso.com");

78 Part Il Office Communicator Automation API

Note In the call to the Messenger.AddContact() method, the first parameter, hwndParent, is
reserved and always set to 0.

IMessengerContacts.Remove() Method

Contacts are removed from the user’s contact list by using the IMessengerContacts.Remove()
method. For example, the following code removes a contact with the SIP URI jamesa@uc.contoso.
com from the contact list.

Messenger _messenger = new Messenger();
IMessengerContacts _contacts = (IMessengerContacts)_messenger.MyContacts;

// Removing a contact from the contact Tist.

_contacts.Remove((IMessengerContactAdvanced)
_messenger.GetContact("jamesa@uc.contoso.com",
_messenger.MyServicelId));

Messenger.OnContactListAdd Event

IMessengerContacts is a static collection representing the local user’s contact list when
Messenger.MyContacts is called. If contacts are added or removed from the contact list,
the IMessengerContacts instance is not updated. To be notified when a contact is add-

ed to the user’s contact list, you use the Messenger.OnContactListAdd event to receive
change notifications. For example, the following code subscribes to this event by using the
DMessengerEvents_OnContactlListAddEventHandler event handler.

Messenger _messenger = new Messenger();

_messenger.OnContactListAdd += new
DMessengerEvents_OnContactlListAddEventHandTler
_messenger_OnContactListAdd) ;

static void _messenger_OnContactListAdd(int hr,
object pMContact)
{
IMessengerContactAdvanced _contact =
(IMessengerContactAdvanced)pMContact;

if Chr == 0)
{
Console.WriteLine("OnContactListAdd: {0}",
_contact.FriendlyName) ;

Chapter 3 Programming a Microsoft Office Communicator Automation API Application 79

MessengerOnContactListRemove Event

To be notified when a contact is removed from the user’s contact list, you use the Messenger.
OnContactlListRemove event. For example, the following code uses the DMessengerEvents_
OnContactListRemoveEventHandler to subscribe this event.

Messenger _messenger = new Messenger();

_messenger.OnContactListRemove += new
DMessengerEvents_OnContactListRemoveEventHandler(
_messenger_OnContactListRemove);

static void _messenger_OnContactListRemove(int hr,
object pMContact)

{
IMessengerContactAdvanced _contact =
(IMessengerContactAdvanced) pMContact;
if (hr == 0)
{
Console.WriteLine("OnContactListRemove: {0}",
_contact.FriendlyName);
}
}

Putting It All Together

Using the concepts in this section, you can display the contact list, add and remove contacts
from that list, and subscribe to events raised by changes to the contact list easily by using the
Messenger class and the IMessengerContacts interface. In this section, you create a console
application that displays the contact list and changes to the contact list. The code also adds
and removes contacts from the contact list to raise these events.

1. Start Visual Studio (if it's not already running) and create a new Visual C# Windows
console application named ContactList.

2. In Solution Explorer, right-click the References node, click Add References, and then,
from the COM tab, add references to Microsoft Office Communicator 2007 API Type
Library.

3. Open Program.cs and add the following using statements.

using CommunicatorAPI;
using System.Runtime.InteropServices;

4. Add the following declaration inside the Program class.

private static Messenger _messenger;

The _messenger member variable provides an instance of the Messenger class.

80 Part Il Office Communicator Automation API

5. Add the following code to the Main() method in the Program class.

static void Main(string[] args)
{

_messenger = new Messenger();

_messenger.OnContactListAdd += new
DMessengerEvents_OnContactListAddEventHandler(
_messenger_OnContactListAdd) ;

_messenger.OnContactListRemove += new
DMessengerEvents_OnContactListRemoveEventHandler(
_messenger_OnContactListRemove);

IMessengerContacts contacts = (IMessengerContacts)
_messenger.MyContacts;
IMessengerContactAdvanced contact = null;

Console.WriteLine("Contact 1ist for the Tocal user:");

for (int i = 0; i < contacts.Count; i++)

{
contact = (IMessengerContactAdvanced) contacts.Item(i);
Console.WriteLine("\t{0}", contact.FriendlyName);

// Adding a contact to the contact Tlist.
_messenger.AddContact(0, "amys@uc.contoso.com™);

// Removing a contact from the contact Tist.

contacts.Remove((IMessengerContactAdvanced)
_messenger.GetContact("jamesa@uc.contoso.com",
_messenger.MyServiceld));

Console.WriteLine("\nPress Enter key to exit the
application.\n");
Console.ReadLine();

_messenger.OnContactListAdd += new
DMessengerEvents_OnContactListAddEventHandler(
_messenger_OnContactListAdd);

_messenger.OnContactListRemove += new
DMessengerEvents_OnContactListRemoveEventHandler(
_messenger_OnContactListRemove);

Marshal.ReleaseComObject(_messenger);
_messenger = null;
Marshal.ReleaseComObject(contacts);
contacts = null;
Marshal.ReleaseComObject(contact);
contact = null;

}

The preceding code uses IMessengerContacts to write the friendly name of each
contact in the contact list to the console. You use Messenger.AddContact() to add a
contact to the contact list and /IMessengerContacts.Remove() to remove a contact.

Chapter 3 Programming a Microsoft Office Communicator Automation API Application 81

6. Add the following code to the Program class to write the friendly name of the contact
when the contact is added or removed.

static void _messenger_OnContactListRemove(int hr,
object pMContact)

{
IMessengerContactAdvanced contact =
(IMessengerContactAdvanced) pMContact;
if (hr == 0)
{
Console.WriteLine("OnContactListRemove: {0}",
contact.FriendlyName);
}
}

static void _messenger_OnContactListAdd(int hr,
object pMContact)

{
IMessengerContactAdvanced contact =
(IMessengerContactAdvanced)pMContact;
if (hr == 0)
{
Console.WriteLine("OnContactListAdd: {0}",
contact.FriendlyName);
}
}
7. Run the application by clicking Debug on the Visual Studio menu, and then click Start
Debugging.

8. Verify that the contact list for the local user is written to the console and the contacts
specified are added and removed from the contact list.

9. Close the console application and save your work in Visual Studio.

This console application provides the logic to display the contact list and show the results of
adding and removing contacts from the contact list.

Starting Conversations

By using the Office Communicator Automation API, you can start conversations on behalf of
the local user. Conversation modalities can include IM, voice, and video.

Using the IMessengerAdvanced Interface

As described in Chapter 2, "Microsoft Unified Communications APIs Foundation,”
IMessengerAdvanced is an interface implemented by the Messenger class.

82

Part Il Office Communicator Automation API

To get a reference to IMessengerAdvanced, you need to create an instance of the Messenger
class and cast it to IMessengerAdvanced as shown in the following code.

Messenger _messenger = new Messenger();
IMessengerAdvanced _messengerAdv =
(IMessengerAdvanced)_messenger;

IMessengerAdvanced, like all classes and interfaces in the API, is an unmanaged COM type
that you access in managed code by using COM Interop. This means that you must release
each reference to the IMessengerAdvanced interface explicitly. You release the reference by
calling the System.Runtime.InteropServices.Marshal.ReleaseComObject() method and setting
the reference to NULL, as shown in the following code.

Marshal.ReleaseComObject(_messenger);
_messenger = null;
Marshal.ReleaseComObject(_messengerAdv);
_messengerAdv = null;

If you fail to call Marshal.ReleaseComObject() and set the reference to NULL, your application
does not release resources allocated by the APl and results in memory leaks.

Note This manner of releasing references applies to all references created by using the Office
Communicator Automation API.

IMessengerAdvanced.StartConversation() Method

The IMessengerAdvanced interface provides the StartConversation() method for creating
conversations with one or more contacts using a specific modality. For example, the following
code starts an audio conference with the contacts specified in the sipUris array and sets the
conversation window title to “My Conversation.”

// An object array of SIP URIs strings for the participants

// 1in the conversation.

object[] sipUris = new object[] { "adamb@uc.contoso.com",
"rl1@uc.contoso.com" };

_messengerAdv.StartConversation(
// The conversation modality (audio in this case).
CONVERSATION_TYPE.CONVERSATION_TYPE_AUDIO,
// List of participants.
sipUris,
// Not supported.
null,
// The conversation window title as as string.
"My Audio Conversation",
// Not supported. Specify "1".
e,
// Not supported. Specify NULL
null);

Chapter 3 Programming a Microsoft Office Communicator Automation API Application 83

Figure 3-3 shows the results of this code, an audio conference.

'3 '@u @ Conference -~ | S | s - & 0:00:18
@ Chris D. Mayo - Leader &4
@ Adam Barr %
@ Rebecca Laszlo Gy

FIGURE 3-3 An audio conference started with StartConversation().

The sipUris variable is an object array that specifies the SIP URIs of the participants. By passing
a single SIP URI in the array, you create a conversation with the contact corresponding to that
SIP URI. By passing multiple SIP URIs, you start a conference with all of the contacts specified.
The conversation modality is specified by using the CONVERSATION_TYPE enumeration.
Table 3-3 provides an explanation of the values supported in CONVERSATION_TYPE.

TABLE 3-3 CONVERSATION_TYPE Enumeration Values

Value Explanation

CONVERSATION_TYPE_IM Specifies IM communication
CONVERSATION_TYPE_PHONE Specifies a phone call by using telephone URIs
CONVERSATION_TYPE_LIVEMEETING Not supported

CONVERSATION_TYPE_AUDIO Specifies a phone call by using Voice over Internet

Protocol (VolP), Public Switched Telephone Network
(PSTN), or both

CONVERSATION_TYPE_VIDEO Specifies a video conversation
CONVERSATION_TYPE_PSTN Specifies a phone call by using PSTN

Putting It All Together

By using IMessengerAdvanced.StartConversation(), you can start conversations easily on
behalf of the local user. In this section, you create a console application that creates an audio
conference programmatically.

1. Start Visual Studio (if it's not already running) and create a new Visual C# Windows
console application named StartConversation.

2. In Solution Explorer, right-click the References node, click Add References, and then,
from the COM tab, add references to Microsoft Office Communicator 2007 API Type
Library.

3. Open Program.cs and add the following using statements.

using CommunicatorAPI;
using System.Runtime.InteropServices;

84 Part Il Office Communicator Automation API

4. Add the following declarations inside the Program class.

private static Messenger _messenger;
private static IMessengerAdvanced _messengerAdv;

The _messenger member variable provides an instance of the Messenger class and
_messengerAdv provides a reference to the IMessengerAdvanced interface.

5. Add the following code to the Main() method in the Program class.

static void Main(string[] args)
{
_messenger = new Messenger();
_messengerAdv = (IMessengerAdvanced)_messenger;

// An object array of SIP URIs strings for the participants

// 1in the conversation.

object[] sipUris = new object[] { "adamb@uc.contoso.com",
"rl@uc.contoso.com" };

_messengerAdv.StartConversation(
// The conversation modality (audio in this case).
CONVERSATION_TYPE.CONVERSATION_TYPE_AUDIO,
// The participants.
sipUris,
// Not supported.
null,
// The conversation window title as as string.
"My Audio Conversation",
// Not supported. Pass "1".
e
// Not supported.
null);

Console.WriteLine("Press Enter key to exit the
application.™);
Console.ReadLine();

Marshal.ReleaseComObject(_messenger);
_messenger = null;
Marshal.ReleaseComObject(_messengerAdv);
_messengerAdv = null;
}
6. The previous code creates an instance of IMessengerAdvanced and calls

StartConversation() to create an audio conference with the contacts specified.

7. Run the application by clicking Debug on the Visual Studio menu, and then click Start
Debugging.

Note that the audio conference started with the contacts specified.

8. Close the console application and save your work in Visual Studio.

Chapter 3 Programming a Microsoft Office Communicator Automation API Application 85

This console application provides the basic logic for using the IMessengerAdvanced.
StartConversation() method to start a conversation. For example, Figure 3-4 shows the
results of running this code.

Yo - 3 Participants - My Audio Conversation -

W @)| &pmie - Lo
5 W & conference - | S5 | dp - £ ::I'I[IJD'J.G
@ chris D. Mayo - Leader Gl
@ Adam Barr Gy
@ Rebecca Laszlo Gy

FIGURE 3-4 A conversation started with IMessengerAdvanced.StartConversation().

Summary

This chapter explains the Office Communicator Automation API classes, interfaces, and events
that you use to automate Office Communicator. By using this API, you can sign the local user
in to and out of Office Communicator, display contact information, publish and subscribe to
presence information, work with the contact list, and start conversations programmatically.

Additional Resources

B Microsoft Communicator 2007 SDK (http.//go.microsoft.com/fwlink/?linkid=143206)
B "COM" Overview (http.//go.microsoft.com/fwlink/?linkid=143207)
B COM Interoperation with .NET Overview (http.//go.microsoft.com/fwlink/?linkid=143208)

m Office Communicator 2007: Enhanced Presence Model White Paper (http://go.microsoft.com/
fwlink/?linkid=143209)

B Office Communicator Help (http://go.microsoft.com/fwlink/?linkid=143210)

B Communicator 2007 and Communicator 2007 R2 Automation APl Documentation
(http://go.microsoft.com/fwlink/?LinkID=126311)

Chapter 4
Embedding Contextual Collaboration

This chapter will help you to:

B |mplement the end-to-end contextual collaboration scenario by building a sample
application that:

1 Displays an application-specific contact list with presence.
0 Starts application-specific conversations.

0 Accepts application-specific conversations in your application.

Introduction to Contextual Collaboration

In Chapter 2, "Microsoft Unified Communications APIs Foundation,” we discussed the
scenarios that the Microsoft Office Communicator Automation application programming
interface (API) enables, including the following:

B Embedding presence with application-specific contact lists Using the API to build
contact lists specific to your application and showing Office Communicator presence
for those contacts.

B Enhancing communications Adding instant messaging (IM), audio, and video
communications directly in your application to allow your users to communicate
and collaborate directly from your application.

B Driving application context-specific communications Using the API to integrate
data from your application into the conversations that your application starts to
provide application-specific context for the conversation.

In this chapter, you learn how to implement these scenarios in a sample application.
Implemented together, these scenarios are often called contextual collaboration.

Microsoft Office Outlook 2007 and Office Communicator 2007
R2 Integration

Chris Mayo
Technical Evangelist

This article looks at the integration of Microsoft Office Communicator 2007 R2 with Office
Outlook 2007 as an example of the communication features you can build into an end-to-
end contextual collaboration solution with the Office Communicator Automation API. When
Office Communicator 2007 R2 is installed on a computer with Outlook 2007, Outlook 2007
automatically provides new integrated communication features.

87

88

Part Il Office Communicator Automation API

Figure 4-1 shows an e-mail from Adam Barr to Chris. Notice how the presence of every
contact is displayed on the From:, To:, and Cc: lines (in this case, it's just Adam). This is
an example of custom contact list integration. The contacts displayed on the From:, To;,
and Cc: lines do not need to be added to Chris's Office Communicator contact list.

e - R 4 5 Change in Contoso Project Design - Message [HT.. -BX
Ca
JEE) —
| Message | Developer @
—
[[} ;
L& X Cm Categorize =
= O
! IJ i o Fm x (3 i
| ¥ Follow Up ~
Reply Reply Forward Delete Junk Find
| to All % call - Q = | |E-mail = aMark as Unread -
| Respond Adtions Options (Fi

This message was sent with High importance.

From: .+ Adam Barr Sent: Wed 12/17/2008 8:31 AM
To: Adam Barr - Available
Cc
Subject: m Free for next & hours
Office Location Mot Available :
It looks like Call Adam Barr 5 design of the Data Access Layer,
here’s why| =
&1 send Mail
@ Reply with Instant Message -

Reply All with Instant Message
Tag for Presence Alerts
Additional Actions »

Add to Outlook Contacts

B &

Look up Cutlook Contact...

Outlook Properties

FIGURE 4-1 E-mail in Outlook 2007 with integrated Office Communicator presence.

Right-click the presence icon to display a context menu that is similar to what you
see in Office Communicator 2007 R2, as shown in Figure 4-1. This context menu, as
well as the IM and Call menu items on the Message tab of the ribbon, can be used to
communicate with contacts in this e-mail thread using IM or an audio call.

For example, selecting the Call menu item sends Adam an invitation to an audio call
with the subject of the call set to the subject of the e-mail (in this case, “Change in
Contoso Project Design”). The IM and Call menu items are examples of providing
custom communication features in an application.

When Adam accepts the call, he receives a hyperlink in the IM portion of the conversation
that allows him to retrieve the context of the call (in this case, the e-mail about the
design change). Clicking that hyperlink opens the e-mail, as shown in Figure 4-2. This
hyperlink supplies context to the conversation (why Chris called Adam) and provides an
application-specific way for Adam to view that context (opening the e-mail).

Chapter 4 Embedding Contextual Collaboration

| G e Change in Contoso Proj
(Ea)

Message | Developer @
f’; ’ \g 2 Sm- x 3~ % Categorize = &
¥ Follow Up ~
Reply Reply Forward - || Delete Junk Find
Ll B sl B+ ||E-mail - | (2 Mark as Unread
Respond Adtions Options Il
This message was sent with High importance.
From: @ adam Barr Sent: Wed 12/17/2008 8:31 AM
To: Chris D. Mayo
Ca
Subject: Change in Contoso Project Design
-
It looks like we're going to have to change the design of the Data Access Layer, !
here’'s why...

GWH [P L2 L

@ Chris D. Mayo G4
@ Adam Barr Gy

This is a continued conversation. Click here (Ctrl+Shift+B) to
open the item used to start this conversation.

(5 one or more audio devices are not configured. To
configure your audio devices, click Set Up Audio and Video on
the Tools menu.

)
2
#%192.168.100.248 - Remote Desktop
(™ H Y e F |5 Change in Contoso Praject Design - Message (HTML)
J Message @

:__& __@ ;% Fm - x _3 j} = % & safe Lists - ﬁ Y i ¥, | dhrind

2 Related ~
Reply Reply Forward @ call - | Delete Moveto Create Other | Block | Jpgtjupl | Categorize Follow Mark as
to All Folder~ Rule Actinns = || Sender - Up~ Unread || b Select™

Respond Actions Junk E-mail £} Options £} Find

This message was sentwith High impartance.
From: @ Adam Barr
To: chris D. Mayo
Ce

Subject: Change in Contoso Project Design

Senti Wed 12/17/2008 8:31 AM

)b i

It looks like we're going to have to change the design of the Data Access Layer, here’s why..

[

Chris D. Mayo - Change in Contoso Proje...

EEIEER i) -

WA G- L =

0:01:52

@ Adam Barr 34
@ chris D. Mayo %

This is a continued conversation, Click here (Ctri+Shift+B) to
open the item used to start this conversation.

(5 One or more audio devices are not configured, To
configure your audio devices, dick Set Up Audio and Wideo
on the Taools menu.

Lostart| | G MR v @ | v Sent Items - Microsoft .. | 1 Changs in Contoso Proje. . |[(25 Chris D. Maye - Chang...

® S

FIGURE 4-2 An active audio call started from Outlook 2007 using e-mail as context.

90 Part Il Office Communicator Automation API

This immediately improves the communication experience for users of Outlook 2007.
Outlook 2007 users can use presence to determine how to communicate with other
contacts and start conversations directly from Outlook 2007. In addition, application
context integrated into those conversations allows both parties to start the conversa-
tion with the same information. In this example, this process allows Adam to know
immediately why Chris is calling.

Scenario

The contextual collaboration scenario defined previously can be implemented in any client
application using the Office Communicator Automation API. In this chapter, we implement
the contextual collaboration feature using a sample scenario to illustrate this point.

For example, in a retail enterprise, employees in one store often call employees in other
stores to check the availability of an item for a customer. To confirm the accuracy of the
inter-store inventory system, which is refreshed only every 24 hours, employees call the
target store to make sure the item is available and to ask the store to hold that item for
the customer before directing the customer to drive to the other store. If both the calling
employee and the called employee are running an application with integrated contextual
collaboration features, the communication experience can be more efficient. For the
employee checking on the inventory, the application can place the call and specify the
item of interest within the communication context. When the other employee receives the
call, the application can use the context to look up the inventory of the item and display
information to help expedite the communication.

Business Value

Implementing the Office Communicator Automation API contextual collaboration scenario
adds business value to any client application by increasing ease of communication and
associated productivity for information workers. Communication becomes more convenient
and more focused when it is seamlessly integrated into the information workers’ typical
workflow. Communication is also more efficient because all participants in the conversation
share the same context within the conversation.

Chapter 4 Embedding Contextual Collaboration 91

Choice of Technology

The Office Communicator Automation API is a great solution for the contextual collaboration
scenario for the following reasons:

B Developer productivity Using the Office Communicator Automation API to take
advantage of the functionality in Office Communicator 2007 R2 is much faster than
building a real-time communications solution from scratch.

B Proven solution The Office Communicator Automation APl is already in use,
providing contextual collaboration features in Outlook 2007 as well as other
Microsoft products.

B Ease of use Users already using Office Communicator 2007 R2 are familiar with the
user interface when integrated in your application.

However, keep in mind that when using the Office Communicator Automation API, your
application works in tandem with Office Communicator 2007 R2 by automating it. If you
need to integrate communication features directly into your client application (such as
hosting the video stream in your application user interface) or you don't want to require
Office Communicator to be deployed with your application, you need to use one of the
other API options discussed in Chapter 2.

Test Environment
To develop and test this solution, you need the following:

B Microsoft Office Communications Server 2007 R2, deployed as described in Chapter 9,
"Preparing the UC Development Environment.”

B Two domain accounts, including an account to develop the solution and an account
to test the solution, configured for Office Communications Server 2007 R2 and able to
sign in to Office Communicator as detailed in Chapter 9.

B A development environment that meets the Office Communicator Automation API
requirements, as specified in the "Office Communicator 2007 and Office Communicator
2007 R2 Automation API" documentation at http://go.microsoft.com/fwlink/
?LinkID=126311 in the section titled “"Getting Started Using Office Communicator
Automation APL"

92

Part Il Office Communicator Automation API

Overall Code Structure

This section walks through the steps required to build a contextual collaboration solution
using the Office Communicator Automation APl and Microsoft Visual Studio 2008. This
application provides a solution for the inventory request scenario described earlier in this
chapter by doing the following:

B Displaying application-specific contact lists for employees to call other stores to make
inventory requests

B launching application-specific conversations directly from the application

B Accepting application-specific conversations in the application and displaying the
context of the application

Displaying Application-Specific Contact Lists

When building a contextual collaboration solution, you want to display application-specific
contact lists populated with contacts particular to the data displayed in your application. For
example, you may want to display the presence of employees who are working in a store.
You can use the Office Communicator Automation API to display application-specific contact
lists and contact presence.

For most projects, embedding the same presence icon and context menu that you see in
Office Communicator 2007 R2 directly into your application is the best option because
Office Communicator users are already familiar with this interface.

The easiest way to integrate Office Communicator 2007 R2 contact presence information is
to use one of the various presence control samples provided by the Office Communicator
Automation APl team. For example, the WPF Presence Controls for Microsoft Office
Communicator 2007—Miicrosoft Office Communicator 2007 SDK Sample (http://go.microsoft
.com/fwlink/?linkid=143214) provides Windows Presentation Foundation (WPF) presence
controls with full source code.

Displaying User Presence with MyPersona

If you want to show the presence of the local user and a custom contact list, you can use
the WPF Presence Controls sample to create a WPF application such as the one shown in
Figure 4-3. This application uses the MyPersona control to show the presence of the local
user and the Personalist control to show a custom contact list. The Personalist control is
made up of Persona controls, which are used to show the presence of a single contact.

Chapter 4 Embedding Contextual Collaboration 93

[N Ch. 5 WPF Presence Controls [_ (O] x|
@ v =——— MyPersona Control
@ adam Barr Busy
Personalist Control © Rebecca Laszio Away
() James Alvord Offline

Persona Control

FIGURE 4-3 Showing presence with the MyPersona, Personalist, and Persona controls.

The MyPersona control automatically shows the presence for the local user using the
Office Communicator API. The Persona and Personalist controls need a specific SIP URI

of a contact to show the presence of that contact. For example, the following Microsoft
Extensible Application Markup Language (XAML) code defines a Personalist control named
personalistl.

<presence:PersonalList x:Name="personalListl" Grid.Column="0"
Grid.Row="1"
ShowContextMenu="True"
ShowDispTlayName="True"
ShowAvailability="True"
ShowToo1Tip="True"
ShowDetailedToolTipText="True"/>

The following code populates personalistl with the contacts Adam, Renee, and James.

// Create a Tist of contacts specific to your application.
// Note: They don’t have to be contacts in the

// Tocal user’s contact list.

List<string> sipUris = new List<String>(Q)

{
"adamb@uc.contoso.com",
"rl@uc.contoso.com",
"jamesa@uc.contoso.com"
};

// Add the T1ist of contacts to the SipUris property
// to populate the control.
personalListl.SipUris = sipUris;

Displaying Application-Specific Context Menus with Personalist

When you right-click a contact, the Persona control displays a context menu similar to the
context menu displayed by Office Communicator, as shown in Figure 4-4. Note that the
context menu also includes a custom communication menu item named Inventory Request.
The Persona control supports creating custom menu items for application-specific communi-
cation features.

94

Part Il Office Communicator Automation API

[N contextual Collaboration H =l
™ v
-

(@) Adam Barr A\rai\ah\ie

€ communicator Call
Office: +1 (425) 555-0109

[Ei Send an Instant Message

@ start a Video Call
=1 =end an E-Mail Message
[schedule a Mesting

__ v Tagged for Status Change Alerts
Add to Contact: List

|__| Properties
Inventory Request

FIGURE 4-4 The Persona control showing a contact’s context menu.

The custom context menu item is added to a Personalist control, personalist1, by using the
following code.

// Create a new menu item for your application specific
// communication feature.
List<MenuItem> customItems = new List<Menultem>();

MenuItem customMenulteml = new Menultem();
customMenuIteml.Header = "Inventory Request";
customMenuIteml.Name = "inventoryRequest";

customItems.Add(customMenuIteml) ;
personalListl.CustomMenultemList = customItems;

personalListl.CustomMenuItemClicked +=
new EventHandler<CustomMenuItemClickedEventArgs>
(personalistl_CustomMenuItemClicked);

void personalistl_CustomMenuItemClicked(object sender,
CustomMenuItemClickedEventArgs e)
{

// Your code goes here..

3

Putting It All Together: Displaying an Application-Specific Contact List
with Contact Presence

Using the concepts from the preceding sections, you can quickly build an application that
displays an application-specific contact list with contact presence. In this section, you create a
WPF application with these features using the WPF Presence Controls.

1. Download and install the Office Communicator 2007 Software Development Kit (SDK)
located at http://go.microsoft.com/fwlink/?LinkID=85980.

7.

8.

Chapter 4 Embedding Contextual Collaboration 95

Download, install, and build the WPF Presence Controls for Microsoft Office
Communicator 2007—Miicrosoft Office Communicator 2007 SDK Sample located
at http://go.microsoft.com/fwlink/?linkid=143214.

Start Visual Studio 2008, and create a new Microsoft Visual C# Windows WPF applica-
tion named ContextualCollaboration.

Right-click the References node in Solution Explorer, select Add Reference, click the
COM tab, and select the Microsoft Office Communicator 2007 API Type Library in the
Component Name list box. Click OK.

Right-click the References node in Solution Explorer, select Add References, click the
Browse tab, and browse to the WPFMOCPresenceControls.dll file in the install directory
of the WPF Presence Controls Sample.

Open Windowl.xaml, click the XAML tab, and then add the bold text that is shown in
the following code example.

<Window x:Class="Ch04_01_ContextualCollaboration.Windowl"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmIns:x="http://schemas.microsoft.com/winfx/2006/xam1"
xmlIns:presence="clr-namespace:Microsoft.Samples.O0ffice.UnifiedCommunications.
PresenceControls;
assemb1y=WPFMOCPresenceControls"
Title="Contextual Collaboration" Height="300" Width="300">
<Grid ShowGridLines="False'">
<Grid.ColumnDefinitions>
<ColumnDefinition Width="*" />
</Grid.ColumnDefinitions>
<Grid.RowDefinitions>
<RowDefinition Height="50" />
<RowDefinition Height="100" />
<RowDefinition Height="*" />
</Grid.RowDefinitions>

<presence:MyPersona x:Name="myPersona" Grid.Column="0"
Grid.Row="0"/>

<presence:PersonalList x:Name="personalListl" Grid.Column="0"
Grid.Row="1"
ShowContextMenu="True"
ShowD1isplayName="True"
ShowAvailability="True'
ShowToo1Tip="True"
ShowDetailedToolTipText="True"/>

</Grid>
</Window>

The XAML in the previous code example defines a MyPersona control named
myPersona for showing the presence of the signed-in user and a Personalist control
named personalistl for showing a custom list of contacts.

Right-click the design surface of Windowl.xaml, and select View Code.

96 Part Il Office Communicator Automation API

9. Add the following lines of code to the existing using statements to bring the Office
Communicator, InteropServices, and WPF Presence Controls sample into scope.

using CommunicatorAPI;
using System.Runtime.InteropServices;
using Microsoft.Samples.0ffice.UnifiedCommunications.PresenceBase;

10. To populate the contact list and add a custom menu item for making application-specific
calls about an inventory request, enter the following code in the constructor of Windowl.

public Windowl()
{

InitializeComponent();

// Create a Tist of contacts specific to your application.
// Note: They don’t have to be contacts in the
// Tocal user’s contact list.
List<string> sipUris = new List<String>(Q)
{
"adamb@uc.contoso.com",
"rl@uc.contoso.com",
"jamesa@uc.contoso.com"

};

// Add the Tlist of contacts to the SipUris property
// to populate the control.
personalListl.SipUris = sipUris;

// Create a new menu item for your application specific
// communication feature.
List<MenuItem> customItems = new List<MenuItem>();

MenuItem customMenulteml = new Menultem();
customMenuIteml.Header = "Inventory Request";
customMenuIteml.Name = "inventoryRequest";

customItems.Add(customMenuIlteml) ;
personalListl.CustomMenultemList = customItems;

personalListl.CustomMenuItemClicked +=
new EventHandler<CustomMenuItemClickedEventArgs>
(personalistl_CustomMenuItemClicked);
}
11. Define the event handler in the Windowl class for the Inventory Request custom menu
item, as shown in the following code example. This event handler triggers when the
user clicks this menu item.

void personalistl_CustomMenuItemClicked(object sender,
CustomMenuItemClickedEventArgs e)

// Your code goes here...

Chapter 4 Embedding Contextual Collaboration 97
12. To run the application, click Debug, and then click Start Debugging.

13. Change the presence of the local user in Office Communicator. Log on to Office
Communicator on another computer using one of the accounts in the application-
specific contact list shown previously, and change the presence of the contact in Office
Communicator. Note the changes in presence shown in the MyPersona and Personalist
controls.

14. Right-click a contact in the application contact list and click Call, and then click
Communicator Call. Note the call being placed between the local user and the contact.

15. Close the ContextualCollaboration application, and save your work in Visual Studio.

ContextualCollaboration shows how easy it is to use the WPF Presence Controls sample
to embed presence and communication features in an application. Following the steps
described previously produces a WPF application, as shown in Figure 4-4. Note the
context application-specific menu item named Inventory Request.

When the Office Communicator Call menu item is selected, a call is placed with the contact,
Adam Barr, as shown here.

[N Contextual Collaboration =] B3
e
@ Adam Barr Inacl
@ Rebecca Laszlo Busy
James Alvord Bway

GWA R 2 -

0:00:09

@ chris D. Mayo
@ Adam Barr

& &

Starting Application-Specific Conversations

Chapter 3, "Programming a Microsoft Office Communicator Automation API Application,”
shows that you can start conversations for the local user programmatically using the
IMessengerAdvanced interface. These conversations can include IM, audio, and video
modalities. The IMessengerAdvanced interface also provides the ability to send application
data in the IM portion of a conversation to create application-specific communication
features.

98

Part Il Office Communicator Automation API

IMessengerAdvanced.StartConversation()

As discussed in Chapter 3, IMessengerAdvanced provides the StartConversation() method for
creating conversations with one or more contacts using a specific modality. For example, the
following code starts an audio conference with the contacts specified in the sipUris array and
creates a conversation window named “My Audio Conversation.”

Messenger _messenger = new Messenger();
IMessengerAdvanced _messengerAdv =
(IMessengerAdvanced)_messenger;

// An object array of SIP URIs strings for the participants

// 1in the conversation.

object[] sipUris = new object[] { "adamb@uc.contoso.com",
"r1@uc.contoso.com" };

object obj = _messengerAdv.StartConversation(
// The conversation modality (audio in this case).
CONVERSATION_TYPE.CONVERSATION_TYPE_AUDIO,
// The participants.
sipUris,
// Not supported.
null,
// The conversation window title as as string.
"My Audio Conversation",
// Not supported. Specify "1".
e,
// Not supported. Specify NULL
null);

Figure 4-5 shows the result of this code, which initiates an audio conference using Office
Communicator.

% QU & Confersnce ~ | 53 | dp - 2 g‘:gD:ZT
@ Cchris D. Mayo - Leader S
@ Adam Barr %
@ Rebecca Laszlo Gy

FIGURE 4-5 Starting an audio conference using StartConversation().

Notice that StartConversation() returns an object. This object is a window handle (HWND) of
the conversation window created. You can use this value to refer to the conversation window
after it's created.

Chapter 4 Embedding Contextual Collaboration 929

Receiving Notification of New Conversations

Conversations using the Office Communicator Automation API are started asynchronously.
When calling StartConversation(), the conversation invitations are sent to the participants,
but the conversation window is not actually created until the first invitation is accepted.

When the conversation window is created, the Messenger class raises the
OnIMWindowCreated event. This event is raised for all conversations, not just IM
conversations as the name implies. The following code shows how to subscribe to the
OnIMWindowCreated event using the DMessengerEvents_OnIMWindowCreatedEventHandler
event handler.

Messenger _messenger = new Messenger();

_messenger.OnIMWindowCreated += new
DMessengerEvents_OnIMWindowCreatedEventHandTer (
_messenger_OnIMWindowCreated);

void _messenger_OnIMwWindowCreated(object pIMWindow)
{
IMessengerConversationWndAdvanced newConversation =
(IMessengerConversationWndAdvanced) pIMWindow;

// Code to run when the conversation is created

}

The DMessengerEvents_OnIMWindowCreatedEventHandler supports a single parameter,
pIMWindow, of the object type. This parameter is an instance of IMessengerConversation-
WhndAdvanced, which represents the conversation created. IMessengerConversationWndAdvanced
is an important interface because it provides access to the conversation after it's created and
allows you to manipulate the conversation (such as sending IM to the conversation window).
If you want to refer to the conversation window after the OnIMWindowCreated event is
raised, store this object instance in a variable in your code.

Receiving Notification of Destroyed Conversations

A conversation window is destroyed when the local user closes the conversation win-
dow or when all participants leave the conversation. The Messenger class raises the
OnIMWindowDestroyed event when the conversation window is destroyed. The following
code subscribes to the OnIMWindowDestroyed event through the DMessengerEvents_
OnIMWindowDestroyedEventHandler event handler.

Messenger _messenger = new Messenger();

_messenger.OnIMWindowDestroyed -= new
DMessengerEvents_OnIMWindowDestroyedEventHandler(
_messenger_OnIMwWindowDestroyed) ;

100

Part Il Office Communicator Automation API

static void _messenger_OnIMWindowDestroyed(object pIMWindow)

{

// Code to run when the conversation is closed...

}

Like OnIMWindowCreated, OnIMWindowDestroyed applies to all conversation types, not just
IM conversations. A single parameter, pIMWindow, is passed of the object type, which is an
instance of IMessengerConversationWndAdvanced. Use this event to release any references
you have of the conversation window that has been destroyed.

Note When OnIMWindowDestroyed is raised, the IMessengerConversationWndAdvanced
instance passed is no longer a valid reference to the conversation window because the con-
versation window has been destroyed. If you want to compare the reference passed to
OnIMWindowDestroyed to an instance of IMessengerConversationWndAdvanced from the
OnIMWindowCreated event, you have to compare the object references by using Object.
ReferenceEquals().

Sending IM Text to Conversations

The IMessengerConversationWndAdvanced interface provides the SendText() method for
sending IM text to a conversation window. You can also use this method to transmit applica-
tion-specific metadata within the conversation. For example, you can send IM to a newly created
conversation window using the following code.

static void _messenger_OnIMwWindowCreated(object pIMWindow)

{
IMessengerConversationWndAdvanced newConversation =
(IMessengerConversationWndAdvanced) pIMWindow;
newConversation.SendText("Some IM text..");
}

SendText() takes a single parameter—the string to be sent to the IM conversation window.

Putting It All Together: Sending Application IM Text to Your
Conversation

Using the concepts from the preceding sections, you can build an application quickly that
starts a conversation and sends some application metadata in the IM portion of the conver-
sation. In this section, you build on the ContextualCollaboration sample code shown earlier in
this chapter by performing the following steps to add the communication features:

1. Start Visual Studio 2008 (if it's not already running) and open the
ContextualCollaboration.csproj project.

Chapter 4 Embedding Contextual Collaboration 101

2. Open Windowl.xaml.cs and add the following declarations to the Window1 class.

private Messenger _messenger;
private IMessengerAdvanced _messengerAdv;

// Store the HWND of conversation created

// with StartConversation().

private int _myConversationHWND;

// Store reference to conversation

// created with StartConversation().

private IMessengerConversationWndAdvanced _myConversation;
// Used to store context to pass in call to SendText().
private string _myContext;

The variable, _myConversationHWND, holds the value returned from the call to
IMessengerAdvanced.StartConversation(). The _myConversation variable refers to the
conversation window after it is created. Finally, _myContext is used to store the application
metadata passed to the conversation after it is created.

3. Add the code to the constructor of the Windowl class to instantiate the variables
_messenger and _messengerAdv and subscribe to the conversation events.

public Windowl() // Constructor for class Windowl
{

InitializeComponent();

_messenger = new Messenger();
_messengerAdv = (IMessengerAdvanced)_messenger;

_messenger.OnIMWindowCreated += new
DMessengerEvents_OnIMWindowCreatedEventHandler(
_messenger_OnIMWindowCreated) ;

_messenger.OnIMWindowDestroyed += new
DMessengerEvents_OnIMWindowDestroyedEventHandler(
_messenger_OnIMWindowDestroyed) ;

}

4. Add the following code to start a conversation when the Inventory Request menu item
is clicked.

void personalListl_CustomMenuItemClicked(object sender,
CustomMenuItemClickedEventArgs e)
{

_myContext =
"<InventoryRequest><Item>12345</Item></InventoryRequest>";

object obj = _messengerAdv.StartConversation(
// The conversation modality (audio in this case).
CONVERSATION_TYPE.CONVERSATION_TYPE_AUDIO,
// The participants selected by the Tocal user.
e.SipUri,

102 Part Il

Office Communicator Automation API

// Not supported.

null,

// The conversation window title as as string.
"Inventory Request: Item 12345",

// Not supported. Pass "1".

e,

// Not supported.

null);

_myConversationHWND = int.Parse(obj.ToString();
}
Note that the conversation window handle returned from the call to StartConversation()
is stored in the _myConversationHWND variable so that the conversation window can
later be identified when the event handler, OnIMWindowCreated, is called to notify
your application that the conversation window was created.

Add the following code to implement OnIMWindowCreated in the Windowl1 class to
send application-specific data, _myContext (defined in step 4), when the conversation
window is created.

void _messenger_OnIMwindowCreated(object pIMWindow)

{
IMessengerConversationWndAdvanced newConversation =
(IMessengerConversationWndAdvanced) pIMWindow;
// Is the conversation the one I started by calling
// StartConversation()?
if (newConversation.HWND == _myConversationHWND)
{
// Get a reference to the conversation if needed
// later to add/remove contacts, send IM, retreive
// history...
_myConversation = newConversation;
// Send the application data to the IM conversation.
_myConversation.SendText(_myContext);
}
}

In the previous code, if the window handle of the new conversation (provided by the
IMessengerConversationWndAdvanced. HWND property) matches the window handle of
the conversation created by StartConversation() (stored in the _myConversationHWND
variable), the code uses the IMessengerConversationWndAdvanced.SendText() method
to send the application data to the IM conversation.

Next, add code to implement the OnIMWindowDestroyed event handler in the Window1
class to release the reference to the conversation window when the conversation
window is destroyed.

void _messenger_OnIMWindowDestroyed(object pIMWindow)
{

// When the conversation is destroyed, compare window

Chapter 4 Embedding Contextual Collaboration 103

// destroyed to conversation window reference.

// Note: When OnIMWindowDestroyed is called the
// pIMWindows is no longer a valid COM object.

// The only way you can refer it is as an object,
// hence the use of ReferenceEquals.

if (object.ReferenceEquals((object)_myConversation,

pIMWindow))

{
Marshal.ReleaseComObject(_myConversation);
_myConversation = null;
_myConversationHWND = 0;

}

}

In the previous code, object.ReferenceEquals() is used to compare the window
destroyed (passed in the pIMWindow parameter) to the _myConversation vari-
able. If the references match, the conversation window destroyed is the conversa-
tion started by your application. Therefore, the reference should be freed using
MarshalReleaseComObject().

7. Add the code in bold to the Window1 class to implement the IDisposable interface so
Office Communicator Automation API references can be freed when the window is
released.

pubTlic partial class Windowl : Window, IDisposable

8. Implement the IDisposable interface by adding the following code to the Dispose()
method in the Windowl class.

public void Dispose()
{

_messenger.OnIMWindowCreated -= new
DMessengerEvents_OnIMWindowCreatedEventHandler(
_messenger_OnIMWindowCreated) ;

_messenger.OnIMWindowDestroyed -= new
DMessengerEvents_OnIMWindowDestroyedEventHandler(
_messenger_OnIMWindowDestroyed) ;

Marshal.ReleaseComObject(_messenger);
_messenger = null;
Marshal.ReleaseComObject(_messengerAdv);
_messengerAdv = null;

if (_myConversation != null)

{
Marshal.ReleaseComObject(_myConversation);
_myConversation = null;

}

The previous code uses Marshal.ReleaseComObject() to release references to Office
Communicator Automation API classes and interfaces.

104

Part Il Office Communicator Automation API

9. Run the application by clicking Debug on the Visual Studio menu, and then click Start
Debugging.

10. Select an online contact in the contact list, and right-click and select the Inventory
Request menu item.

11. A conversation is started, and the contents of the _myContext variable are transmitted.
12. Close the ContextualCollaboration application, and save your work in Visual Studio.

ContextualCollaboration shows how easy it is to use the Office Communicator Automation
API to add an application-specific communication feature to your application. Following the
steps in the previous procedure produces a conversation like the one shown in Figure 4-6.

[N Contextual Collaboration 9 =]
e

@ Adam Barr Inaal

@ Rebecca Laszlo Busy

EEIY B

@ chris D. Mayo [GRLE]
@ Adam Barr (SR
Chris D. Mayo 2:33FM

+ <InventoryRequest><Item=12345</Item=«/InventoryRequest>

b

N
a2/

FIGURE 4-6 An application-specific communication feature.

Accepting Application-Specific Conversations

The previous section demonstrated how to start a new application-specific conversation. This
section demonstrates how to accept incoming conversations and process application-specific
data.

Retrieving Text from IM Conversations

IMessengerConversationWndAdvanced provides the History property for retrieving the

IM conversation from the conversation window. This property can be used to accept
application-specific data when a conversation is started. Due to the asynchronous nature of
the API, the History method doesn’t return the IM message from a conversation when the

Chapter 4 Embedding Contextual Collaboration 105

conversation window is first created, which is when the OnIMWindowCreated event handler is
triggered. Your application must spawn a new thread to poll the History property.

Putting It All Together: Receiving Application-Specific Conversations
with IMessengerAdvanced

Using the concepts from the preceding section, you can add the ability to accept
application-specific conversations from other users. In this section, you build on the
ContextualCollaboration example by adding this feature, as follows:

1.

Start Visual Studio 2008 (if it's not already running) and open the
ContextualCollaboration.csproj project.

. Open Windowl.xaml to define a list box to show the item number of incoming inven-

tory requests (application-specific conversations) by adding the code in bold text to the
following code example.

<Window ..
Title="Contextual Collaboration™ Height="300" Width="300" >
<Grid ShowGridLines="False">

<ListBox Name="1bConversations" DockPanel.Dock="Top"
Grid.Column="0" Grid.Row="2"/>
</Grid>
</Window>

Open Windowl.xaml.cs and add the following declarations to the Window1 class.

// Timer used to poll IM history from application specific conversations.
private Timer _historyTimer;

// Counter to track number of polls for incoming messages.

private int _historyTicks;

The _historyTimer variable is used to poll for the IM conversation history using a new

thread. The _historyTicks variable is used to stop polling if the IM conversation history is
not returned after a reasonable amount of time has passed.

From the following code example, add the code in bold to the _messenger._
OnIMWindowCreated method.

void _messenger_OnIMwWindowCreated(object pIMWindow)
{
IMessengerConversationWndAdvanced newConversation =
(IMessengerConversationWndAdvanced)
pIMWindow;

// Is the conversation the one I started by calling
// StartConversation()?
if (newConversation.HWND == _myConversationHWND)

{
¥

106 Part Il Office Communicator Automation API

else // incoming new conversation
{
//When a new conversation is created, start a timer
// to poll for History() for one second.
_historyTimer = new Timer(
new TimerCallback(ConversationHistory_Tick),
newConversation,
TimeSpan.FromSeconds (0),
TimeSpan.FromSeconds (1)

);

3

In the previous code, if the newly created conversation window was not started by
our application (where IMessengerConversationWndAdvanced. HWND does not equal
_myConversationHWND), you can assume that this incoming new conversation could
be an application-specific conversation sent from another user. A System.Threading.
Timer is created and assigned to _historyTimer to poll for IM conversation text.

5. Implement the TimerCallback method inside the Window1 class.

private void ConversationHistory_Tick(object state)
{
IMessengerConversationWndAdvanced conversationWnd =
(IMessengerConversationWndAdvanced)state;

try

// Check if the conversation has

// application specific data.

if ((conversationWnd.History != null))

{
// Turn off the timer.
_historyTimer.Change(Timeout.Infinite,

Timeout.Infinite);

_historyTimer.Dispose();

DisplayApplicationContext(conversationWnd.History);
}
else
{
_historyTicks += 1;
// If polling has not found History within
// 1 sec, assume it’s not an application
// specific conversation and stop polling.
if (_historyTicks > 1000)
{
// Shut down the timer.
_historyTimer.Change(Timeout.Infinite,
Timeout.Infinite);
_historyTimer.Dispose();

}

In the previous code, the IMessengerConversationWndAdvanced instance from
OnIMWindowCreated is passed as state to the callback (in the state parameter). If
IMessengerConversationWndAdvanced.History returns a value, Timer is disabled, and

catch

{

Chapter 4 Embedding Contextual Collaboration

// In the event that an exception is thrown trying
// to access the convesatoin window, turn off the
// timer to stop polling.
_historyTimer.Change(Timeout.Infinite,

Timeout.Infinite);

_historyTimer.Dispose();

107

History is passed to a method named DisplayApplicationContext to determine whether
it actually contains application-specific data. If IMessengerConversatonWndAdvanced.

History does not return a value, a counter named _historyTicks is incremented.

If _historyTicks is greater than 1,000 (1,000 milliseconds [ms] because the Timer “ticks”

every 1 ms), it can be assumed that the conversation was not started by the remote
user's application, and _historyTimer can be disabled and polling stopped.

6. Implement the DisplayApplicationContext method in the Window1 class.

private void DisplayApplicationContext(string context)

{

try
{

// Process context to identify if the context is of

/7

interest to your application.

if (context.Contains("InventoryRequest"))

{

// When you pull History from a

// IMessengerConversationAdvanced, it’s HTML.

// Strip off everything so it only contains

// the text passed to SendText().

string contextBody = context.Replace("&1t;", "<");
contextBody = contextBody.Replace(">", ">");

int start = contextBody.Index0f(
"<InventoryRequest>", 0);

int end = contextBody.Index0f(
"</InventoryRequest>", start) + 19;

contextBody = contextBody.Substring(start,
end - start);

XmTDocument doc = new XmlDocument();
doc.InnerXml = contextBody;
string item = doc.DocumentElement.InnerText;

Dispatcher.Invoke(DispatcherPriority.Normal,
new Action(() =>

108

Part Il

Office Communicator Automation API

{
TbConversations.Items.Add(
string.Format(
"Inventory Request: Item# {0}", item));
);
}
}
catch
{
// Handle string manipulation error handling here...
}

}

In the previous code, the DisplayApplicationContext method takes the contents of
the IMessengerConversationWndAdvanced.History property passed to it and checks
for application-specific conversations by looking for the InventoryRequest tag in the
message string. If application-specific conversation data is found, any formatting is
removed and the contents are added to the /bConversations list box.

Testing the Application

To test your application, you copy it to another computer running Office Communicator

2007

1.

4.

R2 using the following procedure:

Copy the contents of the ContextualCollaboration\Bin\Debug folder to the
computer of one of the contacts listed in the application-specific contact list and
run ContextualCollaboration.exe.

. Run the application on the computer where you wrote the application by clicking

Debug and then clicking Start Debugging.

Select and right-click an online contact in the contact list, and select the Inventory
Request menu item.

Note that the conversation started on one computer and is received on the other
computer, as shown by the item number “12345" displayed in the application.

Close the application on both computers, and save your work in Visual Studio.

The ContextualCollaboration example shows how easy it is to use the Office Communicator
Automation API to transmit metadata to communicate between two or more remote
applications. Following the steps described previously produces the results shown in

Figure 4-7.

[N Ch. 5 Contextual Collaboration [_[O0]

® Adam Barr Inaall

@ Rebecca Laszlo Busy
James Alvord Away

Chapter 4 Embedding Contextual Collaboration

ev

T

GUA R G- &

0:00:41
@ Chris D. Mayo (a4
@ Adam Barr [
Chris D. Mayo 8:23PM

+ =InventoryRequest><Items 12345</Items </InventoryRequest>

#'%192.168.100.248 - Remote Desktop M =]
o
&
]
Recycle Bin
M Ch. 5 Contextual Collaboration =] E3
e
@ Adam Barr In a call @ - @ Q %Iw,te = B -
@ Rebecca Laszlo Busy —— S
James Alvard Away G W5 -2 g!lén-m
@ Adam Barr @Y
Trventory Request: Ttem® 12345 ()G, (i P &
Chriz D, Mayo 823 PH

Last message received on 1222009 at 8:23 PM,

+ zInventoryReguest = <Items 12345 < /Ttem s < /InventoryRequest >

Lostart| |- @ | Lo [Ch. 5 Contextual Calla... '] Chris 0. Mayn - Inventor... @

FIGURE 4-7 An application-specific conversation started by Chris and accepted by Adam.

109

110 Part Il Office Communicator Automation API

Summary

This chapter defined a contextual collaboration solution that uses the Office
Communicator Automation API to automate Office Communicator 2007 R2 so that it
sends and receives application-specific messages between remote applications. The Office
Communicator Automation APl makes it possible to embed the local user’s presence and
contact list quickly and provides the ability to initiate and accept conversations to transmit
application-specific metadata.

Additional Resources

B Microsoft Unified Communications Managed API 2.0 SDK (32 bit) (http://go.microsoft
.com/fwlink/?LinkID=139195)

B “Unified Communications Managed API 2.0 Core SDK" documentation
(http://go.microsoft.com/fwlink/?LinkID=126312)

B Microsoft Communicator 2007 SDK (http.//go.microsoft.com/fwlink/?LinkID=141199)

B "Communicator 2007 and Communicator 2007 R2 Automation API” documentation
(http://go.microsoft.com/fwlink/?LinkID=126311)

® WPF Presence Controls for Microsoft Office Communicator 2007—Microsoft Office
Communicator 2007 SDK Sample (http://go.microsoft.com/fwlink/?linkid=143214)

Part Il
Unified Communications
Managed APl Workflow

Part Ill covers the Unified Communications Managed APl (UCMA) Workflow API, as shown

in the following figure. The UCMA Workflow API provides specialized Windows Workflow
activities to help you quickly build instant messaging and voice-based workflow applications
using the visual designer in Visual Studio. Because of the abstraction provided by the UCMA
Workflow API, you do not have to work with the more complex underlying UCMA for large
portions of your application.

Your Your Your
Application Application Application

Communicator
Automation API

e - ™
Office
Communicator 2007 R2 | | Unified Communications
. Workflow API
Customizations
\ Y,
UCMA 1.0 Unified Communications Managed APl 2.0
e ™

Office Communications Server 2007 R2

(@)

| J

Chapter 5, "Unified Communications Managed APl (UCMA) Workflow,” explains the API
in detail, and Chapter 6, “Business Process Communication,” walks through an example of
creating a business process communications application using UCMA Workflow Activities.

111

Chapter 5
Unified Communications Managed
APl (UCMA) Workflow

This chapter will help you to:

B Understand how the Unified Communications Managed APl (UCMA) Workflow
Activities provide a way to develop applications that can interact with the user over the
phone or instant messaging (IM) channel as new interfaces.

B Understand how UCMA Workflow enables faster development of applications by
providing prepackaged custom activities for common tasks.

B Understand how UCMA Workflow enables intelligent routing decisions by providing a
way to query for presence information.

UCMA Workflow

UCMA Workflow consists of a few Workflow Runtime services and a set of custom Workflow
Activities that provide Unified Communications (UC) functionality. UCMA Workflow builds
on Windows Workflow Foundation, which is part of Microsoft .NET Framework 3.0 and .NET
Framework 3.5.

Before jumping into the details of this API, it is important to understand how the activities
and services relate to the application. Figure 5-1 shows how the UCMA Workflow Runtime
services and Workflow Activities are related to each other.

Application Process

Workflow Runtime
—

UCMA Workflow
Runtime Service

Application Host Code

FIGURE 5-1 Anatomy of an application using the UCMA Workflow.

113

114

Part Ill Unified Communications Managed APl Workflow

A UCMA Workflow application consists of workflow components and nonworkflow
components. In Figure 5-1, workflow components are depicted by blocks designated as
“UCMA Workflow Runtime Service” and “Workflow Runtime.” The nonworkflow component is
represented by the block designated as “Application Host Code.” Within the application host
code, the UCMA Core is used to handle the connection to Microsoft Office Communications
Server 2007 R2. This means that the application provisioning required to run a UCMA
Workflow application as a trusted service is the same as the application provisioning required
to run a UCMA Core application. (For details about configuring and provisioning a UCMA
Workflow application, see Chapter 9, “Preparing the UC Development Environment.”) The
UCMA Workflow application must create the Workflow Runtime and add the necessary
UCMA Workflow Runtime services. The UCMA Workflow Runtime services are used to pass
data from the application host code to the workflow instances running under the Workflow
Runtime.

Using Project Templates

To use the UCMA Workflow, you must install the UCMA 2.0 Software Development Kit
(SDK). (For details on how to install the UCMA 2.0 SDK, see the “"Configuring UCMA Core”
section in Chapter 9.) This SDK comes with project templates that are specific to the UCMA
Workflow and make it easier to get started with developing UCMA Workflow applications.
The templates are available for both C# and Microsoft Visual Basic. The following project
templates are supported in the UCMA SDK:

B Inbound Sequential Workflow Console Application This project template is the
starting point for creating UC-enabled workflow applications that handle incoming
phone calls or instant messages.

B Qutbound Sequential Workflow Console Application This project template is the
starting point for creating UC-enabled workflow applications that create outgoing
phone calls or instant messages.

In both cases, the host process is a console application by default, but you can easily change
it to any suitable application host (for example, a Windows service).

After installing the UCMA 2.0 SDK, these project templates are available in Microsoft Visual
Studio 2008 under the Communications Workflow node in the Project Types pane of the
New Project dialog box. This is shown in Figure 5-2.

Chapter 5 Unified Communications Managed API (UCMA) Workflow

115

-
New Project ==
b Teree MET Framewark 35 - [=

a Misual C# Visual Studio installed templates
sifindaws = =
=cf =cf
wes -
b Office Inbound Outhound
Database Sequentia.. Sequentia...
Communications Workflow: R i
Reporting ki e
Silverlight j
T i
Search
i orkf
o Online Te..,
b Other Languages
b Other Project Types
Creates an Inbound Comraunication Workflow Project (NET Framewark 3.5)
MNarme:! CommunicationWorkflowl
Locaton: CAUCPropecPrjects =
Solution Mapne: CommunicationWorkflowl [@] Create directory for solution
[&dd to Source Contral

FIGURE 5-2 New project templates for the Communications Workflow.

The previous example shows the location of a C# project template. The Visual Basic template
is located in the same relative location under the Visual Basic node.

Selecting a Workflow Language

After you create the new UCMA Workflow project by clicking OK in the New Project dialog
box, the Select Language dialog box appears. This dialog box lists all of the language packs
installed on the machine. If no language packs are installed, the user cannot create a project
using this template. Language packs are required for speech recognition and for playing a
message to the user (that is, text-to-speech message).

Using Workflow Designer

Visual Studio 2008 supports Workflow Designer to allow the workflow part of a UCMA
Workflow application to be constructed by dragging and dropping appropriate activities
from the Visual Studio Toolbox. The designer surface also helps you visualize the flow logic of
the application. The designer surface is also known as the designer canvas.

As shown in Figure 5-3, the toolbox in the left panel lists all of the UCMA Workflow
Activities under the Unified Communications Workflow tab. The designer canvas in the

right panel is the sequential workflow as generated by the Inbound Sequential Workflow
Console Application project template. As with other workflow activities, you can drag UCMA
Workflow Activities onto the designer canvas.

116

Part Ill Unified Communications Managed APl Workflow

] CommunicationWaorkflow? - Microsoft Visual Studio [B)
File Edit View Project Build Team Debug Data Jools Window Help

PEl- - | % B0 -~ - B-F | b Debug - Any CPU - | 2% -
(R 9 & L 100% || @ 3| = 2| T

Toolbox = & X| Workflowlxoml*| -

x
& AcceptCall R
| DisconnectCall | B
%, OutboundCall Sequential Workflow
7 EBlindTransfer @

&~ CaliDisconnectedEvent

Y callonHoldEvent ‘
@ CalonHoldTimeoutEvent
QP CallRetrievedEvent

|58 CommunicationsSequence

acceptCallactivityl

& GetPresence = communicationsseque...
& GoTo B

¢ SpeechStatement ‘
& SpeechQuestionAnswer
A SpeechCommand W

& SpeechHelpCommand v

G} SpeechRepeatCommand

*% ConsecutiveNolnputsSpeechEvent E
*X ConsecutiveSilencesSpeechEvent

m

#% ConsecutiveNoRecognitionsSpeechEv...
[5] InstantMessagingStatement

B4 InstantMessagingQuestionAnswer

[1}] InstantMessagingCommand

(2] InstantMessagingHelpCommand
ConsecutiveMolnputslnstantMessagin...
ConsecutiveSilencesinstantMessaging...
ConsecutiveNoRecognitionsInstanthe...
=_General

[Server Explorer |3 Toolbox
) Error List|] Task List|[5] Output

Ready

m

|sa||_|admd 5| ‘MEI/\ 55B|D) mlmmmxameam‘mwmxa uanjos @l

RET=KN

FIGURE 5-3 The Unified Communications Workflow Toolbox and designer canvas.

Workflow Runtime Services

UCMA Workflow Activities need custom workflow services to interact with the non-
workflow world. These are added to the Workflow Runtime for the UCMA Workflow
Activities to execute properly. Two services are included in the UCMA Workflow:

CommunicationsWorkflowRuntimeService and TrackingDataWorkflowRuntimeService.

CommunicationsWorkflowRuntimeService The Workflow Runtime is the execution environ-
ment in which workflow instances execute. The CommunicationsWorkflowRuntimeService is
required for UCMA Workflow Activities to execute properly; UCMA Workflow Activities fail
to execute and throw exceptions at run time if you do not add this service to the Workflow
Runtime. The application uses this service to pass objects (for example, phone calls and IM
calls) or data (for example, the language to use) to the workflow. In UCMA, IM connections
are also referred to as a call.

This service can be added to the Workflow Runtime, as shown in the InitializeWorkflow
method of the Program.cs file, which is automatically generated by the project templates.

WorkflowRuntime _wRuntime = new WorkflowRuntime();
_wRuntime.AddService(new CommunicationsWorkflowRuntimeService());

Chapter 5 Unified Communications Managed APl (UCMA) Workflow 117

This service provides the following functionality:

B Add phone or IM calls to a particular workflow instance.

In a typical scenario, the application receives a call. The application creates an instance
of a workflow to handle the incoming call or IM by associating the call or IM with a
workflow instance, as shown in the following code example.

// Create an instance of the workflow class called Workflowl
WorkflowInstance _wInstance = _wRuntime.CreateWorkflow(typeof(Workflowl));
// Get the CommunicationsWorkflowRuntimeService from the Workflow Runtime

CommunicationsWorkfTowRuntimeService _cWFRService =
(CommunicationsWorkflowRuntimeService)
_wRuntime.GetService(typeof(CommunicationsWorkflowRuntimeService));

// Pass the call to the CommunicationsWorkflowRuntimeService service and associate it
with the workflow instance created

_cWFRService.EnqueueCall(_wInstance.InstanceId, call);
B Retrieve call(s) associated with a particular workflow instance.

When the workflow instance executes, the calls associated with the workflow instance
can be retrieved by calling either of the following two methods.

_cWFRService.DequeueCall(/* specify Workflow Instance ID */);

or

_cWFRService.GetWorkflowCalls(/* specify Workflow Instance ID */);
Workflow Instance ID is a property of the Workflow instance.

The AcceptCall activity uses the DequeueCall method to accept the call. Custom activities
can also use these methods to retrieve the call as needed.

As the name suggests, DequeueCall removes the call from the service. However,
GetWorkflowCalls does not remove the calls from the service.

DequeueCall is useful in cases in which each phone call is handled by a new instance

of the workflow instance. For example, in a help desk application, a new instance of
the application’s workflow is created for each incoming call to walk the caller through
a dialog with the automated system. GetWorkflowCalls is useful in cases in which

the application logic might depend on multiple calls being received. For example, the
application might need to connect two calls. In this case, you use the GetWorkflowCalls
method to get both calls before connecting them.

B The GetWorkFlowCulture and SetWorkFlowCulture methods are used to retrieve or set
the language culture of the workflow instance.

118

Part Il

Unified Communications Managed APl Workflow

Because many UCMA Workflow Activities involve interacting with the user, you are
required to specify a language. This language is used to ensure that the correct speech
recognition engine is used to recognize user input and that the appropriate synthesis
engine is used for voice output. The language of the workflow instance can be set as
follows.

// Create an instance of the workflow, Workflowl is the workflow class name
WorkflowInstance _wInstance = _wRuntime.CreateWorkflow(typeof(Workflowl));

// Get the CommunicationsWorkflowRuntimeService from the Workflow Runtime

CommunicationsWorkfTowRuntimeService _cWFRService =
(CommunicationsWorkflowRuntimeService)
_wRuntime.GetService(typeof(CommunicationsWorkflowRuntimeService));

// Set the workflow instance language

_cWFRService.SetWorkflowCulture(_wInstance.InstanceId, new CultureInfo("en-US"));

The GetEndpoint and SetEndpoint methods are used to retrieve and set (respectively)
the endpoint to be used in a workflow instance.

The UCMA Workflow Activities OutboundCall and GetPresence require an endpoint (as
described in the "Endpoints” section in Chapter 7, “Structure of a UCMA Application”)
to execute. An endpoint is associated with a workflow instance in the same way that a
call is associated with a workflow instance. The activities in a workflow instance auto-
matically assume the context of the endpoint associated with the workflow. You can set
the endpoint that you want the workflow instance to use as follows.

// Definition of an endpoint
private static ApplicationEndpoint _endpoint;

// Create an instance of the workflow class called Workflowl
WorkflowInstance _wInstance = _wRuntime.CreateWorkflow(typeof(Workflowl));
// Get the CommunicationsWorkflowRuntimeService from the Workflow Runtime
CommunicationsWorkflowRuntimeService _cWFRService =
(CommunicationsWorkflowRuntimeService)

_wRuntime.GetService(typeof(CommunicationsWorkflowRuntimeService));

// Specify the endpoint for the workflow instance
_CcWFRService.SetEndpoint(_wInstance.Instanceld, _endpoint);

TrackingDataWorkflowRuntimeService You use TrackingDataWorkflowRuntimeService to
track values from the MainPrompt and RecognitionResult properties of certain activities. It is
represented by the TrackingDataWorkflowRuntimeService object of the UCMA Workflow. For

exam

ple, when the SpeechStatementActivity property, IsDataTrackingEnabled, is set to True,

the SpeechStatement activity stores the value of its Main prompt in this service. This data is

Chapter 5 Unified Communications Managed APl (UCMA) Workflow 119

stored in the service for the lifetime of the workflow instance in which the activity is running.
This service is optional and is applicable only for the following activities:

B SpeechStatementActivity

B SpeechQuestionAnswerActivity

B /nstantMessagingStatementActivity

B /nstantMessagingQuestionAnswerActivity

This functionality is useful in the cases when the caller has to be transferred to a human
operator or agent. This service contains a record of the dialog between the user and the
automated system, which can then be sent to the agent to provide context about the caller.
This prevents the agent from asking the caller the same questions that the automated
system already asked. All of the data for a particular workflow instance is deleted when the
workflow instance terminates.

You add this service in the InitializeWorkflow method in the Program.cs file. The Program.cs
file is generated automatically by the project templates.

WorkflowRuntime _wRuntime = new WorkflowRuntime();
_wRuntime.AddService(new TrackingDataWorkflowRuntimeService());

Using the TrackingDataWorkflowRuntimeService, the developer can achieve the following:

B Add property values to track during the lifetime of the workflow instance.

The SpeechStatement, SpeechQuestionAnswer, InstantMessagingStatement, and
InstantMessagingQuestionAnswer activities automatically add property values to
this service when the IsDataTrackingEnabled property on these activities is set to
True. The MainPrompt property for all of these activities is tracked. In addition,
the RecognitionResult property is tracked for SpeechQuestionAnswerActivity and
InstantMessagingQuestionAnswerActivity.

Before custom activities can add property values to this service, they must obtain

a handle to the service object. In a workflow instance, any object that implements

the IServiceProvider interface can access TrackingDataWorkflowRuntimeService.
ActivityExecutionContext is an example of such an object. You can access
ActivityExecutionContext by overriding the Execute method of SequentialWorkflowActivity.
You can retrieve the TrackingDataWorkflowRuntimeService as follows.

/// <summary>
/// Override method of the Sequential Workflow Activity

/// </summary>

120 Part Il

Unified Communications Managed APl Workflow

protected override ActivityExecutionStatus Execute(Activity
ExecutionContext executionContext)

{

TrackingDataWorkfTowRuntimeService _tdRuntimeService =
(TrackingDataWorkflowRuntimeService) (executionContext.GetService
(typeof(TrackingDataWorkflowRuntimeService)));

return base.Execute(executionContext);

}

To add new properties to the TrackingDataWorkflowRuntimeService to be tracked, use
the AddTrackingData(Guid, ActivityTrackingData) method. The ActivityTrackingData
object represents the name of the activity and the value of that property.

Retrieve data tracked for a particular workflow instance.

You can retrieve data that is being tracked by using the GetTrackingData(Guid)
method from TrackingDataWorkflowRuntimeService. This returns a collection of type
ActivityTrackingData. Each ActivityTrackingData object represents the name of an
activity, the name of the property to be tracked for that activity, and the value of that

property.

General Activities

The two activities in the UCMA Workflow, which are listed in Table 5-1, are important
because they define the flow of the work.

TABLE 5-1 General UCMA Workflow Activities

Activity Description

CommunicationsSequenceActivity An activity that provides infrastructure for most UCMA

Workflow Activities to execute. You can use this for scoping
and as a container activity.

GotoActivity An activity that moves the execution of the workflow to the

target activity.

CommunicationsSequenceActivity

CommunicationsSequenceActivity provides a base container specific for executing most
UCMA Workflow Activities. CommunicationsSequenceActivity provides the following benefits:

Acts as a container for other activities
Provides custom views for dialog functionality
Enables the use of GotoActivity

Provides a call to its child activities to execute

Chapter 5 Unified Communications Managed APl (UCMA) Workflow 121

Acting as a Container Activities can be dropped inside a CommunicationsSequenceActivity
to take advantage of the functionality defined in CommunicationsSequenceActivity. Commu-
nicationsSequenceActivity is derived from a Windows Workflow Sequence activity. You can
expand and collapse this activity. You can collapse this activity to save screen space so that
you can work on other areas of the workflow.

Providing custom views for dialog functionality CommunicationsSequenceActivity provides
two custom views, Commands and CommunicationsEvents, as shown in Figure 5-4. You use
these views to enable commands and handle communication events, which are important

to implement any useful dialog. For more information about how to use these views, see

the "Command Activities,” “Call Control Communications Event Activities,” and “Dialog
Communications Event Activities” sections later in this chapter.

?

v

= communicationsSequ ...

ERd

@ Wiew CommunicationsSequencedctivity

disco
Sy #, view Cancel Handler

Eﬂ Wiews Fault Handlers

(@] ‘iew Commands

@ Wiew CommunicationsEvents

FIGURE 5-4 CommunicationsSequenceActivity views.

Note You can also navigate to these views by right-clicking CommunicationsSequenceActivity
and selecting View Commands or View CommunicationsEvents.

You can use CommunicationsSequenceActivity to define a scope of CommunicationEvents
activities. For example, a CommunicationEvent defined in a CommunicationsSequenceActivity
is not visible outside of that scope.

For more information about how to use CommunicationsSequenceActivity for scoping
communications events, see the “What Are Communication Events?” sidebar later in this
chapter.

Enabling the use of the Goto activity After a Workflow Runtime executes an activity, that
activity cannot be executed again in the same workflow instance. As a result, special logic is
required in constructs like the While activity, which requires you to execute the same activity
more than once. You achieve this by cloning, which is a Windows Workflow construct. Before
executing the activity, a clone of the activity is made and the cloned activity is executed. This
preserves the original activity to be executed later (at which point, it is cloned again). For

122

Part Ill Unified Communications Managed APl Workflow

more information about activity execution context and cloning, see the “Understanding the
Activity Execution Context” article at http.//msdn.microsoft.com/en-us/library/aa349099.aspx.

Because the Goto activity by its nature can cause its target activity to be executed again,
the target activity has to be cloned. The CommunicationsSequence activity clones each of
its children before executing them. As a result, these activities are available to be executed
again.

Providing a call to its children activities to execute Because UCMA Workflow Activities
perform actions on a call whether it is a phone call or an IM call, CommunicationsSequence-
Activity defines the call to be operated on by its children activities. For example, the
SpeechStatement activity needs to know which call on which to play the message, and the
InstantMessagingStatement activity needs to know which IM session to reply to. Determining
which phone or IM call is associated with an activity is accomplished by the CallProvider
activity. The AcceptCall activity and the OutboundCall activity expose the CallProvider object
as a property. Table 5-2 lists the properties defined by the CallProvider object, which are
required to establish a dialog with the user.

TABLE 5-2 Properties of the CallProvider object

Property Description

Call The call to be used

DtmfRecognizer The engine used to recognize dual-tone multifrequency (DTMF) input
against DTMF grammars for the call

RecognitionConnector The object to help in media flow during recognition for the call

SpeechRecognizer The engine to recognize speech or IM input against speech grammars
for the call

SynthesisConnector The object to help in media flow voice synthesis for the call

Synthesizer The engine to synthesize the voice output for the call

ToneController The object that identifies the DTMF tones

Binding to a CallProvider property The CallProvider property of CommunicationsSequence-
Activity can be linked to the CallProvider property that is exposed by one of the following
activities: AcceptCall or OutboundCall. You perform this linking by using ActivityBind so that
the value of the property is available only at run time. For information about ActivityBind, see
the "Using Dependency Properties” MSDN article at http.//msdn.microsoft.com/en-us/library/
ms734499.aspx. This linking ensures that all children activities of CommunicationsSequence-
Activity manipulate the call provided by the CallProvider on CommunicationsSequenceActivity.
Figure 5-5 demonstrates how a CallProvider property is created and passed on to UCMA
Workflow Activities by using CommunicationsSequenceActivity.

Chapter 5 Unified Communications Managed APl (UCMA) Workflow 123

~Workflowl.xoml* - X

-

sequential Workflow

S acceptCallactivityl

‘_I @i‘

m

[= communicationsseque,..

@
|
speechitatementsa
D hivityl
4
¢ disconnectCallctiv
Ldg ityl
| |
I =
®]
a3
@
Properties >« X

communicationsSequencefctivityl Mdicrosoft.Rtc WaorkflowActivities Con -

communicationsSequenceActivityl
[CallProviders Activity=acceptCallActivityl, Path=CallProvider
Mame acceptCallActivityl
Path CallProvider
Description
Enabled True

FIGURE 5-5 CommunicationsSequenceActivity binding to the CallProvider property of the AcceptCall activity.
The following list describes the activities in Figure 5-5:

B The AcceptCall activity named acceptCallActivityl creates a CallProvider object that is
exposed publicly as a property of the same name.

B The CallProvider property of the CommunicationsSequenceActivity named
communicationsSequenceActivityl is bound to the CallProvider property of the activity,
acceptCallActivityl. This is denoted by the line running from CommunicationsSequence-
Activity to the acceptCall activity.

B At run time, the SpeechStatementActivity named speechStatementActivityl uses the call
associated with its parent CommunicationsSequenceActivity (in this case, communications-
SequenceActivity1). Because the CallProvider property of communicationsSequenceActivityl
is bound to the CallProvider property created by acceptCallActivityl, speechStatementActivityl
plays the message on the same call that was accepted by acceptCallActivityl. Similarly,
disconnectCallActivityl terminates the call accepted by acceptCallActivityl, which it obtained
from its parent CommunicationsSequenceActivity.

124

Part Ill Unified Communications Managed APl Workflow

Using CallProvider to support multiple calls The same concept can be extended to

have multiple calls in a workflow, as shown in Figure 5-6. In this example, there are two
CommunicationsSequenceActivity activities. The CallProvider property of parentActivity1 is
bound to the CallProvider property of acceptCallActivityl (as shown by the dotted arrow)

and the CallProvider property of parentActivity2 is bound to the CallProvider property

of outboundCallActivityl (as shown by the solid arrow). All of the children of parentActivityl

(that is, speechStatementActivityl and disconnectCallActivityl) perform operations on the

call bound to acceptCallActivityl. All of the children of parentActivity2 (that is, speech-
StatementActivity2 and disconnectCallActivity2) perform operations on the call established by
outboundCallActivityl.

sequential Workflow

&)

=t acceptCallactivityl | 4= ==+

‘_I

= parentactivityl
1

D speechitaternentd,
chivityl

_ e disconnectCallacti
eyl

4, OutboundCalldcthi
L

T

[= parentactivity?
1

D speechitaternentd,
chivity2

_ e disconnectCallacti
ey

) I‘_

FIGURE 5-6 Two CommunicationsSequenceActivity activities binding to different CallProvider properties.

Using CallProvider in nested CommunicationsSequenceActivity The same binding
concept can then define which call to use in nested CommunicationsSequence activities. In
the workflow shown in Figure 5-7, all of the children of parentActivity2 use the call placed
by outboundCallActivityl even though parentActivity2 is nested inside parentActivityl. This
occurs because the CallProvider property of parentActivity2 is bound to the CallProvider
property of outboundCallActivityl.

Chapter 5 Unified Communications Managed APl (UCMA) Workflow 125

Sequential Workflow

@)

=t acceptCallactivityl | 4

‘_I

= parentactivityl
1

D speechitaternentd,
chivityl

_ e disconnectCallacti
e 1

‘_I‘_

?&‘outboundCallActM |-
)

= parentictivity?

o speechstatements,
civity2

‘_Ilé‘

;,@ disconnedtCallctiy
W 2

FIGURE 5-7 Binding to different CallProvider properties within nested CommunicationsSequence activities.

To figure out which call is used with a particular activity (that is, Activity A), just search its
parent tree to find the first CommunicationsSequenceActivity whose CallProvider property is
bound to a CallProvider property of another activity (for example, an AcceptCall activity, an
Outbound Call activity, or a custom CallProvider activity). It is possible that a Communications-
SequenceActivity in a parent tree does not have its CallProvider activity bound to anything. In
this case, continue through the tree until you reach a CommunicationsSequenceActivity in the
tree that has the CallProvider property set.

The Goto Activity

The Goto activity moves the execution to a different activity in the workflow. A good dialog
design involves jumps in execution. For example, if the caller wants to return to the begin-
ning of the dialog tree, the dialog execution should move to the start of the application. The
Goto activity facilitates such dialog designs.

To specify a target for a Goto activity, set the TargetActivityName property of the Goto activity
as shown in Figure 5-8. You can open the panel in Figure 5-8 by clicking the ... button in

126

Part Ill Unified Communications Managed APl Workflow

the window of the TargetActivityName property. In the following example, the valid target
activities (that is, speechStatementActivityl, sequenceActivityl, and disconnectCallActivity1)

are enabled for selection

and invalid targets are disabled for selection.

Properties -1 X
goToActivityl Microsoft.Rtc MW orkflow. Activities. GoTolctiviby -
= =]
(Mame) goToActivityl
Description
Enabled True
/| <Open panel to edit> E]

speech Statementictivitgd
sequencedctivitel

E disconnectCallctivityl

FIGURE 5-8 Valid targets for the TargetActivityName property of Goto.

Call Control Activities

Four activities are available to perform call control actions, as shown in Table 5-3. Some
of these activities are valid for both phone calls and IM calls, but some are specific only to

phone calls.

TABLE 5-3 Call Control Activities

Activity
AcceptCall

DisconnectCall

OutboundCall

BlindTransfer

Description

Accepts the incoming call associated with the workflow instance. This
activity accepts both phone calls and IM calls.

Disconnects the call specified by the CallProvider property of
CommunicationsSequenceActivity to which it belongs. This activity
disconnects both phone and IM calls.

Places an outbound call using the endpoint associated with the workflow
instance. This can create either a phone call or an IM call.

Transfers the current call to the specified target. The current call is defined
by the CallProvider property of CommunicationsSequenceActivity to which
the BlindTransfer belongs. This activity can perform a blind transfer on
phone calls, but not IM calls.

Chapter 5 Unified Communications Managed APl (UCMA) Workflow 127

The AcceptCall Activity

The AcceptCall activity accepts either a phone call or an IM call. If the call is not incoming,
AcceptCall throws an InvalidOperation exception. The AcceptCall is associated with the
workflow instance to which it belongs. The call is retrieved from the CommunicationsWorkflow-
RuntimeService using the DequeueCall API.

The AcceptCall activity also creates a CallProvider object that is exposed as a property.
Because an AcceptCall activity can accept one call, one CallProvider object is created for that
call. Table 5-4 describes the properties of the AcceptCall activity.

TABLE 5-4 Properties of AcceptCallActivity

Property Description

CallProvider Exposes an object that wraps other objects needed to support a dialog (for
example, Call, SpeechSynthesizer, or SpeechRecognizer). This is available after
the AcceptCall activity executes.

Contentlds A list of Contentlds to be passed to the UCMA as part of accepting the call.
You need to set this property before the AcceptCall activity executes.

Headers Defines Session Initiation Protocol (SIP) headers (referred to as
SignalingHeaders) that are passed when accepting the call. You can specify the
SignalingHeaders by using this property before the AcceptCall activity executes.

The DisconnectCall Activity

The DisconnectCall activity disconnects a phone call or an IM call that is exposed by the
CallProvider property of the parent CommunicationsSequenceActivity. If the parent
CommunicationsSequenceActivity does not have a value specified for CallProvider, it tries
to get it from the grandparent CommunicationsSequenceActivity. It follows the tree upward
until it finds a CommunicationsSequenceActivity that has the specified CallProvider value.

If the call is already disconnected, DisconnectCall does not throw any exceptions. It is likely
that the caller will end the call before the DisconnectCall activity executes. DisconnectCall
also cleans up all of the CallProvider objects associated with the call. Table 5-5 lists a property
and description of the DisconnectCall activity.

TABLE 5-5 Property of DisconnectCallActivity

Property Description

Headers Defines SIP headers (that is, SignalingHeaders) passed when disconnecting
the call. You can specify the SignalingHeaders by using this property
before the DisconnectCall activity executes.

The OutboundCall Activity

The OutboundCall activity creates a new outbound call. The type of call created by this
activity depends on the value of the CallType property.

128

Part Ill Unified Communications Managed APl Workflow

The OutboundCall activity also creates a list of objects needed for supporting a dialog to be used
by other UCMA Workflow Activities. These objects are wrapped as a CallProvider object, which is
exposed as a property on OutboundCall. Because only one call is created by the OutboundCall
activity, only one CallProvider object is created per call. Table 5-6 describes the properties of the
OutboundCall activity.

TABLE 5-6 Properties of OutboundCallActivity

Property Description

CalledParty The party to which the call is being placed. The value should be a valid SIP
Uniform Resource Identifier (URI). Examples:

sip:someone@contoso.com or
tel:1112223333

CallProvider Exposes an object that contains all of the objects needed to support a
dialog (for example, Call, SpeechSynthesizer, or SpeechRecognizer). This is
available after the OutboundCall activity executes.

CallType The type of the call created by the OutboundCall activity. Possible values
are AudioVideoCall or InstantMessagingCall.

CustomMimeParts A list of custom Multipurpose Internet Mail Extensions (MIME) part
descriptions.

Headers A list of SignalingHeaders to be passed to the UCMA as part of accepting the
call. You need to set this property before the AcceptCall activity executes.

The BlindTransfer Activity

The BlindTransfer activity transfers the call to a specified party without waiting for the transfer
to succeed or fail. This is valid only for phone calls, as described in Table 5-7.

TABLE 5-7 Properties of BlindTransferActivity

Property Description
CalledParty The party the call is being transferred to. The value should be a valid SIP
URI. Examples:

sip:someone@contoso.com or
tel:1112223333

Dialog Activities

Dialog activities are the backbone of the interaction between the user and an application.
Using these activities, an application can play or send messages to the user and recognize
their responses.

The UCMA Workflow has four activities that enable interaction with the user. Each activity is
valid for either a phone call or an IM call, as described in Table 5-8.

Chapter 5 Unified Communications Managed APl (UCMA) Workflow 129

TABLE 5-8 Dialog Activities

Activity Description
InstantMessagingStatement Sends an instant message to the user.
InstantMessagingQuestionAnswer Asks a question by sending an instant message to the user

and recognizes the user’s text response.

SpeechQuestionAnswer Asks the user a question and recognizes user response via
a phone call. You can use either a recorded .wav file or a
synthesized text-to-speech message. Both speech and DTMF
inputs from the user can be recognized.

SpeechStatement Plays a message to the user via a phone call. You can use
either a recorded .wav file or a synthesized text-to-speech
message.

The SpeechStatement Activity

The SpeechStatement activity plays a specified message to the user. This activity can
execute only in an audio-video (A/V) call. The message can be a prerecorded .wav file or a
synthesized message using a text-to-speech engine, as described in Table 5-9.

TABLE 5-9 Properties of SpeechStatementActivity

Property Description

IsDataTrackingEnabled When this property is set to True, if TrackingDataWorkflowRuntime-
Service has been added to the Workflow Runtime, it stores the value of
MainPrompt.

MainPrompt The prompt that the activity plays to the user when it executes. This is of
the type Microsoft.Speech.Synthesis.PromptBuilder.

Playing a message A message can be played to the user by setting the prompt on the
SpeechStatement activity. You can set the prompt on the SpeechStatement activity either at
the designer level or in code.

At design time, you can set static prompts in the Properties window, as shown in Figure 5-9.

Properties > 1 Xx
speechStatementActivityl Microsoft.Rtc \Workflow Activities, SpeechState mentictivity -

Description -

Enabled True

IsDataTrackingEnabled False

tdainPrampt This is a static prompt 3

TurnStarting 7] | 4
MainPrompt

The prompt thatis played when the activity starts

FIGURE 5-9 Setting static prompts for the SpeechStatement activity.

130

Part Ill Unified Communications Managed APl Workflow

Alternatively, you can set a dynamic prompt in code by using the TurnStarting event handler.
For details, see the “Turn and the TurnStarting Event” sidebar. The following code example is
a sample event handler.

private void speechStatementActivityl _TurnStarting(object sender,
Microsoft.Rtc.Workflow.Activities.SpeechTurnStartingEventArgs e)

{1

SpeechTurnStartingEventArgs exposes the prompt that is played and the type of the prompt.
The prompt type is not relevant to SpeechStatement because it has only one type (Main). You
can use this event handler to change the prompt dynamically on this activity.

Turn and the TurnStarting Event

A turn is a unit of dialog between two parties. In the case of a SpeechStatement
activity, turn corresponds to the activity playing the message and the user receiving it.
TurnStarting is an event that is raised just before the SpeechStatement activity is ready
to play the message. TurnStarting event handler can be registered like any other .NET
event handler. Visual Studio provides an easy way to do this in the property window of
the selected activity.

The SpeechQuestionAnswer Activity

The SpeechQuestionAnswer activity plays a message to the user and recognizes the user’s
response. The user can respond via speech or DTMF. This activity can execute only in an A/V
call. The message can be a prerecorded .wav file or a synthesized message using a text-to-
speech engine. The SpeechQuestionAnswer activity properties are described in Table 5-10.

TABLE 5-10 Properties of SpeechQuestionAnswerActivity

Property Description

CanBargeln When set to True, the user can interrupt the question with an answer.
If it is set to False, the user’s response is discarded until the question
finishes playing.

CompleteTimeout The length of silence following user speech before the speech recog-
nizer finalizes a result.

DtmfGrammars A collection of grammar files for recognizing the user's DTMF input.

ExpectedDtmfInputs An array of strings that are valid for the user’s DTMF input.

ExpectedSpeechinputs An array of strings that are valid for the user’s speech input.

Grammars A collection of grammar files for recognizing the user’s speech input.

IncompleteTimeout The length of silent time after which recognition ends. This value

applies when the speech prior to the silence is an incomplete match
of all active grammars.

Chapter 5 Unified Communications Managed APl (UCMA) Workflow 131

TABLE 5-10 Properties of SpeechQuestionAnswerActivity

Property
InitialSilenceTimeout

IsDataTrackingEnabled

MainPrompt

PreFlushDtmf

Prompts

RecognitionResult

Description

The length of time in which the user has to start responding or the
activity treats the user’s response as silence. The default is 3 seconds.

When set to True, if TrackingDataWorkflowRuntimeService has been
added to the Workflow Runtime, it stores the value of MainPrompt
that is played and the corresponding recognition result.

The prompt that the activity plays to the user when this activity
executes. This is of the type Microsoft.Speech.Synthesis.PromptBuilder.

When set to True, all of the DTMF digits in the buffer are discarded
and the users cannot type ahead their DTMF responses. When set to
False, users can type ahead their DTMF responses.

A collection of all of the prompts available for this activity.

The result of the recognition of the user’s speech or DTMF response.

Asking a question You can ask the user a question by setting the prompt on the
SpeechQuestionAnswer activity. The prompt on the activity can be set in the same way as
you would with the SpeechStatement activity, either at the designer level or in code.

At design time, you can set static prompts in the Properties window, as shown in Figure 5-10.

Properties

-1 X

speechQuestionAnswerActivityl Microsoft.Rtc \Workflow Activities SpeechQuestionfnawerdctivity -

EMIER
IiDataTrackingEnabled
hdainPrompt
PreFlushDtrmf

B Prompts

EscalatedMoRecagnitionPrampt
EscalatedSilencePrampt
HelpPrampt
MainPrompt
MoRecognitionPrompt
RepeatPrompt
SilencePrompt
RecognitionResult
TurnStarting

MainPrompt

o

False

This is a static prompt

False

<Expand to edit Prompts>

This is a static prormpt

Walue available at Runtime only

The prarapt that is played when the activiby starts

FIGURE 5-10 Setting static prompts for the SpeechQuestionAnswer activity.

Alternatively, you can set a dynamic prompt in code by using the TurnStarting event handler.
For details, see the "Turn and the TurnStarting Event” sidebar earlier in this chapter. The
following code example is a sample event handler.

private void speechQuestionAnswerActivityl_TurnStarting(object sender,
Microsoft.Rtc.WorkfTow.Activities.SpeechTurnStartingEventArgs e)

{1

132 Part lll Unified Communications Managed APl Workflow

SpeechTurnStartingEventArgs exposes the prompt that is played and the type of the prompt.
You can use this event handler to change the prompt on this activity dynamically.

Prompt Types

The SpeechQuestionAnswer and InstantMessagingQuestionAnswer activities have many
types of prompts. Table 5-11 describes what each prompt type is used for.

TABLE 5-11 Prompt Types

Prompt Type
Acknowledge

EscalatedNoRecognition

EscalatedSilence

Help

Main

NoRecognition

Repeat

Silence

Description

This prompt is played before the user input is sent for recognition.
This is available only for the InstantMessagingQuestionAnswer activity.

This prompt is played by the activity when the user’s response is not
recognized a second time. This is not mandatory. This is available
only for the SpeechQuestionAnswerActivity and InstantMessaging-
QuestionAnswer activities.

This prompt is played by the activity when the user does not respond
in the time specified in the InitialSilenceTimeout. This is not mandatory.
This is available only for the SpeechQuestionAnswerActivity and Instant-
MessagingQuestionAnswer activities.

This prompt is played by the activity when the user response
triggers a help command in that scope. For details, see the “What
Is a Command?” sidebar later in this chapter. This is not mandatory.
This is available only for the SpeechQuestionAnswerActivity and
InstantMessagingQuestionAnswer activities.

This is the first prompt that the activity plays. This is mandatory.

If it is not set, the activity throws an exception. This is available
only for the SpeechStatement, SpeechQuestionAnswerActivity,
InstantMessagingStatement, and InstantMessagingQuestionAnswer
activities.

This prompt is played by the activity the first time the user’s
response is not recognized. This is not mandatory. This is available
only for the SpeechQuestionAnswerActivity and InstantMessaging-
QuestionAnswer activities.

This prompt is played by the activity when the user response triggers
a repeat command in that scope. For details, see the "What Is a
Command?” sidebar later in this chapter. This is not mandatory. This
is available only for SpeechQuestionAnswerActivity.

This prompt is played by the activity the first time the user does

not respond in the time specified in InitialSilenceTimeout. This is not
mandatory. This is available only for the SpeechQuestionAnswerActivity
and InstantMessagingQuestionAnswer activities.

Chapter 5 Unified Communications Managed APl (UCMA) Workflow 133

Prompt Fallback Logic

As mentioned in Table 5-11, all prompts except Main are optional. However, there are
conditions in which one of these nonoptional prompts needs to be played. For example,
if a user's response cannot be recognized but the NoRecognition prompt has not been
specified, then a fallback prompt is played. The fallback prompt that is played depends
on the prompt that was supposed to be played. Prompt types and their fallback prompt
types are listed in Table 5-12.

TABLE 5-12 Prompt Types and the Associated Fallback Prompt Types

Prompt Type Fallback Prompt Type

Main Not applicable; this prompt is mandatory.

Acknowledge No fallback. If it is not set, then this prompt is not played.
EscalatedNoRecognition NoRecognition

EscalatedSilence Silence

Help Main

NoRecognition Help

Repeat Main

Silence Help

For example, suppose that you have set only the Main prompt for a SpeechQuestion-
Answer activity. If the user's response is not recognized, ideally the NoRecognition
prompt is played. However, because the NoRecognition prompt is not specified,
SpeechQuestionAnswer tries to play the Help prompt. Again, because the Help prompt
is also not specified (that is, only the Main prompt is specified), the Main prompt, which
is the fallback prompt for the Help prompt, is played.

Recognizing user responses SpeechQuestionAnswer needs to know a set of expected user
responses to recognize. SpeechQuestionAnswer has four properties that enable the developer
to specify this set. The following description uses speech as the example. The process for
recognizing DTMF input is very similar.

Specifying expected inputs ExpectedSpeechlnputs, a property on SpeechQuestionAnswer,
is an array of strings that the developer can specify. At run time, this array is converted to a
grammar so that, if the user responds with anything in this set, it can be recognized. You
can specify the set of valid user responses by using the String Collection Editor window from
the Properties window, as shown in Figure 5-11. This is useful in scenarios in which the list of
expected inputs is finite; for example, a list of pizza sizes or yes/no responses. Similarly, you
can use ExpectedDtmfiInputs for DTMF inputs.

134 Part lll Unified Communications Managed APl Workflow

String Collection Editor 7|
Enter the strings in the collection (one per line):
stnall -
medium
Iargel
] [
’ Ok] ’ Cancel]

FIGURE 5-11 A String Collection Editor window opened from the ExpectedSpeechinputs property of
SpeechQuestionAnswer.

Specifying the grammar file You can use a grammar file to list the expected inputs. A
grammar file is a more flexible and powerful way of specifying the set of expected inputs
(for example, dates and numbers). These grammar files have to follow a certain schema, as
described by the Speech Recognition Grammar Specification (SRGS).

Given a grammar file, the file can be attached to SpeechQuestionAnswer by using the
Grammars property. This is a collection of grammar files used to recognize user input. In the
Properties window, you can specify multiple grammar files by separating them with a semi-
colon. Similarly, you can specify DTMF grammars by using the DTMFGrammars property.

What Is a Grammar?
A grammar is intended for use by speech recognizers so that developers can specify
the words and patterns of words for which you want the speech recognizer to listen.

For example, the grammar file should contain all of the words or pattern of words that
the developer deems a valid response to the question, "What size pizza would you like?”

InstantMessagingStatementActivity

InstantMessagingStatementActivity sends a specified message to the user. This activity can
execute only on IM calls. Table 5-13 lists InstantMessagingStatementActivity properties.

TABLE 5-13 Properties of InstantMessagingStatementActivity

Property Description

IsDataTrackingEnabled When set to True, and if TrackingDataWorkflowRuntimeService has been
added to the Workflow Runtime, it stores the value of MainPrompt.

MainPrompt The message that the activity sends to the user when this activity
executes. This is of the type string.

Chapter 5 Unified Communications Managed APl (UCMA) Workflow 135

Setting the prompt You can set the prompt on InstantMessagingStatementActivity either at
the designer level or in code.

At design time, you can set static prompts in the Properties window, as shown in Figure 5-12.

Properties >0 X
5 Activityl Microsoft.RecWorkflowActivities InstanthessagingStatementdctivity -

(Marne) i gingStat tActivityl
Description

Enabled True

IsDataTrackingEnabled False

tdainPrampt This is a static message

TurnStarting 1]

MainPrompt
The prompt that is played when the activity starts

FIGURE 5-12 Setting a static prompt for InstantMessagingStatementActivity.

Alternatively, you can set a dynamic prompt in code by using the TurnStarting event handler.
For details, see the “Turn and the TurnStarting Event” sidebar earlier in this chapter. The
following code example is a sample event handler.

private void instantMessagingStatementActivityl_TurnStarting(object sender,
Microsoft.Rtc.Workflow.Activities.InstantMessagingTurnStartingEventArgs e)
{}

InstantMessagingTurnStartingEventArgs exposes the prompt that is played and the type of
the prompt. The type of prompt is not relevant to InstantMessagingStatement because it has
only one type (Main). You can use this event handler to change the prompt on this activity
dynamically.

InstantMessagingQuestionAnswerActivity

InstantMessagingQuestionAnswerActivity sends a message to the user and recognizes
the user’s response. This activity can execute only on IM calls. Table 5-14 lists the
InstantMessagingQuestionAnswerActivity properties.

TABLE 5-14 Properties of InstantMessagingQuestionAnswerActivity

Property Description

ExpectedInputs An array of strings that are valid for the user’s IM input.

Grammars A collection of grammar files for recognizing a user’s IM input.
InitialSilenceTimeout The length of time in which the user has to start responding or the

activity treats the user's response as silence. The default is 30 seconds.

136 Part lll Unified Communications Managed APl Workflow

TABLE 5-14 Properties of InstantMessagingQuestionAnswerActivity

Property Description

IsDataTrackingEnabled When set to True, and if TrackingDataWorkflowRuntimeService has been
added to the Workflow Runtime, it stores the value of MainPrompt that is
played and the corresponding recognition result.

MainPrompt The message that the activity sends to the user when this activity
executes. This is of the type string.

Prompts A collection of all of the prompts available for this activity.

RecognitionResult The result of the recognition of the user’s IM response.

Asking an IM question You can ask the user an IM question by setting the prompt on
InstantMessagingQuestionAnswerActivity. The prompt on the activity can be set in the same
way as you would with InstantMessagingStatementActivity, either at the designer level or in
code.

At design time, you can set static prompts in the Properties window, as shown in Figure 5-13.

Properties > 1 Xx
i M. gingQuestionA Activityl Microsoft Rtc Waorkflow. Activities InstanthessagingQuestiondn swerfctiviy -
= EIF

InitialSilenceTimeout 00:00:30 -

IsDataTrackingEnabled False

hdainPrampt This is a static main prompt
El Prompts <Expand to edit Prompts:

AcknowledgePrampt

EscalatedMoRecognitionPrampt
EscalatedSilencePrampt
HelpPrampt
MainPrompt This is a static main prompt =
MoRecognitionPrompt
SilencePrormpt
RecognitionResult Walue available at Runtime anly

TurnStarting 7]

MainPrompt
The prormpt that is played when the activity starts

FIGURE 5-13 Setting static prompts for InstantMessagingQuestionAnswerActivity.

Alternatively, you can set a dynamic prompt in code by using the TurnStarting event handler.
For details, see the “Turn and the TurnStarting Event” sidebar earlier in this chapter. The
following code example is a sample event handler.

private void instantMessagingQuestionAnswerActivityl_TurnStarting(object sender,
Microsoft.Rtc.Workflow.Activities.InstantMessagingTurnStartingEventArgs e)

{1

Chapter 5 Unified Communications Managed APl (UCMA) Workflow 137

InstantMessagingTurnStartingEventArgs exposes the prompt that is played and the type
of the prompt. You can use this event handler to change the prompt on this activity
dynamically.

Recognizing the user’s text response Similar to SpeechQuestionAnswer, InstantMessaging-
QuestionAnswerActivity needs to have a set of expected user text responses to recognize.
InstantMessagingQuestionAnswerActivity has two properties that enable the developer to
specify this set.

Specifying expected inputs Expectedinputs, a property on InstantMessagingQuestionAnswer-
Activity, is an array of strings that the developer can specify. This is exactly the same as the
ExpectedSpeechinputs or ExpectedDTMFInputs property of SpeechQuestionAnswer.

Specifying the grammar file You can use a grammar file to list the expected inputs. Even
though these files follow a certain schema as described by the SRGS, you can use it to
recognize IM input.

Given a grammar file, the file can be attached to InstantMessagingQuestionAnswerActivity by
using the Grammars property in the exact way that you would with SpeechQuestionAnswer.

Command Activities

Five activities are available to enable developers to add commands to the dialog interaction
with the user. Each activity is valid for either a phone call or an IM call. Command activities
and descriptions are listed in Table 5-15.

TABLE 5-15 Different Types of Command Activities

Activity Description

InstantMessagingCommand A generic command that is triggered based on the attached
grammar file. Valid only for IM calls.

InstantMessagingHelpCommand A command used for scenarios to provide help to the user. It
is triggered based on the attached grammar file. Valid only for
IM calls.

SpeechCommand A generic command that is triggered based on the attached

speech or DTMF grammar file. Valid only for phone calls.

SpeechHelpCommand A command used for scenarios to provide help to the user. It
is triggered based on the attached speech or DTMF grammar
file. Valid only for phone calls.

SpeechRepeatCommand A command used for scenarios to repeat the question back to
the user. It is triggered based on the attached speech or DTMF
grammar file. Valid only for phone calls.

138 Part Il Unified Communications Managed APl Workflow

What Is a Command?

A command can be considered a valid user response that may not be a direct answer to
the question asked. For example, answers to the question, “Which size pizza would you
like?” could include “Small” or "Large.” However, the following responses are also valid,
even though they do not answer the question:

B What sizes do you have?

B Do you have a family-size pizza?

B What was that again?

B | think | have changed my mind. | don’t want pizza anymore.

The first two responses ask for more information (that is, requesting help). The third
response asks for the question to be repeated. The last response just states that the
user does not want any pizza. These responses can be called commands because the
user is commanding that more information be provided or that the dialog be ended.

Commands are an integral part of a good dialog user interface when interacting with
an automated system, be it over the phone or via IM. They allow users to ask for more
information (that is, Help), replay the question again (that is, Repeat), or perform more
generic actions, such as restarting. It increases the chance that users understand what is
expected of them so that they can provide the correct input.

SpeechCommandActivity

SpeechCommandActivity is a command activity that you can use for any generic command
when interacting via a phone call. You can specify this activity for a scope as defined by a
CommunicationsSequence activity. Anytime SpeechQuestionAnswer is active in that scope, the
SpeechCommand activity, if defined, is also active in that scope.

For example, a SpeechQuestionAnswer activity is defined to ask for a pizza size, as shown in
Figure 5-14.

Also, SpeechCommandActivity is defined in that scope as well. You can add
SpeechCommandActivity in the command view of CommunicationsSequenceActivity only.
You can open the Command view by right-clicking CommunicationsSequenceActivity
and then clicking View Commands. A snapshot of a SpeechCommandActivity is added

in the Command view, as shown in Figure 5-15. The SpeechCommandActivity is named
operatorCommand.

Chapter 5 Unified Communications Managed API (UCMA) Workflow

Sequential Workflow

gt acceptCallactivityl

FI @I

= communicationsSeque...

@ @
@ askPizzasize

disconnectCallactiv
S iyl

FIGURE 5-14 A simple workflow with a SpeechQuestionAnswer activity named askPizzaSize.

Sequential Workflow

?

gt acceptCallactivity
-
[E communicationsSequencesdtivityl
. =

comrmandsactivityl

o|[@ (>

[= operatorCammand

?

7, transferTaQperatar
¥

FIGURE 5-15 A Command view of communicationsSequenceActivityl showing the SpeechCommand named
operatorCommand.

In this particular example, when the askPizzaSize activity is executing, operatorCommand is
also active. If the user’s response matches the grammar defined in the operatorCommand
grammar, the operatorCommand activity executes all of its children. In this case, the transfer-

ToOperator activity, which is a Blind Transfer activity, executes. Table 5-16 lists the properties
of SpeechCommandActivity.

139

140 Part lll Unified Communications Managed APl Workflow

TABLE 5-16 Properties of SpeechCommandActivity

Property Description

DtmfGrammars A collection of grammar files for recognizing the user's DTMF input for
this command

ExpectedDtmfInputs An array of strings that are valid for the user’s DTMF input for this
command

ExpectedSpeechinputs An array of strings that are valid for the user’s speech input for this
command

Grammars A collection of grammar files for recognizing the user’s speech input for

this command

RecognitionResult The result of the recognition of the user’s speech or DTMF response if
matched by the command grammar

SpeechHelpCommandActivity

SpeechHelpCommandActivity is a custom speech command activity. It is added to

the Commands view of a CommunicationsSequenceActivity in the same way as for
SpeechCommandActivity. Like SpeechCommandActivity, it is also active during all of the
SpeechQuestionAnswer activities in the scope that this command is defined within. However,
when the user input is matched with any of the grammars defined for SpeechHelpCommand-
Activity, the Help prompt of SpeechQuestionAnswerActivity is played automatically.

For example, a SpeechQuestionAnswerActivity named askPizzaSize, shown previously in
Figure 5-14, is defined with the MainPrompt and HelpPrompt sets, as shown in Figure 5-16.
Also imagine a SpeechHelpCommandActivity called helpCommand is defined in the Commands
view in the same way operatorCommand was defined.

Properties - X
askPizzaSize Microsoft.Rtc\Workflow.Activities, SpeechQuestionAnswerdctivity -

=

InitialSilenceTimeout 00:00:03 -
LiDataTrackingEnabled False
MainPraompt What type of pizza would you like?
PreFlushDtrmf False
B Prompts <Expand to edit Prompts>

EscalatedMoRecagnitionPrar

EscalatedSilencePrampt

HelpPrampt You can choose from large, rmediurm ar small,
MainPrompt What type of pizza would you like?
MoRecognitionPrompt

m

RepeatPrompt

SilencePrompt
RecognitionResult Walue available at Runtirme anly
Turnstarting 1]

HelpPrompt

The promptthatis played when user inputs is matched by grammar specified in the
help command activity in this scope,

FIGURE 5-16 The MainPrompt and HelpPrompt set for the askPizzaSize activity.

Chapter 5 Unified Communications Managed APl (UCMA) Workflow 141

When the askPizzaSize activity executes, it plays its MainPrompt, "What size pizza would you
like?” If the user’s response is matched with the helpCommand grammar, the askPizzaSize
activity automatically plays its HelpPrompt, “You can choose from large, medium, or small.” If
the HelpPrompt is not defined, the prompt fallback logic is used.

SpeechRepeatCommandActivity

SpeechRepeatCommandActivity behaves exactly the same way as SpeechHelpCommandActivity
except when the user input is matched with any of the grammars defined for SpeechRepeat-
CommandActivity. In this case, the Repeat prompt of SpeechQuestionAnswerActivity is played
automatically. If the Repeat prompt is not defined, the prompt fallback logic is used.

InstantMessagingCommandActivity

InstantMessagingCommandActivity is the IM version of SpeechCommandActivity. You can
use it to implement generic commands for IM dialog interactions, and it is active for IM
calls when InstantMessagingQuestionAnswerActivity is executing. By replacing all speech
activities with their equivalent IM activities in the example given earlier in this chapter for
SpeechCommandActivity, you can easily create a sample application for InstantMessaging-
CommandActivity. Table 5-17 lists the properties of InstantMessagingCommandActivity.

TABLE 5-17 Properties of InstantMessagingCommandActivity

Property Description

ExpectedInputs An array of strings that are valid for the user’s IM input for this command

Grammars A collection of grammars for recognizing the user’s IM input for this
command

RecognitionResult The result of the recognition of the user’s IM response if matched by the

command grammar

InstantMessagingHelpCommandActivity

InstantMessagingHelpCommandActivity is a custom IM command activity. It
behaves the same way as SpeechHelpCommandActivity except for IM dialogs using
InstantMessagingQuestionAnswerActivity.

Call Control Communications Event Activities

Four call control communication event activities available in the UCMA Workflow allow for
the handling of call control communication events. One activity is valid for both phone calls
and IM calls, while others are specific to either a phone call or an IM call, as described in
Table 5-18.

142 Part lll Unified Communications Managed APl Workflow

TABLE 5-18 Call Control Communications Event Activities

Activity Description

CallDisconnectedEvent An event when the call (phone or IM) is disconnected.

CallOnHoldEvent An event when the call is put on hold. Valid only for phone calls.

CallOnHoldTimeoutEvent An event when the call is on hold for a specified amount of time.
Valid only for phone calls.

CallRetrievedEvent An event when the call that was on hold is retrieved. Valid only for
phone calls.

What Are Communication Events?

There are two different types of communication events. A call control communication
event occurs on the call that is used for communication. A dialog communication event
is an event that occurs as part of the dialog process. They are distinguished from call
control communication events because call control communication events are based
on the events on the call, whereas dialog communication events are related only to the
dialog between the two parties. For example, if a pizza counter attendant asks a user,
“What size pizza would you like?” but the user does not say anything, the attendant

is going to ask the question again. After a while (that is, after the attendant has asked
the same question n number of times), the attendant realizes that the user is either not
interested in getting pizza or does not understand the question. The attendant can
then take specific action. This realization by the pizza counter attendant can be called a
dialog event.

Dialog events are an integral part of a good dialog user interface. They allow the
system to realize that the user is not making progress with the automated system. The
system can then decide to either transfer the call to an agent or disconnect the call and
play or send a (hopefully) useful message to the user if no agents are available.

CallDisconnectedEventActivity

CallDisconnectedEventActivity is an event handler activity for a “call disconnected” event,
whether a phone call or an IM call. You can specify this activity for a scope, as defined by a
CommunicationsSequenceActivity. This activity can be added only in the CommunicationEvents
view of CommunicationsSequenceActivity. You can open the CommunicationsEvents view of
CommunicationsSequenceActivity by right-clicking CommunicationsSequenceActivity and then
clicking View Communication Events on the context menu. An example of a Communications-
SequenceActivity with a CallDisconnectedEventActivity added in its CommunicationsEvents
view is shown in Figure 5-17.

Chapter 5 Unified Communications Managed APl (UCMA) Workflow 143

Sequential Workflow

B
|

v

= communicationsSequencesctivityl
communicationsEventsactivityl

__ &
o€l ©

= callDisconnecte dEve ntctivityl

&

o

:5- postCalllisconned
Processing

v
|
O]

FIGURE 5-17 The CommunicationsEvents view of communicationsSequenceActivityl showing
callDisconnectedEventActivityl.

In the preceding example, a code activity, postCallDisconnectedProcessing, is executed when
the call is disconnected.

When CallDisconnectedEventActivity is executed, it cancels all of the other activities that are
executing in CommunicationsSequenceActivity. For example, if a SpeechQuestionAnswerActivity
is executing when the call is disconnected, CallDisconnectedEventActivity in that scope cancels
SpeechQuestionAnswerActivity. If no such CallDisconnectedEventActivity is present in the scope,
the activities that need a call to execute (in this example, SpeechQuestionAnswerActivity)
throw an InvalidOperationException because they cannot execute without a call. Table 5-19
lists the property of CallDisconnectedEventActivity.

TABLE 5-19 Property of CallDisconnectedEventActivity

Property Description

CallStateTransitionReason Exposes the reason why the call was disconnected

CallOnHoldEventActivity

CallOnHoldEventActivity is an event handler activity for a “call put on hold.” This works only
for a phone call because IM calls cannot be put on hold. This activity can be specified for a
scope as defined by a CommunicationsSequenceActivity. This activity can be added only in
the CommunicationEvents view of CommunicationsSequenceActivity.

144

Part Ill Unified Communications Managed APl Workflow

Note The speech dialog activities, like SpeechQuestionAnswerActivity and SpeechStatement-
Activity, intrinsically handle calls being put on hold. CallOnHoldEventActivity is used if the
application wants to perform extra processing when the call is put on hold.

CallOnHoldTimeoutEventActivity

CallOnHoldTimeoutEventActivity is an event handler activity for a “call on hold for a certain
amount of time.” Its property and description are shown in Table 5-20. Due to the nature of
this event, it can occur only after the call has been put on hold. The amount of time after
which this event occurs can be set using a property on the activity. This works only for a
phone call because IM calls cannot be put on hold. This activity can be specified for a scope
as defined by a CommunicationsSequenceActivity. This activity can be added only in the
CommunicationEvents view of CommunicationsSequenceActivity.

TABLE 5-20 Property of CallOnHoldTimeoutEventActivity

Property Description
CallOnHoldTimeout The length of time for which the call is on hold before this activity is
executed

CallRetrievedEventActivity

CallRetrievedEventActivity is an event handler activity for a “call being retrieved.” Due to the
nature of this event, it can occur only after the call has been put on hold. This works only for
a phone call because IM calls cannot be put on hold or retrieved. You can specify this activity
for a scope as defined by CommunicationsSequenceActivity. This activity can be added only
in the CommunicationEvents view of CommunicationsSequenceActivity.

Note The speech dialog activities, like SpeechQuestionAnswerand SpeechStatement, intrinsically
handle calls being retrieved. The CallRetrievedEventActivity is used if the application wants to
perform extra processing when the call is retrieved.

Dialog Communications Event Activities

Six dialog communication event activities are available that allow for handling dialog events.
Each activity is valid for either a phone call or an IM call, as described in Table 5-21.

Chapter 5 Unified Communications Managed APl (UCMA) Workflow 145

TABLE 5-21 Dialog Communications Event Types

Activity Description

ConsecutiveNolnputsinstantMessagingEvent An event when the application fails to un-
derstand a user response or the user fails to
respond n times in a row. Valid only for IM calls.

ConsecutiveNolnputsSpeechEvent An event when the application fails to un-
derstand a user response or the user fails to
respond n times in a row. Valid only for phone
calls.

ConsecutiveNoRecognitionsinstantMessagingEvent ~ An event when the application fails to under-
stand a user response n times in a row. Valid
only for IM calls.

ConsecutiveNoRecognitionsSpeechEvent An event when the application fails to under-
stand a user response n times in a row. Valid
only for phone calls.

ConsecutiveSilencesinstantMessagingEvent An event when the user fails to respond n
times in a row. Valid only for IM calls.

ConsecutiveSilencesSpeechEvent An event when the user fails to respond n
times in a row. Valid only for phone calls.

ConsecutiveNolnputsSpeechEventActivity

ConsecutiveNolnputsSpeechEventActivity is an event handler activity for a user providing an
invalid input n times in a row. Its property is listed in Table 5-22. By default, the value of n is 3.
An invalid input is when the user either does not provide any input (that is, remains silent) or
the user’s input is not recognized. This works only for speech dialogs over a phone call. This
activity can be specified for a scope as defined by a CommunicationsSequenceActivity. You
add this activity in the CommunicationEvents view of CommunicationsSequenceActivity.

TABLE 5-22 Property of ConsecutiveNolnputsSpeechEventActivity

Property Description

MaximumNolnputs The number of consecutive times that invalid user input is received
before this activity is executed. The default value is 3.

ConsecutiveSilencesSpeechEventActivity

ConsecutiveSilencesSpeechEventActivity is an event handler activity for a user remaining silent
n times in a row. Its property is listed in Table 5-23. By default, the value of n is 3. This works
only for speech dialogs over a phone call. This activity can be specified for a scope as defined
by a CommunicationsSequenceActivity. You add this activity in the CommunicationEvents view
of CommunicationsSequenceActivity.

146 Part lll Unified Communications Managed APl Workflow

TABLE 5-23 Property of ConsecutiveSilencesSpeechEventActivity

Property Description

MaximumSilences The number of consecutive times that the user remains silent before
this activity is executed. The default value is 3.

ConsecutiveNoRecognitionsSpeechEventActivity

ConsecutiveNoRecognitionsSpeechEventActivity is an event handler activity for user input not
being recognized n times in a row. Its property is listed in Table 5-24. By default, the value
of n is 3. This works only for speech dialogs over a phone call. This activity can be specified
for a scope as defined by a CommunicationsSequenceActivity. You add this activity in the
CommunicationEvents view of CommunicationsSequenceActivity.

TABLE 5-24 Property of ConsecutiveNoRecognitionsSpeechEventActivity

Property Description

MaximumNoRecognitions The number of consecutive times that user input is not recognized
before this activity is executed. The default value is 3.

ConsecutiveNolnputsinstantMessagingEventActivity

ConsecutiveNolnputsinstantMessagingEventActivity is an event handler activity for a
user providing an invalid input n times in a row. Its property is listed in Table 5-25. By
default, the value of nis 3. An invalid input is when the user either does not provide any
input (that is, does not respond) or the user’s input is not recognized. This works only

for IM dialogs over an IM call. You can specify this activity for a scope as defined by a
CommunicationsSequenceActivity. You add this activity in the CommunicationEvents view
of CommunicationsSequenceActivity.

TABLE 5-25 Property of ConsecutiveNolnputsinstantMessagingEventActivity

Property Description

MaximumNolnputs The number of consecutive times that invalid user input is received
before this activity is executed. The default value is 3.

ConsecutiveSilencesinstantMessagingEventActivity

ConsecutiveSilencesinstantMessagingEventActivity is an event handler activity for a user not
responding n times in a row. Its property is described in Table 5-26. By default, the value
of n is 3. This works for only for IM dialogs over an IM call. You can specify this activity

for a scope as defined by a CommunicationsSequenceActivity. You add this activity in the
CommunicationEvents view of CommunicationsSequenceActivity.

Chapter 5 Unified Communications Managed APl (UCMA) Workflow 147
TABLE 5-26 Property of ConsecutiveSilencesinstantMessagingEventActivity

Property Description

MaximumSilences The number of consecutive times that the user does not respond
before this activity is executed. The default value is 3.

ConsecutiveNoRecognitionsinstantMessagingEventActivity

ConsecutiveNoRecognitionsinstantMessagingEventActivity is an event handler activity for user
input not being recognized n times in a row. Its property is described in Table 5-27. By de-
fault, the value of n is 3. This works only for IM dialogs over an IM call. You can specify this
activity for a scope as defined by a CommunicationsSequenceActivity. You add this activity in
the CommunicationEvents view of CommunicationsSequenceActivity.

TABLE 5-27 Property of ConsecutiveNoRecognitionsinstantMessagingEventActivity

Property Description

MaximumNoRecognitions The number of consecutive times that user input is not recognized
before this activity is executed. The default value is 3.

Presence-Related Activity

Presence is one of the most important value propositions of any UC platform. The UCMA
Workflow ships with an activity related to presence, as described in Table 5-28.

TABLE 5-28 Presence-Related Activity

Activity Description
GetPresence Queries the presence information for user(s)
GetPresenceActivity

GetPresenceActivity queries the presence information of a user or a group of users. In addition
to the presence state, it returns the current activity of the user (for example, in a meeting, in a
call) and also out-of-office message if set. Its properties are described in Table 5-29. The out-
of-office message is published if the user has set it in Microsoft Office Outlook. If the user
has not set an out-of-office message, this value is NULL.

TABLE 5-29 Properties of GetPresenceActivity

Property Description
Targets A list of RealTimeAddress objects that represents the users whose pres-
ence will be queried.

Results A dictionary representing the RealTimeAddress and its presence query
result. The RealTimeAddress is used as a key in the dictionary. The
PresenceResult object is the value representing the result of the query.

148 Part Il

Unified Communications Managed APl Workflow

PresenceResult

PresenceResult is the object that represents the result of the presence query performed
by the GetPresence activity. Its properties are described in Table 5-30.

TABLE 5-30 Properties of PresenceResult

Property Description

CurrentState A string representing the current activity of the user (for example, “In a
meeting”, “In a call”).

OofNote A string representing the out-of-office message as published by the
user. If the user has not published an out-of-office message, this value
is NULL.

PresenceStatus An enum value listing the presence status of the user. It is of type

Microsoft.Rtc.Collaboration.Presence.PresenceAvailability.

Summary

The UCMA Workflow Activities provide a way to develop applications that can interact with
the user over the phone or an IM channel as new interfaces. It enables faster development
of such applications by providing prepackaged custom activities for common tasks (for
example, playing or sending a message to the user or asking the user a question and recog-
nizing user input). It also enables intelligent routing decisions by providing a way to query
for presence information. Finally, because this APl does not dictate which application to use,
developers are free to use any application host that they choose.

Additional Resources

"Getting Started with Workflow Foundation (WF)" (http.//msdn.microsoft.com/en-us/
netframework/aa663328.aspx)

Microsoft Unified Communications Managed API 2.0 SDK (32 bit) (http://go.microsoft
.com/fwlink/?LinkID=140790)

Microsoft Unified Communications Managed API 2.0 SDK (64 bit) (http://go.microsoft
.com/fwlink/?LinkID=139195)

“Unified Communications Managed API 2.0 Workflow SDK Documentation”
(http.//go.microsoft.com/fwlink/?LinkID=133578&clcid=0x409)

“Understanding the Activity Execution Context” (http.//msdn.microsoft.com/en-us/
library/aa349099.aspx)

“Using Dependency Properties” (http://msdn.microsoft.com/en-us/library/
ms734499.aspx)

Chapter 6
Business Process Communication

This chapter will help you to:
B Understand how to implement a workflow application.
B Understand the advantages of using a workflow application.

B See how to support both phone and instant message modalities in the same
application.

Scenario

Expense reporting and approval is a business process common to most enterprises. These
processes have a deadline, and human intervention is required to complete them. For example,
the typical approval process requires that a supervisor review expense reports and sign off
on them before they are sent to the reimbursement department. Failure to meet payment
deadlines can result in either penalty fees (for example, for credit cards) or extra processing.

This scenario can be enhanced by monitoring unapproved expense reports, and as the dead-
line approaches, alerting the approver with the information necessary to take effective and
timely action.

This chapter covers the step-by-step implementation of a Unified Communications Managed
API (UCMA) Workflow application that does the following:

B Queries for the presence of the approver to determine the best communication
channel

B Notifies the approver of pending tasks

B Provides different communication channel options to complete pending tasks based
on the approver’s availability

B Informs a delegate of pending tasks if the approver is out of the office

Business Value

By using multiple communications channels and presence information, the business process
can make better decisions, help reduce costs to the enterprise, and increase productivity.
For example, if the approver is out of the office and the pending tasks are important, the

149

150 Part Il

Unified Communications Managed APl Workflow

delegate is asked to complete the task. This ensures that important tasks do not become
critical due to lack of action.

The value added to the business process derives from the following:

Reduced human latency in automated business processes
Increased productivity due to choosing the best communication channel

Cost reduction created by increasing the process efficiency due to presence-based
intelligent routing

Choice of Technology

The UCMA Workflow provides the following benefits that make it ideal in the preceding
scenarios:

An interactive application is easy to create by dragging activities onto the workflow
canvas.

Custom activities provide the infrastructure to interact with users over a phone call or
instant messaging (IM) call.

Custom activities also provide constructs to enable a more natural dialog with the user.

It can be integrated to use the benefits of Microsoft Office Communications Server
2007 R2.

Overall Code Structure

The rest of this chapter lists and explains the steps for building an expense reporting and
approval application using UCMA Workflow Activities and Microsoft Visual Studio 2008. This
application provides a solution to the preceding scenario.

Test Environment

To build and test this solution, you need the following:

Office Communications Server 2007 R2 installed and configured on your domain.

At least two users with Microsoft Office Communicator 2007 R2 installed who are able
to sign in to the Office Communicator.

Your development environment must match the UCMA Workflow specified in the
UCMA Software Development Kit (SDK) documentation at http.//go.microsoft.com/
fwlink/?LinkID=133578.

Chapter 6 Business Process Communication 151

Building the Application

The following sections break down the application-building process into smaller tasks. For
each task, there is a list of steps to be followed.

Task 1: Create a New Communication Workflow Project

The Outbound Sequential Workflow Console Application project template, which is part of
the UCMA SDK, provides a good starting point for building this application because it auto-
matically generates code to integrate with Office Communications Server 2007 R2.

To create a project using this template, perform the following steps:

1.

6.

Start Visual Studio as an administrator. In Windows Vista, you may have to do this
by right-clicking the Microsoft Visual Studio 2008 icon and then clicking Run As
Administrator.

On a computer running Windows Vista, click Continue when the User Account Control
prompts to allow this operation.

. On the Visual Studio menu, click File, New Project to open the New Project dialog box.

3
4.
5

In the Project Types tree, click Communications Workflow.

. Select Outbound Sequential Workflow Console Application and then click OK.

In the Select Language dialog box, choose the language type and then click OK.

Table 6-1 lists the files generated by this project template.

TABLE 6-1 Outbound Sequential Workflow Console Application Template Files

File Name Description

Program.cs Defines a console application similar to the one generated by the Console

Application project template that comes with Visual Studio 2008. This
file, which is generated automatically, contains all of the code needed to
integrate with Office Communications Server 2007 R2.

Workflowl.xoml Defines the semantics of the application’s workflow as viewed in the

designer canvas. This file, in combination with the Workflowl.xoml.cs file,
defines the workflow.

Workflowl.xoml.cs Contains the code-besides for the workflow. This file, in combination with

the Workflowl.xoml file, defines the workflow.

Task 2: Configure the Application to Connect to Office
Communications Server

You need to modify the automatically generated code in the Program.cs file to connect to
your specific server running Office Communications Server.

152 Part lll Unified Communications Managed APl Workflow

To deploy a UCMA Workflow application, the application must sign in to Office
Communications Server. Because an application is not a user, the administrator cannot use an
Active Directory Domain Services (AD DS) user account. Instead, the administrator needs to
create an AD DS Contact object to represent the application and specify the application as a
trusted service. You need to gather the information listed in Table 6-2 before you modify the
Program.cs file. You can obtain this information from your Office Communications Server ad-
ministrator, who creates the AD DS Contact object and specifies your application as a trusted
service.

TABLE 6-2 Information Needed to Update Program.cs

o

Name Description Action to Be Taken

Application Port that the application listens on. Update the value in the constructor

Port of platformSettings in the Initialize

method.

Application The Session Initiation Protocol (SIP) Uniform Update the value of the variable

URI Resource Identifier (URI) assigned to the applicationUri in the Initialize method.
Contact object that represents your applica-
tions, to which users place calls or send IM
messages.

Certificate The certificate that authenticates the Install the certificate in the Local
application machine running Office Computer certificate store on the
Communications Server. This certificate computer where the application is
must be trusted by servers running Office installed.

Communications Server.

FQDN The fully qualified domain name (FQDN) for ~ Update the value of the variable
the server running Office Communications ocsFqdn in the Initialize method.
Server on which the Contact object to be
created is homed.

GRUU The Globally Routable User Agent URI Update the value of the variable gruu
(GRUU) of the trusted service added to in the Initialize method.

Office Communications Server for this
application.
SIP Port Port number on which your server running Update the value of the variable

Office Communications Server listens for SIP
connections. The default is 5061.

ocsTlsPort if the value is not the
default.

More Info For details, see Chapter 9, “Preparing the UC Development Environment.”

Task 3: Allow User Input to the Workflow Instance

In this scenario, a specific event triggers the business workflow. Examples of such events are
“Approval deadline in three days” or “Going over the expense limit requires signoff.” In this
example, you use console input to trigger the workflow. You can replace this easily with a
handler for any event you choose.

1.

Chapter 6 Business Process Communication 153

Update the Main method with the following code.

/// <summary>

/// Main

/// </summary>

private static void Main(Q)

{
bool _continue = true;
string _approverUri = string.Empty;
string _reportTitle = string.Empty;
string _amount = string.Empty;
string _filedBy = string.Empty;
string _onlineDelegateUri = string.Empty;

Initialize(Q);
while (_continue)
{
Console.Write("Enter the approver's SIP URI or 'exit' to quit: ");
_approverUri = Console.ReadLine();

if(_approverUri != "exit")

{
Console.Write("Enter the expense report title: ");
_reportTitle = Console.ReadLine();
Console.Write("Enter the expense report amount: ");
_amount = Console.ReadLine();
Console.Write("Enter the name of person filing the report: ");
_filedBy = Console.ReadlLine();
Console.Write("Enter the SIP URI of an online delegate: ");
_ onlineDelegateUri = Console.ReadLine();
StartWorkflow(_approverUri, _reportTitle, _amount,

_filedBy, _onlineDelegateUri);

}
else
{

_continue = false;
}
}
Cleanup(Q);
}

When you run this application, the application prompts the user to enter the SIP address
of the approver, an expense report name, an expense amount, the name of the person
filing the report, and the SIP address of a delegate that is online. If the user types Exit,
the application closes. After the user enters the required input, the application starts the
workflow by calling the StartWorkflow() method. In a real-world implementation, this
information would be provided by the process that triggers the workflow.

Modify the signature of the StartWorkflow method as follows.

private static void StartWorkflow(string approverUri, string reportTitle, string
amount, string filedBy, string onlineDelegate)

154 Part Il Unified Communications Managed APl Workflow

3. Add the following lines at the beginning of the StartWorkflow method to pass the ap-
prover URI, expense report details, and online delegate URI to the workflow instance.

Dictionary<string, object> namedArgs = new Dictionary<string, object>(Q);
namedArgs.Add("ApproverSipAddress™, new RealTimeAddress("sip:" + approverUri));
namedArgs.Add("ReportTitle", reportTitle);

namedArgs .Add("Amount", amount);

namedArgs.Add("FiledBy", filedBy);

namedArgs.Add("OnTineDelegate"”, new RealTimeAddress("sip:" + onlineDelegate));
WorkflowInstance workflowInstance = _workflowRuntime.CreateWorkflow(typeof(Workflowl),
namedArgs) ;

Note You may have to add using Microsoft.Rtc.Signaling; and using System.Collections
.Generic; to the top of Program.cs if they are not already in the file.

4. To make the data passed into the Workflow instance accessible, public properties are
defined in the workflow. In Workflowl.xoml.cs, add the following lines of code inside
the definition of the Workflow1 class as follows.

public RealTimeAddress ApproverSipAddress { get; set; }
public string ReportTitle {get; set; }

public string Amount {get; set; }

public string FiledBy {get; set; }

public RealTimeAddress OnlineDelegate {get; set; }

Task 4: Get the Approver’s Presence Information

By using the presence information of the approver, the application can use more efficient
logic to get the expense report approved. If the approver is online, the application can
contact the approver directly. If the approver is offline, the application can contact the
designated delegate. The following steps query for the presence of the approver:

1. The workflow file (that is, Workflowl.xoml) is prepopulated with activities to start an
outbound call. However, in this scenario you need to get the approver’s presence in-
formation before making an outbound call. To start from a clean state, delete all of the
activities from the designer canvas.

2. Drag a CommunicationsSequence activity from the Unified Communications Workflow
tab onto the designer canvas over the text Drop Activities To Create A Sequential
Workflow and, in the Property pane, rename it overallContainer. This activity is needed
to define a dialog with the user.

Chapter 6 Business Process Communication 155

3. Drag a Code activity from the Windows Workflow v3.0 tab onto the designer
canvas inside the overallContainer activity and, in the Property pane, rename it
setParameters. You use this activity to set any parameters needed to execute the
workflow, such as access data passed into the workflow (see Tasks 4, 6, 7.2.1, and 7.3.1).

4. Drag a GetPresence activity from the Unified Communications Workflow tab onto the
designer canvas after the setParameters activity and rename it getApproverPresence.
You use this activity to get the presence information of the approver. The workflow
should look like the following:

Sequential Workflow

F)

| A

= owerallContainer
¥

S setParameters

\
+ 0

Q, getipproverPresen
e

|
‘

5. Double-click the setParameters activity to generate the code handler for that activity.
Update the handler method with the following code to set the Target property of the
getApproverPresence activity with the value of ApproverSipAddress.

private void setParameters_ExecuteCode(object sender, EventArgs e)

{
/// Set the target of getApproverPresence activity
this.getApproverPresence.Targets.Clear();
this.getApproverPresence.Targets.Add(ApproverSipAddress);

}

Task 5: Implement Branching Logic Based
on the Approver’'s Presence

The objective is to have the expense report reviewed and then approved or rejected.
Therefore, the application logic follows different branches based on the presence of the
approver. In cases in which the approver’s presence status is Offline, Do Not Disturb, or Out
of Office, the application determines that the approver is not available and contacts its
delegate. For all other presence states, the approver is considered to be available to review
the request.

156

Part Il

Unified Communications Managed APl Workflow

The following steps implement branching logic based on the approver’s presence:

1.

Drag an IfElse activity from the Windows Workflow Foundation v3.0 pane onto the
designer canvas after the getApproverPresence activity.

In the Property pane, select the ifElseBranchActivityl branch and rename it
cantBeContactedBranch. You use cantBeContactedBranch to define the business logic
for the situation in which the approver cannot be reached.

In the Property pane, select the ifElseBranchActivity2 branch and rename it
canBeContactedBranch. You use canBeContactedBranch to define the business logic
for the situation in which the approver can be reached.

Select cantBeContactedBranch and change the value of the Condition property from
(None) to Code Condition.

The cantBeContactedBranch branch executes only if a specified condition, which is
defined in step 6, is True. To specify this condition, click the plus sign (+) to expand the
Condition property. Type the method name CheckifUserCantBeContacted, and then
press Enter. This takes you to the automatically generated method stub. This method
defines the logic to check whether this condition is met.

Update the ChecklfUserCantBeContacted method with the following code.

private void CheckIfUserCantBeContacted(object sender, ConditionalEventArgs e)
{

if(this.getApproverPresence.Results[ApproverSipAddress].CurrentState.ToLower().
Contains("out of office") ||
this.getApproverPresence.Results[ApproverSipAddress].PresenceStatus ==
Microsoft.Rtc.Collaboration.Presence.PresenceAvailability.Offline ||
this.getApproverPresence.Results[ApproverSipAddress].PresenceStatus ==
Microsoft.Rtc.Collaboration.Presence.PresenceAvailability.DoNotDisturb)

{
// Set the value of e.Result so that ifElse executes this branch
e.Result = true;

else

// Set the value of e.Result so that ifElse does not execute this branch
e.Result = false;
}
}
You use the getApproverPresence activity to obtain the approver’s presence status.
If the approver is unavailable, cantBeContactedBranch is executed. Otherwise,
canBeContactedBranch is executed. The Results property of the getApproverPresence
activity contains the result of the presence query. The getApproverPresense.Results
activity is a Dictionary object. To obtain the approver’s presence, the approver’s
SIP URI is specified as a key.

Chapter 6 Business Process Communication 157

At this point, the workflow should look like the following:

sequential Workflow

@

| A
i

Bl overallContainer
¥

C§ setParameters

\
¢ 1,

Q getdpproverPresen

O
) U

= ifElsetctivityl
i
| M |
cantBeContactedBrand canBeContactedBrand
Drop Adtivities Drop Activities
Here Here
v

Task 6: Update cantBeContactedBranch

Now you update cantBeContactedBranch, which determines the actions taken when the
approver cannot be contacted. In this situation, the workflow contacts the delegate instead.

1. Drag a Code activity inside cantBeContactedBranch and change its name from
codeActivityl to findDelegate. You use this Code activity to find the delegate of the
approver.

2. Double-click the findDelegate activity to generate the method stub, and update the
method with the following code. The approver’s SIP address is replaced with the
delegate’s SIP address.

private void findDelegate_ExecuteCode(object sender, EventArgs e)

{
ApproverSipAddress = OnlineDelegate;

}

3. Drag a Goto activity onto the designer canvas below the findDelegate code activity, and
then change its name from gotoActivityl to gotoPresenceQuery.

158 Part Il Unified Communications Managed APl Workflow

4. In the Property pane of the gotoPresenceQuery activity, open the TargetActivityName
pane by clicking the ellipsis (...) button at the end of the field.

5. Double-click the setParameters code activity to set it as the target activity.

At the end of these steps, the workflow should look like the following:

Sequential Workflow

F)

| 2

= overallContainer
¥

CF setParameters
\.
v

i\

=% gettpproverPresen
= e

= ifElsedctivityl
%

| h |

cantBeContactedBranch canBeContactedBranch

FEIlf &

Cf findelegate
h 1 Drop Activities
Here
? goToPresenceQuer
¥

| !

h

If the approver is unavailable, the workflow returns to the “restart from the presence
query” step with the delegate of the primary approver.

Task 7: Update canBeContactedBranch

Now you update canBeContactedBranch, which determines the actions to be taken when the
approver can be contacted.

Chapter 6 Business Process Communication 159

Task 7.1: Create Branches for Different Modalities

Before contacting the approver, the application needs to determine the appropriate modal-
ity to use. If the approver’s presence is set to Away, Be Right Back, or Offline, the approver
is contacted by phone. If the approver is in a phone call or her presence status is set to
Available or Busy, the approver is contacted by IM.

The following steps implement this logic:

1.

Drag an IfElse activity from the Windows Workflow Foundation v3.0 tab onto the
designer canvas inside canBeContactedBranch.

. In the Property pane, change the name of the first branch from ifelseBranchActivityl to

PhoneMode. PhoneMode defines the path to use to call the approver.

Click the PhoneMode branch and change the value of the Condition property from
(None) to Declarative Rule Condition.

Click the plus sign (+) next to the Condition property to expand it. Type
PhoneModeCondition as the value for ConditionName.

. Click the ellipsis (...) button at the end of the Expression field to open the Select

Condition dialog box. Select PhoneModeCondition from the list and click Edit... to
open the Rule Condition Editor dialog box.

Add the following declarative rule in the Rule Condition Editor dialog box and then
click OK. This ensures that canBeContactedBranch is executed if the approver is set to
Away or Be Right Back.

this.getApproverPresence.Results[ApproverSipAddress].PresenceStatus == Microsoft.Rtc.
Collaboration.Presence.PresenceAvailability.Away ||
this.getApproverPresence.Results[ApproverSipAddress].PresenceStatus == Microsoft.Rtc.

Collaboration.Presence.PresenceAvailability.BeRightBack

In the Property pane, change the name of the second branch from ifelseBranchActivity2
to IMMode. No condition is required to be set for the IMMode branch because this
branch is executed only if the conditions for the PhoneMode branch are not satisfied.

160 Part Il Unified Communications Managed APl Workflow

The workflow should look like the following:

Sequential Workflow

9

| i\

[= owerallContainer
¥

S setParameters

\
+ 0

Q, getipproverPresen
e

+

= ifElsetctivityl
i
4

| M |

cantBeContactedBrand canBeContactedBrandh

7 T

CF findDelegate B ifElsedctivity2
\ . %

? goToPresenceQuer
¥ Fhonelode IMMode

0 7

Drop Adtivities Drop Activities
Here Here

¥ ¥

»

Task 7.2: Contact the Approver by Phone

The following tasks define the logic for calling and interacting with the approver by phone:

1. Place an outbound phone call to the approver.

2. Bind the outbound phone call to a CommunicationsSequenceActivity.
3. Play an introductory message.
4.

Ask the approver about the action he or she wants to take and recognize speech or
dual-tone multifrequency (DTMF) input.

v

Branch the responses based on the approver's input.

6. Define Approve and Decline actions.

Chapter 6 Business Process Communication 161

Task 7.2.1: Place an Outbound Phone Call to the Approver

1. Drag an OutboundCall activity inside the PhoneMode branch and change its name
from outboundCallActivityl to startPhoneCall. The startPhoneCall activity initiates the
phone call with the approver.

2. Set the CallType property to AudioVideoCall.

3. Open the Workflowl.xoml.cs file and then add the following code to the setParameters_
ExecuteCode method. This sets up the startPhoneCall activity to place an outbound
phone call to the approver’s SIP URI.

this.startPhoneCall.CalledParty = ApproverSipAddress;

Task 7.2.2: Bind the Outbound Phone Call to a
CommunicationsSequenceActivity

In the UCMA Workflow, each CommunicationsSequenceActivity must know on which
call it is executing. You achieve this by binding the CallProvider property of
CommunicationsSequenceActivity to the CallProvider property of an AcceptCall activity
or an OutboundCall activity.

1. Drag a CommunicationsSequence activity after the startPhoneCall activity and change
its name from communicationsSequenceActivityl to speechDialog. The speechDialog
activity contains the logic flow of the dialog with the approver over the phone.

2. In the speechDialog Property pane, click the ellipsis (...) button at the end of the field of
the CallProvider property to open the Bind CallProvider To An Activity's Property dialog
box, as shown here.

Bind 'CallProvider' to an activity's property @

Bind to an existing member | Bind to a new mermber

2§ Workflowl
é @ overallContainer
S‘ setParameters
\S» gethpproverPresence
E|{|’{| ifElsefctivityl
@ cantBeContactedBranch
B-@ canBeContactedBranch
L G4 ifElsedctivity?
= @ Phonetode
: startPhoneCall
¢ CalledParty
CallProvider
S speechDialog

| »

m

The selected property of type "Microsoft.Rtc Waorkflow,Comman, CallProvider' can be assigned =
to the target property of type 'Microsoft.Rtc Warkflow, Common. CallProvider',
It has description ‘Exposes Call and other supparting ohjects like Connectors and Recognizers.'.

0K] ’ Cancel

162 Part Il Unified Communications Managed APl Workflow

3. Expand the overalicontainer, ifElseActivityl, and canBeContactedBranch nodes in the
tree to reach the CallProvider node, which is a property of the startPhoneCall activity,
as shown previously. Click on the CallProvider node to select it.

4. Click OK to close the Bind dialog box. This binds the CallProvider property of the
speechDialog activity with the CallProvider property of the startPhoneCall activity.

The workflow should look like the following:

Sequential Workflow

B

| -

= overallContainer

C§ setParameters

\
¢ 1
Q, gethpproverPresen
e

= ifElsedctivityl

i
=
| |
cantBeContactedBrand canBeContactedBrand
|:§“ findDelegate B FElsedctivity?
v 4
\ h |
? goToPresenceuer
¥ Fhonekiode IMkode
& E

\ 0

B, startPhonecal

[l speechDialog Drop Sckivities

E Here

Drop &ctivities
Here

¥

Chapter 6 Business Process Communication 163

Task 7.2.3: Play an Introductory Message

1.

Add a SpeechStatementActivity inside the speechDialog activity and change its name
from speechStatementActivityl to introMessage. The introMessage activity plays the
introduction message to the approver.

In the MainPrompt property of the introMessage activity, type the message Hello, this
is the expense report alerting system.

Task 7.2.4: Prompt the Approver for an Action and Recognize Speech
or DTMF Input

1.

Add a SpeechQuestionAnswerActivity after the introMessage activity and change

its name from speechQuestionAnswerActivityl to askForActionsQuestion. The
askForActionsQuestion activity prompts the approver for input regarding the pending
expense report.

. Type askForActionsQuestion_TurnStarting as the value of the TurnStarting property

and then press Enter to generate the stub for the askForActionsQuestion_TurnStarting
event handler automatically. The askForActionsQuestion_TurnStarting method dynami-
cally generates the prompt that the askForActionsQuestion activity plays.

Update this event handler stub with the following code.

private void askForActionsQuestion_TurnStarting(object sender, Microsoft.Rtc.Workflow.
Activities.SpeechTurnStartingEventArgs e)
{

this.askForActionsQuestion.MainPrompt.SetText(string.Format("Report Title Name:
{0}, Filed By: {1}, Amount: {2}. Please say approve or decline", ReportTitle, FiledBy,
Amount)) ;
}

At this point, you must specify a list of valid speech and DTMF inputs for the question
asked by the askForActionsQuestion activity. Define the valid speech and DTMF
responses for this question as follows:

. At the end of the ExpectedSpeechinputs property of the askForActionsQuestion activity,

click the ellipsis (...) button to open the String Collection Editor dialog box.

. Type approve and decline on separate lines. You can type additional synonyms on

separate lines as well.

. Click OK.

At the end of the ExpectedDTMFInputs property, click the ellipsis (...) button to open the
String Collection Editor dialog box.

164 Part Il
8.

Unified Communications Managed APl Workflow

Type 1 and 2 on separate lines. The DTMF value 1 corresponds to the approve speech
input and the DTMF value 2 corresponds to the decline speech input, as specified in
step 5.

Click OK.

Task 7.2.5: Branch the Responses Based on the Approver’s Action

1.

Drag an IfElse activity from the Windows Workflow Foundation v3.0 tab onto the
designer canvas after the askForActionsQuestion activity.

In the Property pane, change the name of the first branch from ifE/lseBranchActivity1 to
approveBranch. You use approveBranch to define the logic for when the user chooses
to approve the pending expense report.

Click approveBranch and then change the value of the Condition property from (None)
to Declarative Rule Condition.

. Click the plus sign (+) next to the Condition property to expand it. Type

ApproveCondition as the value for ConditionName.

. At the end of the Expression field, click the ellipsis (...) button to open the Select

Condition dialog box. Select ApproveCondition from the list and click Edit... to open
the Rule Condition Editor dialog box.

In the Rule Condition Editor dialog box, add the following declarative rule. This condi-
tion ensures that the branch is executed if the approver wants to approve the expense.

this.askForActionsQuestion.RecognitionResult.Text.ToLower().Contains("approve™) ||
this.askForActionsQuestion.RecognitionResult.Text.ToLower().Contains("1")

In the Property pane, change the name of ifElseBranchActivity2 to declineBranch.
There is no need to set the condition for declineBranch because it is executed only if
the condition specified in step 6 is not met.

Now, you can use approveBranch to interface with the expense report approval system
to approve the expense in question. You can use declineBranch to interface with the
expense report approval system to decline the expense in question.

Chapter 6 Business Process Communication 165

The PhoneMode branch that defines the speech dialog should look like the following:

Phonetode

&

| i
B, startPhonecall

v

= speechDialog

D introMessage

askForAdtions Ques
tion

‘_I‘_l@

= ifElsedtivity3

]
-
| |
approveBrand declineBrand
Drop Sctivities Drop Activities
Here Here

Task 7.2.6: Define Approve and Decline Actions

1. Drag a Code activity inside approveBranch and change its name from codeActivityl to
ApproveExpense. You use ApproveExpense to approve the expense.

2. Drag a Code activity inside declineBranch and change its name from codeActivityl to
DeclineExpense. You use DeclineExpense to decline the expense.

3. Double-click these Code activities to generate the code handlers. You can use these
handlers to integrate with the expense reporting system to approve or decline the
expense.

4. For this example, update the handlers as follows.

private void ApproveExpense_ExecuteCode(object sender, EventArgs e)

{

// Update this to integrate with expense report management system to approve expense
Console.WriteLine("Expense Approved");

}

private void DeclineExpense_ExecuteCode(object sender, EventArgs e)

{

// Update this to integrate with expense report management system to decline expense
Console.WriteLine("Expense Declined");

}

166

Part Il

10.

Unified Communications Managed APl Workflow

The phone dialog branch should look like the following:

PhoneMode

\

#, startPhanecall

q_'

= speechDialag

D introMessage

askForActions Ques
tion

‘_I‘_I@

[ifElsetctivity3

5%
y

approveBrand

7

h |

declineBrandh

7

| S ApproveExpense]
\

| S DeclineExpense]
\

¥
|

¥
|

Drag a SpeechStatementActivity after the ApproveExpense code activity

inside approveBranch and change its name from speechStatementActivityl to
ExpenseApprovedMessage. You use ExpenseApprovedMessage to play a message to
the approver that notifies her or him that the approval process succeeded.

Update the MainPrompt property with the message The expense report has been
approved.

Drag a SpeechStatementActivity after the DeclineExpense code activity inside declineBranch
and change its name from speechStatementActivityl to ExpenseDeclinedMessage. You
use ExpenseDeclinedMessage to play a message to the approver that notifies her or him
that the decline process finished.

Update the MainPrompt property with the message The expense report has been
declined.

Drag a SpeechStatementActivity after the ifElseActivity3 activity and change its name
from speechStatementActivityl to GoodbyeMessage. You use GoodbyeMessage to play
a goodbye message.

Update the MainPrompt property with the message Goodbye.

Chapter 6 Business Process Communication

The speech dialog branch should look like the following:

FPhonekode

&

| i

%, startPhanecall

v

E speechDialag

Q introMessage

askForActions Ques
tion

‘_I‘_l@

& ifElsefctivity

]

i
>
| |
approveBrand declineBranch
|S ApproveExpense S DeclineExpense
P P
Expensetpproved Expenseleclinedh
[SD Message] [Q essage

¥

D GoodbyeMessage

Task 7.3: Contact the Approver by IM
The following tasks define the logic for interacting with the approver by IM:

& v > w N P#H

Place an outbound IM call to the approver.

Bind the outbound IM call to a CommunicationsSequenceActivity.

Send an introductory IM message.

Prompt the approver for an action and recognize IM input.

Branch the responses based on the approver's input.

Define approve and decline actions.

167

168 Part Il Unified Communications Managed APl Workflow

Task 7.3.1: Place an Outbound IM Call to the Approver

1. Drag an OutboundCallActivity inside the IMMode branch and change its name from
outboundCallActivityl to startIMSession. You use start/IMSession to start an outbound
IM session with the approver.

2. Set the CallType property of startIMSession to InstantMessagingCall.

3. Open the Workflowl.xoml.cs file and then add the following code to the setParameters_
ExecuteCode method to set the SIP URI to match the approver’s SIP URI.

this.startIMSession.CalledParty = ApproverSipAddress;

Task 7.3.2: Bind the Outbound IM Call with a
CommunicationsSequenceActivity

As mentioned during Task 7.2, the CallProvider property of CommunicationsSequenceActivity
must be bound with the CallProvider property of the OutboundCall activity.

1. Drag a CommunicationsSequenceActivity after the start/IMSession and change its name
from communicationsSequenceActivityl to imDialog. imDialog defines the IM dialog
that interacts with the approver.

2. In the imDialog Property pane, click the ellipsis (...) button at the end of the field next
to the CallProvider property to open the Bind dialog box, as shown here.

Bind 'CallProvider' to an activity's property @

Bind to an existing member | Bind to a new mermber

2§ Workflowl
é @ overallContainer
S‘ setParameters
_8. gethpproverPresence
E|{|’{| IFElsefctivityd
@ cantBeContactedBranch
B-@ canBeContactedBranch
! 4% ifElseActivity?
i @ Phonetode
[7] MMode
Bm startlhSession
CalledParty
CallProvider

| »

m

The selected property of type "Microsoft.Rtc Waorkflow.Comman, CallProvider' can be assigned =
to the target property of type 'Microsoft.Rtc Warkflow, Common. CallProvider',
It has description ‘Exposes Call and other supparting ohjects like Connectors and Recognizers.”.

—— - —

3. Expand the tree in the Bind dialog box until you reach the properties of startIMSession.

4. Click the CallProvider property of start/IMSession and then click OK.

The speechDialog activity is collapsed in all screenshots while you develop the IM

Chapter 6 Business Process Communication

dialog. The workflow should look like the following:

Sequential Workflow

9

[= owerallContainer
¥

S setParameters

.
¢ A

Q, getdpproverPresen
& e

[ifEls e ctivityl

511\
| v |
cantBeContactedBrand canBeContactedBrand
CF findDelegate B ifElsedctivity?
\ 7 by
? goToPresenceQuer
¥ Fhonetode IMMade

@ E
| 1 | iy
2, startPhonecall B, startMsession
v v
speechDialog = imDialog
5 5

Drop Adtivities
Here

k.

L J

Task 7.3.3: Send an Introductory IM Message

1.

Add an InstantMessagingStatementActivity inside imDialog and change its name from

instantMessagingStatementActivityl to introlMMessage.

alerting system.

169

. Update the MainPrompt property with the message Hello, this is the expense report

170 Part Il

Unified Communications Managed APl Workflow

Task 7.3.4: Prompt the Approver for an Action and Recognize IM Input

1.

Add an InstantMessagingQuestionAnswerActivity after the introlMMessage
activity and change its name from instantMessagingStatementActivityl to
askForActionsIMQuestion.

. Type askForActionsIMQuestion_TurnStarting as the value of the property

TurnStarting and then press Enter to generate the stub for the TurnStarting event
handler automatically.

Update the TurnStarting event handler stub with the following code.

private void askForActionsIMQuestion_TurnStarting(object sender, Microsoft.Rtc.
Workflow.Activities.InstantMessagingTurnStartingEventArgs e)
{

this.askForActionsIMQuestion.MainPrompt = string.Format("Report Title Name: {0},
Filed By: {1}, Amount: {2}. Please enter approve or decline", ReportTitle, FiledBy,
Amount) ;

3

You must specify a list of valid text inputs for the question asked by the askFor-
ActionsIMQuestion activity. Specify the following text inputs as valid answers.

. At the end of the ExpectedInputs property, click the ellipsis (...) button to open the

String Collection Editor dialog box.

. Type approve or decline in separate lines in the dialog box. You can type additional

synonyms on separate lines as well.

Click OK.

Task 7.3.5: Branch the Responses Based on the Approver’s Input

1.

Drag an IfElse activity from the Windows Workflow Foundation v3.0 tab onto the
designer canvas after the askForActionsIMQuestion activity.

In the Property pane, change the name of the ifElseBranchActivityl branch to
approvelMBranch. You use approvelMBranch to define the logic when the user
approves the pending expense report.

Click approvelMBranch and change the Condition property from (None) to Declarative
Rule Condition.

Click the plus sign (+) next to the Condition property to expand it, and then type
ApprovelMCondition as the value of ConditionName.

. At the end of the Expression field, click the ellipsis (...) button to open the Select

Condition dialog box. Select ApprovelMCondition from the list and click Edit... to open
the Rule Condition Editor dialog box.

6.

Chapter 6 Business Process Communication 171

In the Rule Condition Editor dialog box, add the following declarative rule. This condition
ensures that the branch is executed if the approver wants to approve the expense.

this.askForActionsIMQuestion.RecognitionResult.Text.ToLower().Contains("approve™)

In the Property pane, change the name of the ifElseBranchActivity2 branch to
declineIMBranch. There is no need to set the condition for this branch because it is
executed only if the condition specified in step 6 is not met.

Now, you can use approvelMBranch to interface with the expense report approval
system to approve the expense in question. You can use declinelMBranch to interface
with the expense report approval system to decline the expense in question.

The workflow should now look like the following:

IMrdode

&

| i
@Q startIMSession

v

= imDialog

|§_| introltMhessage

‘_I@

% askForActionsIMQu
estion

= ifElsefctivityd
i
°
| |
approvelMBrandy declinelMBrand
Drop Activities Drop Activities
Here Here

Task 7.3.6: Define Approve and Decline Actions

1.

Drag a Code activity inside approvelMBranch and change its name from codeActivityl
to ApprovelMExpense. You use ApprovelMExpense to approve the expense.

Drag another Code activity inside declinelMBranch and change its name from
codeActivityl to DeclinelMExpense. You use DeclinelMExpense to reject the expense.

172 Part Il Unified Communications Managed APl Workflow

3. Select ApprovelMExpense and, in the Property pane, set the ExecuteCode value to
ApproveExpense_ExecuteCode as follows:

Properties -« 3 X
ApprovelMExpense System Workflow Activities, Codedctivity -

(Marme) ApprovelMExpense
Description

Enabled True
0 L ApproveExpense_ExecuteCode E
HandleGeneralFault
HandleCallDisconnectedEvent
setParameters_ExecuteCode
findDelegate_ExecuteCode

DeclineExpense ExecuteCode

4. Take the same action for DeclinelMExpense and set its ExecuteCode value to
DeclineExpense_ExecuteCode.

By performing these steps, you ensure that the approval or decline actions through
speech or IM execute the same code. The IM dialog branch should now look like the

following:
IMRode
'
%LA startiMSession
+
's =
= imDialog
= ifElseackivityd
)
-
| |
approvelMErand declineltBrand
2 &
| |
' e
S ApproveIMExpense] S DeclineIMExpense]
\ 2
b

5. Drag an InstantMessagingStatementActivity after ApprovelMExpense and change its
name from instantMessagingStatementActivityl to ExpenseApprovedlMMessage. You

10.

Chapter 6 Business Process Communication 173

use ExpenseApprovedIMMessage to send a message to the approver notifying him or
her that the approval process succeeded.

Update the MainPrompt property with the message The expense report has been
approved.

Drag an InstantMessagingStatementActivity after DeclinelMExpense and change its
name from instantMessagingStatementActivityl to ExpenseDeclinedIMMessage. You
use ExpenseDeclinedIMMessage to play a message to the approver notifying him or her
that the decline process succeeded.

Update the MainPrompt property with the message The expense report has been
declined.

Drag an InstantMessagingStatementActivity after ifElseActivity4 and change its
name from instantMessagingStatementActivityl to GoodbyelMMessage. You use
GoodbyelMMessage to play a goodbye message.

Update the MainPrompt property with the value Goodbye.
The IM dialog branch should now look like the following:

IMMade

| A
% startIMSession
J’ A
i =
= imDialog
@ ®

=] intramessage

‘_I@

% askForactionsIMQu
estion

v

B ifElseactivitys
5
Iy

| e |

approvelMBrandy declinelMBrandy

7 7

|S Apprm"eIMExpense] S DeclinelMExpense

\

L

E‘ Expensespprovedl E Expenseleclinedi
Mtdessage Message

¥

|§_‘ GoodbyelMMessag
e

174

Part Il

Unified Communications Managed APl Workflow

Task 7.4: Add Commands to the Dialog

In this task, you enhance the user interface by providing a more natural dialog flow. By
performing the following steps, you add commands for help and repeat to the speech dialog
and add a command for help to the IM dialog.

Task 7.4.1: Add Commands to the Speech Dialog

1.

10.

11.

12.

Right-click the speechDialog activity and then click View Commands to open the
Commands view.

Drag SpeechHelpCommandActivity onto the Commands view. You use SpeechHelp-
CommandActivity to provide help to users when they request it.

At the end of the ExpectedSpeechinputs property, click the ellipsis (...) button to open
the String Collection Editor dialog box and specify the list of text inputs that you want
this command to recognize.

. In the String Collection Editor dialog box, type help. You can type other synonyms on

separate lines as well.
Click OK.

Drag a SpeechRepeatCommand onto the Commands view. You use
SpeechRepeatCommand to repeat the question to the user when requested.

At the end of the ExpectedSpeechinputs property, click the ellipsis (...) button to open
the String Collection Editor dialog box and specify the list of text inputs that you want
this command to recognize.

In the Array Builder dialog box, type repeat. You can type other synonyms on separate
lines as well.

Click OK.

At this point, the speech dialog has been updated with speech help and speech repeat
commands. Follow the next steps to define how you want the workflow to respond
when the user triggers any of these commands. The following steps define the application
behavior:

Right-click the speechDialog activity and click View CommunicationsSequenceActivity
to open the Main view of the speechDialog activity.

Select askForActionsQuestion activity and, in the Property pane, expand the Prompts
property.
Update the HelpPrompt property with the message Please say Approve or press 1

to approve the expense report, or say Decline or press 2 to decline the expense
report.

13.

Chapter 6 Business Process Communication 175

Update the RepeatPrompt property in the askForActionsQuestion_TurnStarting method
in the Workflowl.xoml.cs file by adding the following code.

this.askForActionsQuestion.Prompts.RepeatPrompt.SetText(string.Format("Report Title
Name: {0}, Filed By: {1}, Amount: {2}. Please say approve or decline", ReportTitle,
FiledBy, Amount));

Task 7.4.2: Add Commands to the IM Dialog

1.

Right-click the imDialog activity and click View Commands to open the Commands
view.

Drag an InstantMessagingHelpCommand onto the Commands view. You use
InstantMessagingHelpCommand to provide help to users when they request it.

. At the end of the Expectedinputs property, click the ellipsis (...) button to open the

String Collection Editor dialog box and specify the list of text inputs that you want to
recognize for this command.

In the String Collection Editor dialog box, type help. You can type other synonyms on
separate lines as well.

. Click OK.

At this point, you have updated the IM dialog with an IM help command. The following
steps define how the workflow should respond if the user triggers any of these com-
mands. The following steps define the application behavior:

Right-click the imDialog activity and click View CommunicationsSequenceActivity to
open the Main view of the imDialog activity.

Select askForActionsIMQuestion and, in the Property pane, expand the Prompts
property.

Update the HelpPrompt property with the message Please enter Approve to approve
the expense report, or enter Decline to decline the expense report.

Task 7.5: Disconnecting the Call

After the phone or IM dialog completes, the application must disconnect the call. To do this,
drag a DisconnectCall activity after the ifElseActivityl activity.

Task 7.6: Add Events to the Dialog

In this task, you add handlers to the phone and IM dialog in case the user has difficulty
responding or the application fails to understand user input. Similar to commands, these
handlers improve the user dialog interface by either giving users better options (such as
DTMF) or transferring to a live agent. In this example, the dialog event handlers disconnect

176

Part Il

Unified Communications Managed APl Workflow

the call. Follow these steps to add dialog event handlers to the speech and IM dialog of the
application.

Task 7.6.1: Add Events to the Speech Dialog

1.

10.

Right-click the speechDialog activity and click View CommunicationsEvents to open the
Events view.

Drag a ConsecutiveSilencesSpeechEvent activity onto the text Drop A
CommunicationsEvent Here. By default, it is named consecutiveSilencesSpeechEvent-
Activityl, and it is executed when the user stays silent in response to a question three
times in a row.

Drag a Goto activity inside consecutiveSilencesSpeechEventActivityl and onto the text
Drop Activities Here. The default name for this activity is gotoActivityl.

In the Property pane, set the TargetActivityName property of gotoActivityl that you
added in step 3 to disconnectCallActivityl.

Drag a ConsecutiveNoRecognitionsSpeechEvent activity in the view next to consecutive-
SilencesSpeechEventActivityl. By default, it is named consecutiveNoRecognitionsSpeech-
EventActivityl, and it is executed when the user’s speech or DTMF response is not
recognized three times in a row.

Drag a Goto activity inside consecutiveNoRecognitionsSpeechEventActivityl and onto
the text Drop Activities Here.

In the Property pane, set the TargetActivityName of gotoActivity? that you added in
step 6 to disconnectCallActivityl.

Drag a ConsecutiveNolnputsSpeechEvent activity into the view next to consecutiveNo-
RecognitionsSpeechEventActivityl. By default, it is named consecutiveNolnputsSpeech-
EventActivityl, and it is executed when the user stays silent or his or her speech or
DTMF response is not recognized three times in a row.

. Drag a Goto activity inside consecutiveNolnputsSpeechEventActivityl and onto the text

Drop Activities Here.

In the Property pane, set the TargetActivityName of gotoActivity3 that you added in
step 9 to disconnectCallActivityl.

Task 7.6.2: Add Events to the IM Dialog

1.

Right-click the imDialog activity and click View CommunicationsEvents to open the
Events view.

Drag a ConsecutiveSilencesinstantMessagingEvent activity in the view onto the text
Drop A CommunicationsEvent Here. By default, it is named consecutiveSilencesinstant-
MessagingEventActivityl, and it is executed when the user does not respond to a
question three times in a row.

Chapter 6 Business Process Communication 177

3. Drag a Goto activity inside consecutiveSilencesinstantMessagingEventActivityl and onto
the text Drop Activities Here.

4. In the Property pane, set the TargetActivityName of gotoActivity4 that you added in
step 3 to disconnectCallActivityl.

5. Drag a ConsecutiveNoRecognitionsinstantMessagingEvent activity in the view next to
consecutiveSilencesinstantMessagingEventActivityl. By default, it is named consecutive-
NoRecognitionsinstantMessagingEventActivityl, and it is executed when the user’s IM
response is not recognized three times in a row.

6. Drag a Goto activity inside consecutiveNoRecognitionsinstantMessagingEventActivityl and
onto the text Drop Activities Here.

7. In the Property pane, set the TargetActivityName of gotoActivity5 that you added in
step 6 to disconnectCallActivityl.

8. Drag a ConsecutiveNolnputsinstantMessagingEvent activity in the view next to
consecutiveNoRecognitionsinstantMessagingEventActivityl. By default, it is named
consecutiveNolnputsinstantMessagingEventActivityl, and it is executed when the user
does not respond or her or his IM response is not recognized three times in a row.

9. Drag a Goto Activity inside consecutiveNolnputsinstantMessagingEventActivityl and
onto the text Drop Activities Here.

10. In the Property pane, set the TargetActivityName of gotoActivity6 that you added in
step 9 to disconnectCallActivityl.

Task 7.7: Add Call Events

Now, you need to update the application to support disconnection of a phone call or an IM
call. This is necessary to prepare the application to handle a user disconnecting the phone
call or IM in the middle of a dialog. Follow these steps to add this support:

1. Right-click the overallContainer activity and click View CommunicationsEvents to open
the Events view.

2. Drag a CallDisconnectedEventActivity activity in the view onto the text Drop a
CommunicationsEvent Here and then, in the Property pane, change its name from
callDisconnectedEventActivityl to handleCallDisconnect.

By doing this, you ensure that the application can handle the situation when the user
disconnects the call. If you want the application to take specific action on a disconnected call,
you can do this by dragging activities inside the handlerCallDisconnect activity. An example
of this type of action is logging the call length.

178

Part Ill Unified Communications Managed APl Workflow

Task 8: Running the Application

To run the application, you need the following:

1. A user account (for example, approver@contoso.com) for the approver logged on to
Office Communications Server from Office Communicator.

2. A user account (for example, delegate@contoso.com) for the approver’s delegate
logged on to Office Communications Server from Office Communicator on a different
computer.

Follow these steps to run the application:

=

. Verify that the presence status of the approver account is set to Available.
2. In Visual Studio, press F5.

3. When the console window opens and the application prompts with “Enter the approver's
SIP URI or Exit to close the application:,” type the SIP URI of the approver.

4. When the application prompts “Enter the Expense report Title:", type the expense
report title.

5. When the application prompts “Enter the Expense report amount:”, type the expense
report amount.

6. When the application prompts “Enter the name of the person filing the report:”, type
the name of the person filing the report.

7. When the application prompts “Enter the SIP URI of an online delegate:”, type the SIP
URI of the online delegate.

8. Click the incoming call notification on the approver machine when the application
tries to connect to the approver. Start interacting with the application once the call is
established.

To test the branch that finds the delegate, perform the following steps:

=

. Verify that the approver presence is set to Offline.
2. In Visual Studio, press F5.

3. When the application prompts “Enter the approver’s SIP URI or Exit to close the
application”, type the SIP URI of the approver, who is offline.

4. When the application prompts “Enter the expense report title”, type the expense
report title.

5. When the application prompts “Enter the expense report amount”, type the expense
report amount.

6. When the application prompts “Enter the name of the person filling the report”, type
the name of the person filing the report.

Chapter 6 Business Process Communication 179

7. When the application prompts “Enter the SIP URI of an online delegate”, type the SIP
URI of the online delegate.

8. The application contacts the delegate account specified in step 7.

Summary

This chapter discussed how to implement an application using the UCMA Workflow for
business process communications and information access from different modalities, such

as phones or IM. By using Visual Studio 2008, you can add communication activities to

an application easily by dragging them onto the designer canvas and setting them up

to interact with the user over a new interface (for example, phone and IM). The scenario
explored in this chapter, an expense report approval process, demonstrates how you can use
the UCMA Workflow to enable your applications for Unified Communications quickly.

Additional Resources

B “"Unified Communications Managed API 2.0 Workflow SDK Documentation”
(http.//go.microsoft.com/fwlink/?LinkID=133578)

Part IV

Unified Communications
Managed API

Part IV covers the Unified Communications Managed API (UCMA), as shown in the following

illustration. This APl is completely written in managed code using C# and has a small
footprint. It provides a powerful API that can easily scale to thousands of connections to
Microsoft Office Communications Server. In addition, you will find that it is very versatile.

Your Your Your
Application Application Application
Communicator
Automation API
e N
Office
Communicator 2007 R2 UC Workflow
. API
Customizations

UCMA 1.0 Unified Communications Managed APl 2.0
s - — 2
Office Communications Server 2007 R2
S J

Chapter 7, “Structure of a UCMA Application,” explains the APl in detail, and Chapter 8,

“Publishing Custom Presence with UCMA," describes an example of how to extend the Office
Communications Server Enhanced Presence.

181

Chapter 7

Structure of a UCMA Application

This chapter will help you to:

Understand the general structure of a Unified Communications Managed APl (UCMA)
Core application.

Understand how to create a UCMA Core application.
Understand the structure of the CollaborationPlatform class.

Understand how to create and control multimodal calls that include both instant
messaging (IM) and audio.

Understand how to create, schedule, and participate in multiparty conferences.

Understand how to publish and subscribe to presence information.

Creating a UCMA Application

As its name indicates, Unified Communications Managed APl (UCMA) is a Microsoft .NET
Framework-managed API. As such, this APl benefits from all of the features that the

.NET Framework provides. Because this API is highly scalable, it is ideal for building server
applications. It can support thousands of endpoints and concurrent client connections.
Applications built using UCMA can be load-balanced for high availability. Many of the services
in Microsoft Office Communications Server use the UCMA stack. This chapter explains the
anatomy of the UCMA.

Creating a UCMA application involves the following programming steps:

1.

Instantiate the CollaborationPlatform object that is responsible for managing connec-
tions between the local endpoint and the server (or other endpoints), dispatching mes-
sages to endpoints, or providing other services. For a server or middle-tier application,
the process involves creating an instance of the ServerPlatformSettings class that is
initialized with information provided from the provisioning process. For a client appli-
cation, this process involves creating an instance of the ClientPlatformSettings class to
specify the connection transport.

. Create one or more instances of ApplicationEndpoint or UserEndpoint depending on the

application requirements. Typically, you use ApplicationEndpoint for an application that
provides services to other clients. This application runs under its own security context
and does not require any user credentials. An application that uses UserEndpoint executes
in the security context of the corresponding user. If the application is not configured as
trusted by Office Communications Server, it requires the user credentials.

183

184

Part IV Unified Communications Managed API

3. Publish and receive presence information for the application or a user. To publish
presence, you need to use the LocalOwnerPresence property of an endpoint instance.
To receive presence, you need to use the RemotePresence property of an endpoint
instance. An application can receive the presence information on an “ongoing” (sub-
scription) or “on-demand” (query) basis.

4. Create conversations between the local participant and a remote participant, and
handle calls between the participants. Every conversation is bound to an established
endpoint when the conversation is created. To handle incoming calls, the applica-
tion must register type-specific call handlers with the local endpoint by calling the
RegisterForIncomingCall method on the endpoint instance.

5. Schedule and join a conference involving more than two participants. In a conference,
participants converse with each other indirectly through appropriate multipoint control
units (MCUs). For a UCMA application, MCUs for instant messaging (IM) and audio/
video (A/V) calls are supported. A two-party conversation is changed into a conference
when more participants are invited to join. This process is known as escalating a con-
versation into a conference.

Either for presence or conversations, the operations of the UCMA application consist of
asynchronous processing of messages to and from the Office Communications Server or to
and from any remote endpoints involved in active sessions of the application.

When deployed as server-based applications that support large numbers of connections,

the UCMA applications must be trusted by Office Communications Server and the applica-
tion host computer must be configured to support Mutual Transport Layer Security (MTLS).
This process is referred to as application provisioning and must be performed before you can
run any trusted UCMA application. For details, see the “Configuring UCMA Core” section in
Chapter 9, "Preparing the UC Development Environment.”

CollaborationPlatform

The application uses the CollaborationPlatform class to manage the connection between
Office Communications Server and the application. A UCMA application can instantiate
this class as either a server platform or a client platform, depending on the choice of the
input parameter provided to the CollaborationPlatform constructor. For the server platform,
the class constructor takes an instance of the ServerPlatformSettings class. For the client
platform, the constructor takes an instance of the ClientPlatformSettings class. You use the
ClientPlatformSettings class to instantiate a number of endpoints (for example, to emulate a
large number of clients to stress-test an application). You use the ServerPlatformSettings class
to create server-based applications that provide services to many clients. Query/response
Web robots are examples of these types of applications. When an application uses the
ServerPlatformSettings class to configure the CollaborationPlatform object, the UCMA library
configures and manages a pool of multiple connections to Office Communications Server

Chapter 7 Structure of a UCMA Application 185

that is designed to maximize the flow of data between the application and the Office
Communications Server. This provides for large-scale message processing in the applica-
tion. Every UCMA application must create, configure, and start a CollaborationPlatform
instance before it proceeds to calling other UCMA features.

Creating the Collaboration Platform for a Server Application

Listing 7-1 shows how to create and configure a CollaborationPlatform class for use by a
server application.

LISTING 7-1 Creating and Configuring a CollaborationPlatform Class

private static void PreparePlatformAndEndpoint()

il

//Load the local machine's certificate
X509Certificate2 cert = GetLocalCertificate();

//create a ServerPlatformSettings instance to

//initialize a CollaborationPlatform instance

ServerPlatformSettings platformSettings =
new ServerPlatformSettings(
ConfigurationManager.AppSettings["ocsUserAgentUCMALabl"],
Dns.GetHostEntry("Tocalhost™) .HostName,
Int32.Parse(ConfigurationManager.AppSettings["appLocalPort"]),
ConfigurationManager.AppSettings["appGruu"],
cert);

//Collaboration platform initialization
_collabPlatform = new CollaborationPlatform(platformSettings);

//Now that the CollaborationPlatform is configured, call BeginStartup.
_collabPlatform.BeginStartup(EndCollabStartup, _collabPlatform);

In Listing 7-1, the parameters, which are used as the CollaborationPlatform settings and
passed to instantiate the ServerPlatformSettings class, are read from the application configu-
ration file associated with the application by using the ConfigurationManager class defined in
the .NET Framework. This file is created as a part of creating the application. By centralizing
these settings in the application configuration file, you provide a single source of configu-
ration information for managing them as the application is moved from the development
environment to the testing and deployment phases.

Starting the Collaboration Platform

Starting the newly created platform is an asynchronous process and involves calling the
BeginStartup method on the CollaborationPlatform class to start the process and calling
the CollaborationPlatform.EndStartup method when the startup process finishes. The

186

Part IV Unified Communications Managed API

BeginStartup method takes two input parameters. The first parameter is an instance of the
callback method to be invoked when the startup operation completes. The second parameter
is the input parameter to the callback method. The instance of the CollaborationPlatform
(_collabPlatform) is not ready for use until this startup process finishes successfully. To deter-
mine the status of the platform startup, a UCMA application must implement the callback
routine to call CollaborationPlatform.EndStartup and to verify the status of the operation. The
following code example shows this asynchronous programming pattern.

void BeginPlatformStartup()

{
AsyncCallback callback = new AsyncCallback(EndPlatformStartup);
this._collabPlatform.BeginStartup(callback, _collabPlatform);
}
void EndPlatformStartup(IAsyncResult result)
{
if (!'result.IsCompleted)
return;
CollaborationPlatform platform = result.AsyncState
as CollaborationPlatform;
if (platform == null)
return;
try
{
platform.EndStartup(result);
_platformReady = true;
}
catch (Exception excep)
{
//Process any errors here.
}
// proceed to other tasks
}

This asynchronous pattern of calling BeginOperation and passing in the EndOperation
callback parameter is repeated in almost all operations in the UCMA. It provides the scalability
of throughput required by the UCMA server applications.

Note This asynchronous programming pattern must be used when the application is deployed

in production. However, this can also make debugging the application during development diffi-
cult. One tip to make debugging easier is to turn the asynchronous operations into synchronous
operations using the following programming pattern.

//Synchronously call the Startup method
_collabPlatform.EndStartup(_collabPlatform.BeginStartup(null, null));

Here the callback routine and its input parameters are not used and the two corresponding input
parameters of BeginStartup are both set to NULL.

Chapter 7 Structure of a UCMA Application 187

Endpoints

Endpoints represent users or applications that engage each other in conversations or confer-
ences, publish their own presence, or receive others’ presence. In UC, endpoints are identi-
fied by the Session Initiation Protocol (SIP) Uniform Resource Identifiers (URIs) and other
supplemental identification information, such as endpoint ID or application Globally Routable
User Agent URI (GRUU). You can think of a SIP URI as an identification of a security principle,
whereas endpoint ID or GRUU helps to differentiate different instances of endpoints that are
owned by the same security principle.

The UCMA defines an abstract class named LocalEndpoint to represent endpoints that are
used to communicate with each other and with Office Communications Server. Applications
use either ApplicationEndpoint or UserEndpoint, both of which inherit from LocalEndpoint,
depending on the scenario and requirements. It is possible, however, for an application to
create and use both types of endpoints or to create and use multiple endpoints of the same

type.

Using ApplicationEndpoint

An application endpoint represents a running instance of a UCMA application that must be
trusted by Office Communications Server. It is encapsulated by the ApplicationEndpoint class.
This type of application connects to the server using the MTLS protocol. Both the server and
the application provide each other with a certificate issued by a mutually trusted certificate
authority (CA). Application endpoints are mostly used for server or middle-tier applications
providing UC services. An example of this type of application is an IM Web robot that is used
to broadcast alerts across a network.

A UCMA application that uses ApplicationEndpoint must register the underlying
ApplicationEndpoint instance with Office Communications Server if it wants to support
presence and UC session services. This also means that the application must be a server
application with the CollaborationPlatform instance configured by a ServerPlatformSettings
instance. For most UC scenarios, registration with Office Communications Server is required.
To enable or disable the registration, the ApplicationEndpoint and ApplicationEndpointSettings
classes expose the UseRegistration property. When this property is set to True, the endpoint
is registered with the server. If it is set to False, the endpoint is not registered with the server.

An application that is based on ApplicationEndpoint is identified by a SIP URI assigned to a
Contact object in Active Directory Domain Services. Defining and configuring this Contact
object is part of the application provisioning process. The SIP URI of the Contact object is
used to register the application with Office Communications Server. The Contact object also
defines a display name and a telephone URI that become associated with the application.

188

Part IV Unified Communications Managed API

Creating an instance of ApplicationEndpoint involves first creating an instance of the
ApplicationEndpointSettings class that defines the attributes of the ApplicationEndpoint.
These attributes include the following:

B The SIP URI to be used to register with Office Communications Server

B The fully qualified domain name (FQDN) of the server running Office Communications
Server

B The port number used to connect to Office Communications Server
B The GRUU that is assigned to the application in the provisioning process

In addition, the UseRegistration property on the ApplicationEndpointSettings instance
can be set to True if the application requires that the endpoint must register with Office
Communications Server to use the presence and session services. You can use the
UseRegistration property on the ApplicationEndpoint instance for this purpose as well.

A newly created ApplicationEndpoint instance must be connected to Office Communications
Server before it can be functional. To establish this connection, the application must start the
process by calling the ApplicationEndpoint.BeginEstablish method and finish the process by
calling the ApplicationEndpoint.EndEstablish method after the operation succeeded.

Listing 7-2 illustrates the programming pattern to create an ApplicationEndpoint instance and
to establish the connection between the endpoint and the underlying server.

LISTING 7-2 Programming Pattern for an ApplicationEndpoint Instance

//Create the ApplicationEndpointSettings to define the properties of the Endpoint.
//These properties are the SIP URI that identifies this endpoint, the FQDN of the
//0ffice Communications Server to connect to, the TCP port to use for the connection,
//and the GRUU that uniquely identifies this application to the OCS server.

ApplicationEndpointSettings settings =

new ApplicationEndpointSettings(
ConfigurationManager.AppSettings["appUri"],
ConfigurationManager.AppSettings["ocsServerFqdn"],
Int32.Parse(ConfigurationManager.AppSettings["ocsServerTlsPort"]),
ConfigurationManager.AppSettings["appGruu"],

cert);

//Enable registration
settings.UseRegistration = true;

//Create the ApplicationEndpoint

//Binding it to the CollaborationPlatform previously created
ApplicationEndpoint _appEndpoint =

new ApplicationEndpoint(_collabPlatform, settings);

//asynchronously call the Establish method
_appEndpoint.BeginEstabTlish(EndEstablishEndpoint, _appEndpoint);

Chapter 7 Structure of a UCMA Application 189

Note that in Listing 7-2, the configuration settings for the endpoint come from the configu-
ration file associated with the application. The call to ApplicationEndpoint.BeginEstablish is
required to initialize the endpoint and must complete successfully before the endpoint can
be used. The status of the BeginEstablish method is returned in the EndEstablishEndpoint
callback.

Using UserEndpoint

A user endpoint registers with Office Communications Server using the SIP URI that is
assigned to the corresponding Active Directory User object that has been enabled for Office
Communications Server. This User object could be a user account defined specifically for this
application or associated with a real user. The UserEndpoint class allows UCMA applications to
register with Office Communications Server and perform operations on behalf of the user.

Creating a UserEndpoint instance involves configuring the settings for UserEndpoint. You
use the settings to specify the SIP URI of the user and the FQDN and port number of the
underlying server. These settings are encapsulated by the UserEndpointSettings class. The
UserEndpoint instance must also be bound to an initialized CollaborationPlatform instance.
This binding is specified when UserEndpoint is instantiated.

To establish a UserEndpoint instance, you use similar semantics and follow a similar programming
pattern as you do to establish an ApplicationEndpoint instance. The main difference is that
the UserEndpoint instance uses the SIP URI of an Active Directory User object, whereas an
ApplicationEndpoint object uses the SIP URI of an Active Directory Contact object.

Listing 7-3 illustrates the programming pattern that establishes a UserEndpoint instance.

LISTING 7-3 C# Programming Pattern to Establish a UserEndpoint Instance

UserEndpointSettings settings = new UserEndpointSettings("sip:userl@domain”,
ConfigurationManager.AppSettings["0CSserverFqdn"],
ConfigurationManager.AppSettings["applicationServerPort"]);

UserEndpoint _userEndpoint = new UserEndpoint(_collabPlatform, settings);
_userEndpoint.BeginEstablish(EndpointEstablish, _userEndpoint);

In Listing 7-3, the SIP URI that is used to register the endpoint with Office Communications
Server is sip:userl@domain. Note that the sip: prefix is required. This SIP URI must belong to
an Active Directory User object that is enabled for UC. In this code example, it is assumed
that the UCMA application is trusted by Office Communications Server and Transport Layer
Security (TLS) is used as the transport between the application and the server. If the applica-
tion is not trusted by the server or Transmission Control Protocol (TCP) is used as the trans-
port, you must specify the user credentials on the UserEndpointSettings.Credentials property
to establish the endpoint.

190

Part IV Unified Communications Managed API

Conversation, Call, and Call Flow

After you have successfully established a local endpoint, you can use it to create a conversa-
tion in which the local participant makes a call to a remote participant. The local endpoint
can also join a conversation by accepting an invitation to a call from a remote participant.

In UCMA, a conversation encapsulates the participants and the calls between or among the
participants. Each call consists of a flow of media. Thus, a call has a specific modality. The
supported modalities include IM and A/V. Programmatically, these modality-specific calls are
encapsulated by the InstantMessagingCall and AudioVideoCall classes. The corresponding
media flows are encapsulated by the InstantMessagingFlow and AudioVideoFlow classes.

Note While the class name in UCMA 2.0 is AudioVideoCall, the only media type supported in
this release is audio.

Figure 7-1 illustrates these concepts.

UserEndpoint
Owner: User A

Conversation instance

LocalParticipant: ~ User A
RemoteParticipant: User B

InstantMessagingCall

(InstantMessagingFlow)

AudioVideoCall
(AudioVideoFlow)

e B
: 0Cs 7
(Infrastructure
Conversation instance . /,)
AN~y

LocalParticipant: ~ User B
RemoteParticipant: User A

InstantMessagingCall

(InstantMessagingFlow)

AudioVideoCall
(AudioVideoFlow '}

FIGURE 7-1 A two-party conversation involving IM and A/V calls.

Chapter 7 Structure of a UCMA Application 191

A conversation involving more than two participants is referred to as a conference. In a two-
party conversation (referred to as a conversation from here on) the participants make calls to
each other directly. In a conference, the participants call each other with the help of MCUs
that are configured for the supported Office Communications Server deployment. The media
stream flows between a local participant’s endpoint and the set of MCUs that are configured
to support the conference.

Creating Calls

In UCMA, a call corresponds to a modality-specific channel in a communication session.
The supported modalities include IM and audio. This means that a UCMA application can
make and receive IM and audio calls, provided that an endpoint is established. The type of
endpoint can be either an ApplicationEndpoint or UserEndpoint.

Calls are managed by sessions. In UCMA, a session is represented by an instance of the
Conversation class. Programmatically speaking, a Conversation consists of participants and
modality-appropriate calls.

The steps to establish calls between two parties are as follows:

1. Create a call.

2. Handle incoming calls.

3. Handle call flows.

4. Handle call state and messages.

The relationship between the classes involved in making calls was shown previously in
Figure 7-1.

Classes are instantiated from the "outside in” using the asynchronous call pattern. Each class
instance is not ready for operations until its EndOperationCallback method is called and
returns a success status. For example, you must create a valid instance of the Conversation
class before you can create an instance of the Call class. You need a valid instance of a Call
class, such as InstantMessagingCall or AudioVideoCall, to create and use the Flow classes (that
is, InstantMessagingFlow or AudioVideoFlow) to exchange data during the call.

The Call classes, InstantMessagingCall and AudioVideoCall, represent instances of sessions
using the specified media type. The properties of the Call classes define things such as the
participants, the state of the call (for example, established or ending) and also the instance
of the Flow class that is associated with the call after it is established. The Flow class encap-
sulates the information related to the actual media (IM text or audio streams) that belong
to the call. After a call has been established (that is, the call was offered by the caller and
answered by the called party), the application uses the Flow class to send and receive the
messages over the call.

192

Part IV Unified Communications Managed API

Creating a Call

To simplify the code, the following example shows the steps to create and use a call using the
synchronous design pattern. Note that you should use the asynchronous design pattern for
production code. While this sample uses an IM call, the pattern is the same for audio calls.
The steps for creating a call are as follows:

1. Use _appEndpoint to create a new instance of the Conversation class named
_currentConversation.

2. Use_currentConversation to create a new instance of the InstantMessagingCall class
named _currentimCall.

3. Use the BeginEstablish method of _currentimCall to set the parameters of the IM call,
such as the target SIP URI.

4. Use the Flow class that is associated with _currentimCall when it is established to send a
message saying “Hello World.”

5. Use the BeginTerminate method of _currentimCall to signal that the call is being ended.

6. Use the BeginTerminate method of _currentConversation to delete and clean up the
Conversation class.

The UCMA code to implement the logic in the previous list is as follows.

// Create the conversation

Conversation _currentConversation =
new Conversation(_appEndpoint);

// Create the IM call

InstantMessagingCall _currentImCall =
new InstantMessagingCall(_currentConversation);

// Establish the call synchronously

_currentImCall.EndEstablish(_currentImCall.BeginEstablish("SIP:userl@domain",

null, // Toast Message
null, // Callback routine is not used in the synchronous pattern
null)); // Context object

// Send the message synchronously
_currentImCall.Flow.EndSendMessage(

_currentImCall.Flow.BeginSendMessage("Hello World!", null, null));
// Terminate the call synchronously
_currentImCall.EndTerminate(_currentImCall.BeginTerminate(null, null));
// Terminate the conversation synchronously
_currentConversation.EndTerminate(_currentConversation.BeginTerminate(null, null));

Handling Incoming Calls

For an endpoint to accept incoming calls, it must register an event handler for the
RegisterForIncomingCall event. This event handler is called whenever there is an incoming call
request to this endpoint. For example:

_appEndpoint.RegisterForIncomingCall<InstantMessagingCall>(0On_InstantMessagingCall_Received);

Chapter 7 Structure of a UCMA Application 193

This code registers the callback method, On_InstantMessagingCall_Received. This callback
method is called when an incoming IM call is received for the endpoint, _appEndpoint. Note
that the RegisterForlncomingCall event is defined using a generic type. This allows the applica-
tion to use the same event pattern for AudioVideoCall as well as for other custom modality types
defined by the application. Custom modalities are defined by creating a new call type to pass
as the specifier for the generic type. An example of a handler for an incoming AudioVideoCall
is as follows.

_appendpoint.RegisterForIncomingCall<AudioVideoCall>(On_AudioVideoCall_Received);

The handler for this event is called when an incoming AudioVideoCall request is received.
A typical handler can examine the details of the session request, such as the SIP URI of the
sender, the subject of the call, the priority of the call, or any other call properties that are
needed, to make the decision to either accept or reject the request.

Note The other properties of the Call are defined in the UCMA documentation on the Call class.

The following is an example of an event handler for an IM call.

void On_InstantMessagingCall_Received(object sender,
CallReceivedEventArgs<InstantMessagingCall> e)
{

_instantMessagingCall = e.Call;

/* Register a handler for the Call.StateChanged event to receive the call state
transitions. */

_instantMessagingCall.StateChanged += new
EventHandler<CallStateChangedEventArgs>(_instantMessagingCall_StateChanged);

// Remote Participant URI represents the caller.

// Toast is the message set by the caller as the 'greet' message in the call.

Console.WriteLine("Call Received! From: " + e.RemoteParticipant.Uri +
" Toast is: " + e.ToastMessage);

// Now, accept the call.

_instantMessagingCall.BeginAccept(EndAcceptCall, _instantMessagingCall);

Handling Call Flows

After the application accepts the call, the underlying UCMA code builds an instance of the
Flow class that is used to handle the media, either IM or audio, that is a part of the call.
Because this setup is handled automatically by the UCMA library, the application only needs
to register for the event that has the modality of interest. In the following code example,
the application registers for the InstantMessagingFlowConfigurationRequested event to track
the progress of the creation of the Flow request. This registration can be done by using the
StateChanged event handler for the call after the call state, which uses the State property

194

Part IV Unified Communications Managed API

of the call, is reported to be “Established.” For an AudioVideoCall, the coresponding event is
called AudioVideoFlowConfigurationRequested.

/* Subscribe for the flow event. When this event is received, the media flow associated
with the call is created and can be used to send and receive IM messages. */
_instantMessagingCall.InstantMessagingFlowConfigurationRequested +=
this.instantMessagingCall_FlowConfigurationRequested;

After the flow is available for the call, the media (that is, IM or audio) can be exchanged during
the call. After the InstantMessagingFlowConfigurationRequested handler is called and indicates
that the Flow is available, the application can register event handlers for StateChanged and
MessageReceived events on the Flow. The StateChanged event signals a change in the Flow
state of the call. This state is one of the values defined by the MediaFlowState enumeration
(that is, Idle, Active, or Terminated). The MessageReceived event is raised when a message is
received from the other participant in the call, as shown in the following code example.

/* Flow created indicates that there is a media flow class present that can be used for
media operations. */
public void instantMessagingCall_FlowConfigurationRequested(object sender,
InstantMessagingFlowConfigurationRequestedEventArgs e)
{

_instantMessagingFlow = e.Flow;

/* Bind to the event handlers to get notification of state changes and messages
received. */

/* When the flow becomes active, (as indicated by the state changed event) the call is
ready to send IM messages. */

_instantMessagingFlow.StateChanged += this.instantMessagingFlow_StateChanged;

/* Message Received is the event used to indicate that a message has been recieved from
the remote participant. */

_instantMessagingFlow.MessageReceived += this.instantMessagingFlow_MessageReceived;

}

Handling Call State and Incoming Message Events

After the InstantMessagingFlow.StateChanged event is signaled and the state of the call

is Active, the messages can be sent. If the state is /dle, no action is needed. If the state is
Terminated, the application can clean up any application resources associated with the call, if
any, and end the call.

private void instantMessagingFlow_StateChanged(object sender,
MediaFlowStateChangedEventArgs e)
{
// When flow is active, media operations (here, sending an IM) may begin.
if (e.State == MediaFlowState.Active)
{

/* Send the message on the InstantMessagingFlow. _messageToSend is the text of the
message, EndSendMessage is the callback routine that is called to report the status of the
operation. */

_instantMessagingFlow.BeginSendMessage(_messageToSend, EndSendMessage,
_instantMessagingFlow) ;

}
}

Chapter 7 Structure of a UCMA Application 195

Conferences

Conferences are calls that involve more than two participants. In many cases, applications
start with a two-party call and then escalate the call to a conference when one or more
participants are added to the two-party call. When the third participant is added, the media
for the call is routed through a conferencing server, also referred to as an MCU. This server
role is part of the Office Communications Server infrastructure. There are conferencing
servers that support the various content types (such as IM, A/V, and Web conferencing
media) and replicate the media generated by each participant to all of the participants in
the conference. What appears to the participants to be one UC session may be composed of
multiple calls, with each call being used to manage and transport one media type. The exact
mechanism and behavior used to escalate a two-party session to a conference involving
three or more parties is specific to the application.

Scheduling a Conference

The UCMA provides classes to schedule conference sessions for participants to connect to
the conference. The main class that is used for scheduling is called ConferenceSchedule-
Information. This class defines the media types that can be used during the conference, the
participants, the roles assigned to participants, and the time and duration of the conference.
An example of scheduling a conference is shown in Listing 7-4.

LISTING 7-4 Scheduling a Conference

// The base conference settings object, used to set the policies for the
//conference.

ConferenceScheduleInformation _conferenceScheduleInformation = new
ConferenceScheduleInformation();

// In an open meeting, any participant can join but authentication is required.
//No anonymous users are allowed. Other possible authentication values are: None,
//ClosedAuthenticated, and Anonymous.
_conferenceScheduleInformation.AdmissionPolicy =
ConferenceAdmissionPolicy.OpenAuthenticated;

// This flag determines whether the passcode is optional to join the conference.
//A value of "true" means that the passcode is optional.
_conferenceScheduleInformation.IsPasscodeOptional = true;

// The conference passcode.
_conferenceScheduleInformation.Passcode = "sample";

// The verbose description of the conference. _
conferenceScheduleInformation.Description = "Example Conference";

// This field indicates the date and time when the conference can be deleted.
_conferenceScheduleInformation.ExpiryTime = System.DateTime.Now.AddHours(5);

196

Part IV Unified Communications Managed API

// Specify the set of modalities (here, only InstantMessage) to use during the
//conference. McuType is a UCMA defined enum type.

ConferenceMcuInformation _instantMessageMCU = new
ConferenceMcuInformation(McuType.InstantMessaging);
_conferenceScheduleInformation.Mcus.Add(_instantMessageMCU) ;

// Now that the ConferenceScheduleInformation class is specified, schedule the
//conference using the conference services of the Endpoint. The _callerEndpoint
//can be either an ApplicationEndpoint or a UserEndpoint.

// Note: the conference organizer is considered a leader of the conference
//by default.

_callerEndpoint.ConferenceServices.BeginScheduleConference
(_conferenceScheduleInformation,

EndScheduleConference, // Callback method
_callerEndpoint.ConferenceServices);

In Listing 7-4, the status of the scheduling operation is returned in the EndScheduleConference
callback that is passed to the BeginScheduleConference call. After the EndScheduleConference
callback is signaled, the conference is created and can be used by the participants. The
conference’s URI property uniquely identifies the conference. Participants use the conference
URI to join the conference. The conference URI is available once the conference is scheduled
and the value is retrieved by getting the Conference.ConferenceUri property. This URI is avail-
able only to the conference organizer and must be communicated to the other participants
by using out-of-band methods (for example, e-mail), or an existing Conversation can be
escalated to a conference using the Conversation.BeginEscalateToConference method.

Joining a Conference

To enable users to join a conference, the application creates a new Conversation class and
uses the conference URI, as shown in the following code example.

// Now that the conference is scheduled, it's time to join it. As we
//already have a reference to the conference object populated from the
//EndScheduleConference call, we do not need to get the conference first.

//Initalize a conversation off of the endpoint, and join the conference
// from the URI provided above.

Conversation _callerConversation = new Conversation(_callerEndpoint);
ConferenceJoinInformation _confJoinInfo = new ConferenceloinInformation(
new RealTimeAddress(_conference.Conferencelri));

// Start the process of joining the conference using
//the ConferenceSession.BeginJoin call.
_callerConversation.ConferenceSession.EndJoin(
_callerConversation.ConferenceSession.BeginJoin(
_confloinInfo,

null,

null));

Chapter 7 Structure of a UCMA Application 197

// Since we are joining using the synchronous pattern, we can now create the calls
//for the conference media. Otherwise, the work to create the call would be done
//in the ConferenceSession.EndJoin callback handler by using the code below.
//Placing the calls on the conference-connected conversation connects to the
//respective MCUs. These calls may then be used to communicate with the MCUs.
InstantMessagingCall _instantMessagingCall =

new InstantMessagingCall(_callerConversation);

If an audio call is included in the conference, the application creates an instance of
AudioVideoCall to connect to that media stream.

Publish and Subscribe to Presence

Applications written using UCMA 2.0 can publish presence to Office Communications
Server, as well as subscribe to presence notifications from the server. Both of these operations
require the use of an endpoint that is registered with Office Communications Server.

When a user first signs in to Office Communications Server by using Microsoft Office
Communicator, the client creates a set of containers for the user in Office Communications
Server and publishes one or more instances of presence categories to those containers.
Each container created is assigned access control entries (ACEs) to set permission levels.
These permission levels define the access level contacts that are allowed. The default set of
containers that are created are as follows:

B Blocked
B Public

® Company
B Team

B Personal

Office Communicator publishes the user’s availability, calendar state, and many other
presence categories to these containers. For more information about the containers, access
control, and the categories, see the “Office Communicator 2007: Enhanced Presence Model
White Paper” at http://go.microsoft.com/fwlink/?linkid=143209.

Note It is possible—in fact, it is common—for a single user to have more than one active
endpoint registered with Office Communications Server at the same time. Each of those end-
points publishes one or more instances of the presence categories to one or more containers on
behalf of the user. There is a server component on Office Communications Server, named the
Aggregation Script, that takes these multiple instances of a given presence category that are
published to the aggregation containers (that is, container 2 or 3) and aggregates them into one
global value for each category. When user A subscribes to user B's presence information, the
values of the categories returned are these aggregated values. A representation of this aggregation
operation is shown in Figure 7-2.

198

Part IV Unified Communications Managed API

System-Level
Containers

Self
Container

Default User
Container Replicator

Blocked
Container Active
Directory
Public
Container
Company
Container
Aggregation
Script
Team \
Container I
Personal Office
Container Communications
Server
Input from
Clients

FIGURE 7-2 Containers and presence aggregation.

The publication of presence information is always performed in the context of a specific SIP
URI and is published to one or more containers. When an application wants to subscribe to
presence information, the subscription is always in the context of a specific SIP URI. A user has
access to all of the presence categories that he or she published to Office Communications
Server. This is referred to as “self presence.” However, when a user subscribes to the presence
information of other users, the information returned is limited to the set of presence information
published to the container where the subscriber has been granted access.

In practice, what this means is that presence subscriptions for the self presence items might
return multiple instances for each category that are published to different containers.
Presence subscriptions for other users return a single instance of a presence category from a
single container.

Publishing Presence

When an application uses UCMA 2.0 to publish presence, it first needs to create and
initialize an instance of the CollaborationPlatform class and then create either a UserEndpoint

Chapter 7 Structure of a UCMA Application 199

or ApplicationEndpoint for the SIP URI that is used to publish presence information. Because
the code for creating an endpoint was covered earlier in the chapter, this section assumes
that these steps have been carried out and the resulting endpoint, _userEndpoint, has been
created.

The steps to publish presence are as follows:

1. Create an instance of the CustomPresenceCategory class, _customCat, to hold the
information that is published and supply the category name. This example uses state
and the category data as a formatted Extensible Markup Language (XML) string.

2. Create an instance of the List<CustomPresenceCategory> class to hold the category
instances to be published.

3. Add any CustomPresenceCategory entries that are to be published to the list.

4. Use the BeginPublishPresence method of the LocalOwnerPresence property of the end-
point to publish the presence value.

The following code provides an example of how to publish an instance of the state category. It
is an Enhanced Presence category that is defined by Office Communicator. All the Enhanced
Presence categories are declared as XML structures, and their formats are specified by the
“Unified Communications Enhanced Presence Schemas for Microsoft Office Communications
Server 2007" located at http://go.microsoft.com/fwlink/?linkid=143305. The _stateXML vari-
able contains an XML string for the state category describing the availability of a user. Office
Communicator uses an integer to indicate the availability. For example, setting 3500 as the
availability value indicates that the user state is “Available”; a value of 6500 indicates that the
user state is “Busy”; and 15500 indicates that the user state is “Away.”

private static String _stateXml = "<state
xmIns=\"http://schemas.microsoft.com/2006/09/sip/state\"
xmlns:xsi=\"http://www.w3.0rg/2001/XMLSchema-instance\" manual=\"true\"
xsi:type=\"userState\"><availability>{0}</availability></state>";

// Create an instance of CustomPresenceCategory to hold the presence data
//to publish. In this case, we are publishing an instance of the "state"
//category with a value of busyAvailable, which corresponds to the value 6500.
//The format of the category is an XML document and the value is of type int.
CustomPresenceCategory _customCat = new CustomPresenceCategory("state",
String.Format(_stateXml, 6500));

List<PresenceCategory> _catPublish = new List<PresenceCategory>(Q);
_catPublish.Add(_customCat);

// The LocalOwnerPresence class on the user endpoint means that we are
//publishing presence for the user that owns the endpoint. */
_userEndpoint.LocalOwnerPresence.BeginPublishPresence(_catPublish,
EndPublishPresenceCallback, _userEndpoint.LocalOwnerPresence);

200

Part IV Unified Communications Managed API

Note that BeginPublishPresence takes a collection as an input parameter for the presence
categories to be published. This allows this method to publish multiple different presence
categories in a single operation.

The result of the presence publication operation is returned when the EndPublishPresence-
Callback method is called. This callback method is registered during the BeginPublishPresence
call. The following is an example of this callback.

private void EndPublishPresenceCallback(IAsyncResult result)
{
/* Verify the result of the publication by calling EndPublishPresence. If there is no
exception thrown, then the operation succeeded. */
try
{

_userEndpoint.LocalOwnerPresence.EndPublishPresence(result);

}

catch (Exception excpt)

{

Trace.Writeline(excpt.Message +" in EndPublishPresence™);
}
}

Because this presence category instance was published using a UserEndpoint, which is bound
to a user’s SIP URI, it is published to the containers owned by that user. If the endpoint is an
ApplicationEndpoint, the presence information is published to the containers owned by the
Contact object that defines the SIP URI.

It is possible for the application to update any or all of the presence categories that it has
published at any time.

Subscribing to Presence

When an application using UCMA subscribes to presence information, it must use an en-
abled endpoint to create the subscription. The application can subscribe to the signed-in
user's presence information, called self presence, or it can subscribe to contacts’ (that is,
other users’) presence information. When subscribing to self presence, the application has
full access to the signed-in user’s (that is, endpoint) categories published to the containers
owned by the user. However, when subscribing to other users’ presence information, the
application has access only to the presence categories visible to the user represented by the
signed-in endpoint.

Self Presence Applications generally subscribe to self presence to retrieve the user's in-
formation and update his or her presence information. An example of user information

is the contact list, which is published as a set of instances of the contactCard category. To
subscribe to the self presence information, the application creates a subscription from the
LocalOwnerPresence property of the endpoint, as shown in the following code example. Note

Chapter 7 Structure of a UCMA Application 201

that the subscription to LocalOwnerPresence returns all of the presence categories that have
been published for the user.

// Create a subscription to the "self presence" of the user represented by the endpoint.
_userEndpoint.LocalOwnerPresence.BeginSubscribe(SelfPresenceSubscribeCallback, null);

The callback handler, SelfPresenceSubscribeCallback, that is specified in the BeginSubscribe
method receives notification of whether the subscription completed successfully. This call-
back method should then subscribe to the CategoryNotificationReceived event so that the
application can be notified when instances of the presence categories are updated in Office
Communications Server. This event is signaled the first time a category value is received and
any time an updated value is received. The SelfPresenceSubscribeCallback method implemen-
tation is shown in the following code example.

private void SelfPresenceSubscribeCallback(IAsyncResult result)
{
// Call EndSubscribe to check the status returned from the BeginSubscribe method.
try
{
_userEndpoint.LocalOwnerPresence.EndSubscribe(result);
/* Subscribe to the CategoryNotificationReceived events to be notified when category
data is received. */
_userEndpoint.LocalOwnerPresence.CategoryNotificationReceived +=
new EventHandler<CategoryNotificationEventArgs>(Self_CategoryNotificationReceived);

}
catch (Exception excpt)
{
//There was an error in the subscription.
Trace.WriteLine(excpt.ToString() + "in EndSubscribe™);
}

}

To receive notifications of event changes to the user’s categories, the event handler,
Self CategoryNotificationReceived, that is registered for CategoryNotificationReceived events
must be implemented. The following code example illustrates this implementation.

void Self_CategoryNotificationReceived(object sender, CategoryNotificationEventArgs e)
{
//e.CategorylList is the 1list of category instances that were returned from the server
foreach (PresenceCategoryWithMetaData cat in e.CategorylList)
{
// handle the categories of interest in the switch statement
switch (cat.Category.CategoryName) //Switch on the name of the category
{
case "state":
//process the user state data.
break;

202

Part IV Unified Communications Managed API

case "contactCard":
//process a contact card instance. We get one of these per contact in the Tist.
break;
default:
break;

3

Presence from Other Users Subscribing to presence information from other users follows

a similar pattern as the self-subscription process. The endpoint registered to the user is used to
create the subscription. In this case, use the RemotePresence class to manage the subscription
and subscribe to the PresenceNotificationReceived events of that class, as shown in the following code
example. These events are used to receive notifications of presence changes from Office
Communications Server. The BeginAddTargets method is used to create the subscriptions to
one or more users.

//Create an instance of the RemotePresence
RemotePresence _remotePresence = _userEndpoint.RemotePresence;

//Create an event handler for the PresenceNotificationReceived events.
_remotePresence.PresenceNotificationReceived += new
EventHandler<RemotePresenceNotificationEventArgs>(
remotePresence_PresenceNotificationReceived);

//Create a list of the remote presentities to subscribe to.
RemotePresentitySubscriptionTarget _targetl = new
RemotePresentitySubscriptionTarget("sip:userl@domain", String.Empty;
RemotePresentitySubscriptionTarget _target2 = new
RemotePresentitySubscriptionTarget("sip:user2@omain™, String.Empty);
RemotePresentitySubscriptionTarget _target3 = new
RemotePresentitySubscriptionTarget("sip:user3@domain™, String.Empty);

// Once the target SIP URIs to subscribe to are defined, add them to a List class.
List<RemotePresentitySubscriptionTarget> _targetList = new
List<RemotePresentitySubscriptionTarget>();

_targetList.Add(_targetl);

_targetList.Add(_target2);

_targetList.Add(_target3);

// First create the string array of category names to query.
string [] _cats = {"state", "contactCard"};

//Create the query passing the targets, the category Tist, the event

//handler that will receive the category data and null for the callback

//and the status object.
_remotePresence.EndPresenceQuery(_remotePresence.BeginPresenceQuery(_targetList, _cats,
remotePresence_PresenceNotificationReceived, null, null);

The PresenceNotificationReceived event handler is called whenever presence updates are
received from the subscription. Presence information for multiple targets can be delivered
in a single event. The data for the targets is delivered in a collection in the Notifications

Chapter 7 Structure of a UCMA Application 203

property of the event arguments. Each entry in the collection applies to one presentity
whose SIP URI is indicated by the UR/ property on the notification. Each notification can
contain data for multiple presence categories, as shown in the following code example.

void remotePresence_PresenceNotificationReceived(object sender,
RemotePresenceNotificationEventArgs e)

{
foreach (RemotePresentityNotificationData notification in e.Notifications)
{
string targetUri = notification.Uri; //Presentity URI for this presence data.
//Each Notification can contain multiple categories
foreach (PresenceCategoryWithMetaData category in notification.Categories)
{
switch (category.Category.CategoryName) //Switch based on the category name.
{
case "state":
//process state.
break;
default:
break;
}
}
}
}
Summary

The UCMA 2.0 Software Development Kit (SDK), available at http.//go.microsoft.com/fwlink/
?linkid=143314, contains significant new functionality compared to the 1.0 release. This new
functionality provides the application programmer with the ability to do the following:

B Create and control multimodal calls that include both IM and audio.
B Create, schedule, and participate in multiparty conferences.
B Publish and subscribe to presence information.

The UCMA SDK is designed to operate using an asynchronous programming model that
provides for maximum throughput for applications that need scalability. In addition, the
design of the SDK enables you to extend the programming model to add new media types.

204 Part IV Unified Communications Managed API

Additional Resources

B "Office Communicator 2007: Enhanced Presence Model White Paper”
(http://go.microsoft.com/fwlink/?linkid=143209)

B Microsoft Unified Communications Managed APl 2.0 SDK (32 bit)
(http://go.microsoft.com/fwlink/?linkid=143314)

B Microsoft Unified Communications Managed API 2.0 SDK (64 bit)
(http://go.microsoft.com/fwlink/?LinkID=139195)

® Unified Communications Enhanced Presence Schemas for Microsoft Office
Communications Server 2007 (http://go.microsoft.com/fwlink/?linkid=143305)

Chapter 8
Publishing Custom Presence
with UCMA

This chapter will help you to:

B Understand how to define custom presence categories in Microsoft Office
Communications Server 2007 R2.

B Understand how to publish instances of custom presence categories for users using the
Unified Communications Managed APl (UCMA)

Creating Custom Presence Categories

Office Communications Server 2007 R2 supports a flexible presence data model and provides
a generic framework for applications to publish, subscribe, and query for presence informa-
tion for users of the system. The presence information is defined by the Enhanced Presence
categories and is published to one or more presence containers on the server. Each container
has one or more access control entries (ACEs) that defines the access to the instances of
presence categories published to the container. For details about the presence model imple-
mented in Microsoft Office Communicator 2007, see the “Enhanced Presence Model White
Paper” at http://go.microsoft.com/fwlink/?linkid=143209.

For an application to subscribe to or publish presence information to Office Communications
Server, the application must instantiate an endpoint and register that endpoint with Office
Communications Server. While any registered endpoint can subscribe to or query for pres-
ence information, an endpoint can only publish presence data for the user whose identity is
used to register the endpoint with Office Communications Server.

In the Unified Communications (UC) platform, applications are responsible for publication,
querying, and subscription of presence information. This responsibility includes defining
categories as Enhanced Presence data types and defining ACEs on containers to block or
permit access to the published presence data. The content of Enhanced Presence data is
opaque to the server. An application can define its own presence categories and implement
the application-specific semantics for the data in the categories. It can also use the presence
categories defined by other applications and follow the rules of publication and subscription
defined by other applications.

205

206

Part IV Unified Communications Managed API

For example, Office Communicator defines a rich set of Enhanced Presence categories,

some of which are used to represent the user state. Office Communicator publishes them

to indicate whether the user is available, on the phone, away, and so on. Other categories

are used to represent the user's Free/Busy information from the user’s calendar data. Office
Communicator reads this information from Microsoft Office Outlook and Microsoft Exchange
Server and makes it available to the user’s contacts. Other UC applications can use the pres-
ence information defined and published by Office Communicator. They can also define and
publish custom presence information. This chapter describes how to publish application-
specific presence information using custom presence categories.

Common Custom Presence Application Scenario

A common custom presence application scenario is publishing presence information for users
based on sources of information and applications other than Office Communicator. Before
the release of Office Communications Server 2007 R2, there were two main issues with

this scenario. The first issue was that to register an endpoint with the server running Office
Communications Server for a user, the application required the user's domain credentials to
validate the registration with Office Communications Server. This can be an issue with the
security and operation of the application. The second issue was that none of the APIs that
supported presence operations (Unified Communications Client APl and Communicator Web
Access Asynchronous JavaScript and Extensible Markup Language [XML] API) provided the
behavior and scale required to support large numbers of simultaneous users. The UCMA API
2.0 provides solutions to both of these issues and makes a custom presence scenario easy to
implement.

Choice of Technology

UCMA 2.0 provides the ability to create a middle-tier application that registers endpoints and
publishes instances of presence categories on behalf of some users. Because an application
written with UCMA can be registered with Office Communications Server as a trusted appli-
cation, the application is not required to supply the user’s domain credentials to register an
endpoint for the user.

This chapter provides an example of how UCMA can be used to create an application that
registers many user endpoints with Office Communications Server and publishes instances of
a presence category on their behalf. For this example, we are publishing a custom presence
category named GPSLocation, representing the Global Positioning System (GPS) location of
the user, but the application can publish instances of any of the system-defined categories
that are defined for users as well. However, when publishing the system-defined catego-

ries, there can be issues of coexistence with running instances of Office Communicator and
multiple simultaneous endpoints for the user, which complicate the scenario. These potential

Chapter 8 Publishing Custom Presence with UCMA 207

issues are not addressed in this chapter; the application is created on the assumption that it is
the only endpoint that is publishing GPS location information for users.

Overall Code Structure

The sample application is designed to support publication of an XML document containing
the GPS coordinates of a user to Office Communications Server. It assumes that the GPS data
to be published is generated in some other application or system and supplied to the sample
application to be published as presence information for the specified user. This data can be
passed into the publishing application, or the application can query the system that supplies
the GPS information for the location at some interval.

The sample creates and registers endpoints for users of the UserEndpoint type at startup.
After the application receives the location information, it uses the registered UserEndpoint
instances to publish the new location value in a custom presence category instance.

The basic structure and flow of control in the sample is shown in Figure 8-1.

Read list of users to
Create and enable support and create
g E— 9
CollaborationPlatform UserEndpoints for
each user
External System Receive location Pullar I_ocatlon
ki — data using the
UserEndpoint

FIGURE 8-1 Overall structure of the GPS application.

Test Environment

To run and test this application, the custom category that is used to store the location
information for users must be defined in Office Communications Server. This is accom-
plished by running a stored procedure on the Microsoft SQL Server database used by Office
Communications Server to define the new category.

Various tools can be used to access the database, such as the command-line SQLCMD tool,
but these details are not covered in this book. After the database is accessed, the stored pro-
cedure is invoked with the name of the new category as the input parameter. For example,
the commands to the SQLCMD tool are as follows.

use rtc
exec RtcRegisterCategoryDef N'GPSLocation'

208

Part IV Unified Communications Managed API

where rtc is the name of the database, RtcRegisterCategoryDef is the name of the stored pro-
cedure, and GPSLocation is the name of the new category to be defined.

After this category is defined, any application can publish instances of it to Office
Communications Server or subscribe to it from Office Communications Server. Note that
nothing in the process defines either the syntax or the semantics of the new category
because the category is opaque to Office Communications Server. The only requirement that
Office Communications Server imposes on instances of the category is that they be written

in well-formed XML. It is up to the application that uses the category to define the structure
of the instances, to ensure that they are well-formed when published to the server, and to
parse them when they are delivered from the server. This is typically achieved by defining the
structure of the category data by creating an XML Schema Definition (XSD) file that defines
the schema for the custom category.

In Listing 8-1, the schema for the GPS location that is published to the custom category is
defined.

LISTING 8-1 Schema for the GPSLocation Custom Presence Category

<GPSLocation xsi:type="gpslocation"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmIns="http://schemas.microsoft.com/2006/09/sip/GPSLocation">
<locationstring></locationstring>
</GPSLocation>

The only element that is supplied in the publication is the </ocationstring> value, which is a
string.

Detailed Code

For this sample, we are going to create a console application in C#. The application requires
that the UCMA 2.0 Software Development Kit (SDK) is installed, along with any of its
prerequisites.

1. Start by running Microsoft Visual Studio 2008 and creating a new Microsoft Windows
project for a console application using C#. Name the project PublishPresence.

2. At the top of the Program.cs file, add the following lines to reference the class libraries
that the application uses.

using System.Configuration;

using System.Security.Principal;

using System.Security.Cryptography.X509Certificates;
using System.Net;

using System.Diagnostics;

using Microsoft.Rtc.Signaling;

Chapter 8 Publishing Custom Presence with UCMA

using Microsoft.Rtc.Collaboration;

using Microsoft.Rtc.Collaboration.Presence;

On the Solution Explorer tab, right-click the References node, and add references
to System.Security, System.Configuration, and Microsoft.Rtc.Collaboration, as shown in

Figure 8-2.

tion Explorer - Solution ‘PublishPresence’ (1 project) -

B3

= X

I: Solution ‘PublishPresence’ (1 project)
B .E PublishPresence
[=d] Properties
=t [S] References
«(3 Microsoft. Rtc.Collaboration
=3 System
+3 System.configuration
«3J System.Core
=3 System.Data
=3 System.Data.DataSetExtensions
=3 System.Security
=+ System.Xml
+3 System.Xml.Ling
App.config
-] Program.cs

| sapadold &| |d|eH SIWELAQ E|Ja.|o|dx3 uoynos §|

FIGURE 8-2 Adding assembly references.

Inside the Program class, insert the following definitions.

private static CollaborationPlatform _collabPlatform;

private static Dictionary<string, UserEndpoint> _userDictionary;

private static string OCS_SERVER_FQDN = "contosoocs2.uc.contoso.com";

private static int APPLICATION_PORT = 9000;

private static string APPLICATION_GRUU = "sip:contosolabts.uc.contoso.
com@uc.contoso.com;gruu;opaque=srvr:contosolabts.9000:NXnkPWAgokGhv62DhnHAIgAA

private static string GPSLOCATION_SCHEMA = "<GPSLocation xsi:type=\

"gpslocation\" xmlns:xsi=\"http://www.w3.0rg/2001/XMLSchema-instance\" xmlns=\
"http://schemas.microsoft.com/2006/09/sip/GPSLocation\"><locationstring>{0}

</Tocationstring></GPSLocation>"

These lines of code define the following:

Q The CollaborationPlatform for connecting to the server running Office

Communications Server

Q The Dictionary used to store the UserEndpoints for the users the program

supports, indexed by the Session Initiation Protocol (SIP) Uniform Resource

Identifier (URI)

209

0 The fully qualified domain name (FQDN) of the Office Communications Server to

which to connect

Q The Transmission Control Protocol (TCP) port that the application uses

0 The Globally Routable User Agent URI (GRUU) defined for the application

provisioned

0O The XML syntax to publish the GPS location information

210

Part IV Unified Communications Managed API

These settings are defined when the application is provisioned. The values for the FQDN
of the Office Communications Server, the TCP port, and the GRUU used by the applica-
tion will need to be modified based on the environment where the application is run.

Navigate to the Main method in Program.cs and add the following lines to the body of
the procedure.

static void Main(string[] args)
{

string inputLine;

char sep = new char(Q);

sep = Convert.ToChar(",");

_userDictionary = new Dictionary<string, UserEndpoint>Q);
//Prepare the CollaborationPlatform for use.

PreparePTlatform(Q);
Console.Write("Enter sipuri,Gpslocation to publish user GPS Tlocation or exit to
quit");
inputLine = Console.ReadLine();
while (!inputLine.ToLowerInvariant().StartsWith("exit"))
{
if (!string.IsNullOrEmpty(inputLine))
{
string[] input = inputLine.Split(sep);
//input[0] is the SIP URI for the user and input[l] is the GPS string.
PublishUserLocation(input[0], input[1]);
inputLine = Console.ReadLine();
}
else
{
Console.WriteLine("Enter sipuri,Gpslocation to publish user GPS Tocation
or exit to quit");
inputLine = Console.ReadlLine();
}
}
ShutdownAndCleanup();
}

Here, we are initializing the Dictionary and then calling the PreparePlatform() method
to instantiate the CollaborationPlatform. The code then prints a message to the console
and waits for user input. The input is either the word exit to exit the program or a SIP
URI followed by a comma and the GPS string that defines the user's location. If the user
enters exit, then the ShutdownAndCleanup() method is called to clean up and exit the
program. Note that this sample assumes that the data entered for the GPS string is
formatted as a valid XML string. Production code should validate the format.

Below the Main procedure, create the PreparePlatform method by entering the
following.

private static void PreparePlatform()

{
//Get the certificate that is used for making the TLS connection to 0CS
X509Certificate2 cert = GetLocalCertificate();

Chapter 8 Publishing Custom Presence with UCMA 211

//Create the ServerPlatformSettings to define the connection to the server.
ServerPlatformSettings settings = new ServerPlatformSettings(
"GPSPublisher",
Dns.GetHostEntry("Tocalhost") .HostName,
APPLICATION_PORT,
APPLICATION_GRUU,
cert);

//Create the platform and call BeginStartup to make it usable.
_collabPlatform = new CollaborationPlatform(settings);
_collabPlatform.BeginStartup(BeginPlatformStartupCallback, _collabPlatform);

}

The CollaborationPlatform will be ready to use after the BeginPlatformStartupCallback

method is called.

Just below the PreparePlatform method, add the following code to implement the
BeginPlatformStartupCallback method.

private static void BeginPlatformStartupCallback(IAsyncResult result)
{

try

{
//Call EndStartup to finish initializing the platform and then create the
//set of UserEndpoints that are registered with Office Communications Server
//to publish the user's location.
_collabPlatform.EndStartup(result);
CreateUserEndpoints();

}

catch (ConnectionFailureException connFailEx)

{
// ConnectionFailureException will be thrown when the platform cannot connect.
Trace.WriteLine(connFailEx.Message + " in " + connFailEx.TargetSite);

}

}

After the call to CollaborationPlatform.EndStartup() is called, the CollaborationPlatform
is ready to use. Next, the callback method calls the method, CreateUserEndpoints(), to
create the endpoints of users to publish their location.

Below the definition of BeginPlatformStartupCallback, insert the following code to
implement the CreateUserEndpoints method.

private static void CreateUserEndpoints()

{
List<string>_users = new List<string>Q);
//Populate the 1ist of users to publish.

//In this case we just hardcoded this Tist for simplicity.
_users.Add("sip:adamb@uc.contoso.com");
_users.Add("sip:shannonb@uc.contoso.com");

//For each user, create and establish a UserEndpoint.
foreach (string userUri in _users)
{

UserEndpoint _endPoint;

UserEndpointSettings settings =

212

Part IV Unified Communications Managed API

new UserEndpointSettings(userUri, OCS_SERVER_FQDN) ;
_endPoint = new UserEndpoint(_collabPlatform, settings);
_endPoint.BeginEstablish(EndPointBeginEstablishCallback, _endPoint);

}

In this method, the code creates a UserEndpoint for each user that it is configured to
support. Although we use a hard-coded list here, in production code it would have

been populated dynamically from a database, Active Directory Domain Services, or

another source. The code in the EndPointBeginEstablishCallback stores the prepared
endpoints for later use. This is done in the next step.

Note Depending on the usage pattern for the endpoints, it might be a better design to
defer creating the endpoints until there is data that needs to be published and to termi-
nate the endpoints after the publication has finished. For example, if the presence data to
be published changes infrequently, it might be a better choice to tear down the endpoints
after the publication operation. This reduces the memory consumption of the application.
If the data to be published changes frequently, then keeping the endpoints active is more
efficient than the overhead of creating them again and again at a high rate. However, for
simplicity in this sample, we create them once at startup and terminate them only when
the application shuts down.

Just below the code for CreateUserEndpoints, add the following code to implement the
EndPointBeginEstablishCallback method. This method is called for each endpoint that is
created by the code in CreateUserEndpoints.

private static void EndPointBeginEstablishCallback(IAsyncResult result)
{
UserEndpoint userEndpoint = result.AsyncState as UserEndpoint;
try
{
userEndpoint.EndEstablish(result);
//When the endpoint is ready to use, we will add it to the dictionary
//that stores the endpoints for Tater use in publishing presence. The entries
//in the dictionary are indexed by the SIP URI of the user and the value is a
//reference to the endpoint itself.

SipUriParser parsed = new SipUriParser(userEndpoint.EndpointUri);
//Use just the "name@domain" portion of the URI.
_userDictionary.Add(parsed.UserAtHost, userEndpoint);

}
catch (Exception except)
{
Trace.WriteLine(except.Message + " in " + except.TargetSite);
}

}

At this point, we have a valid UserEndpoint for each user. We will use this endpoint to
publish the location information of that user. The logic to publish the user’s location
information is encapsulated in the PublishUserLocation method.

Chapter 8 Publishing Custom Presence with UCMA 213

10. Below the code for EndPointBeginEstablishCallback, add the following code to imple-
ment the PublishUserLocation method.

public void PublishUserLocation(string userUri, string Tocation)
{

//Check to make sure that we have been passed a user SIP URI that is in our Tist.
If so, then publish the Tocation for that user.

UserEndpoint userEndpoint;

if ((!'string.IsNullOrEmpty(userUri) && (_userDictionary.TryGetValue(userUri, out

userEndpoint))))

{
PublishLocation(userEndpoint, Tocation);

}

else

{
Trace.WriteLine("Entered URI: " + userUri + " was not found");
Console.WriteLine("Entered URI: " + userUri + " was not found");

}

}

This method is called to publish the location information for the specified user, which
in this example is called from Main. In practice, it is called whenever the user’s loca-
tion changes or at regular intervals. It validates the user and calls the PublishLocation
method to publish the user’s location.

11. Below the PublishUserLocation method, add the following code to implement the
PublishLocation method.

private static void PublishLocation(UserEndpoint userEndpoint, string location)

Try
{

//Insert the location string into the XML blob.
string catToPublish = string.Format(GPSLOCATION_SCHEMA, Tlocation);

//Create an instance of the GPSLocation category and specify that it is
//to be published in the 200 container which only makes it available to

//contacts in the "Team" Tevel. See the Enhanced Presence Model whitepaper in the
//"Additional Resources" section of this chapter for details.

PresenceCategoryWithMetaData Toc =
new PresenceCategoryWithMetaData(l,
200,

new CustomPresenceCategory("GPSlocation", catToPublish));

214 Part IV Unified Communications Managed API
Toc.ExpiryPolicy = ExpiryPolicy.Persistent; //Keep this data until overwritten.
//Add it to the 1ist of items to be published.
List<PresenceCategoryWithMetaData> itemList = new
List<PresenceCategoryWithMetaData>();
itemList.Add(loc);

//Publish the category instance to the user's endpoint.

userEndpoint.LocalOwnerPresence.BeginPublishPresence(itemList,
PubTlishPresenceCallback, userEndpoint.LocalOwnerPresence);

}
catch (Exception excpt)
{

Trace.WriteLine(excpt.Message + in " + excpt.TargetSite);

The status of the publication is returned in the PublishPresenceCallback method.

12. Just below the PublishLocation code, add the following code to implement the
PublishPresenceCallback method.

private static void PublishPresenceCallback(IAsyncResult result)

{
try
{
//Get the instance of LocalOwnerPresence from the result and end.
LocalOwnerPresence userPresence = result.AsyncState as LocalOwnerPresence;
userPresence.EndPublishPresence(result);
SipUriParser parsed = new SipUriParser(userPresence.SubscriberEndpoint.
EndpointUri);

Console.WriteLine("Presence published for: + parsed.UserAtHost) ;

}
catch (Exception excpt)
{
Trace.WriteLine(excpt.Message + " in " + excpt.TargetSite);
}

13. Finally, add the three utilty methods, GetLocalCertificate, ShutdownAndCleanup, and
BeginTerminateCallback. GetLocalCertificate is used to get the certificate that the appli-
cation uses to connect to Office Communications Server using Transport Layer Security
(TLS). This certificate must be stored in the local computer’s certificate store and have

Chapter 8 Publishing Custom Presence with UCMA 215

a SubjectName that matches the FQDN of the computer where the application is run-
ning. The ShutdownAndCleanup method is called when the application exits. It termi-
nates the cached UserEndpoints that the application created and then shuts down the
CollaborationPlatform instance.

Just below the code for PublishPresenceCallback, add the following code to implement
these three methods.

private static X509Certificate2 GetlLocalCertificate()
{
//Get a handle to the local machine's certificate store
X509Store store = new X509Store(StorelLocation.LocalMachine);
//0Open the store
store.Open(OpenFlags.ReadOnly);
//Get a handle to a collection of the certificates installed on the machine
X509Certificate2Collection certificates = store.Certificates;
//Loop through the certificates looking for one
//where the SubjectName matches the FQDN of the
//Local Machine and the private key is available.
foreach (X509Certificate2 certificate in certificates)
{
if (certificate.SubjectName.Name.Contains
(Dns.GetHostEntry("Tocalhost") .HostName)
&& certificate.HasPrivateKey)

//Return the certificate that matches
return certificate;
}
}
//If not certificates match, return null
return null;

internal static void ShutdownAndCleanup()
{
foreach (UserEndpoint endpoint in _userDictionary.Values)
{
TIAsyncResult result = endpoint.BeginTerminate(BeginTerminateCallback,
endpoint);
result.AsyncWaitHandle.WaitOne(Q);
}

_colTlabPlatform.BeginShutdown (
new AsyncCallback(
delegate(IAsyncResult aResult)
{
_collabPlatform.EndShutdown(aResult);

216 Part IV Unified Communications Managed API

private static void BeginTerminateCallback(IAsyncResult result)

{
UserEndpoint userEndpoint = result.AsyncState as UserEndpoint;
userEndpoint.EndTerminate(result);
}
Summary

This sample shows how to use UCMA 2.0 to build an application that publishes custom
presence items on behalf of a set of users. Because the Office Communications Server infra-
structure is configured to treat the application as a trusted application, the application does
not need to supply domain credentials to Office Communications Server for each user when
it publishes their presence.

Additional Resources

B Microsoft Unified Communications Managed API 2.0 SDK (32 bit)
(http://go.microsoft.com/fwlink/?LinkID=140790)

B Microsoft Unified Communications Managed API 2.0 SDK (64 bit)
(http://go.microsoft.com/fwlink/?LinkID=139195)

B “Unified Communications Managed API 2.0 Core SDK Documentation”
(http://go.microsoft.com/fwlink/?linkid=126312)

B "Office Communicator 2007: Enhanced Presence Model White Paper”
(http://go.microsoft.com/fwlink/?linkid=143209)

Part V

Debugging, Tuning, and
Deploying Unified
Communications Applications

Microsoft Office Communications Server is a complex product, and deploying your

Unified Communications (UC) application can be a weighty process that requires proper
configurations of the application development components and the underlying infrastruc-
ture components. As a developer, you may not be proficient enough with deploying and
managing Office Communications Server to know what needs to be done to ensure that
your application is properly deployed and successfully executed. Chapter 9, “Preparing

the UC Development Environment,” covers the details for properly configuring Office
Communications Server and application development components to run your application.

In any application development, bugs are inevitable and debugging is necessary. Because UC
applications are inherently asynchronous, bugs may seem mysterious and debugging may be
frustrating. Bugs, however, are not an option. They are an expected part of any development
effort. The key is to release your product with as few bugs as possible, within the time

and resource constraints available. Chapter 10, “Debugging a Unified Communications
Application,” provides guidance on how to debug your application and troubleshoot the
system when problems arise.

217

Chapter 9

Preparing the UC Development
Environment

This chapter will help you to:

B Understand essential components of a Microsoft Unified Communications (UC)
application development environment.

B Understand the basic requirements of the infrastructure and application development
components of a UC application development environment.

B Prescribe how to configure basic infrastructure components for developing UC applica-
tions in a single-domain forest.

B Prescribe how to configure application development components for developing
UC applications by using Microsoft Office Communicator Automation API, Unified
Communications Managed APl (UCMA) Core, and UCMA Workflow.

UC Application Development Environment Components

As an application developer, you can think of the UC environment as consisting of infrastruc-
ture components and application development components. The infrastructure components
are configured and managed by system administrators, and the application development
components can be configured and administered by application developers who may have
to obtain appropriate permissions from a system administrator.

The infrastructure components include all of the Office Communications Server roles, the
dependent Active Directory Domain Services (AD DS), and supporting services such as
Domain Name System (DNS), public key infrastructure (PKI), Structured Query Language
(SQL), reverse proxy, firewalls, and hardware load balancers for an Enterprise pool. For
Office Communications Server Standard Edition, the supported server roles include Front
End Server, Web Conferencing Server, Audio/Video (A/V) Conferencing Server, Web
Components Server, and Application Sharing Server. The Web Conferencing Server and A/V
Conferencing Server roles are not required if the Office Communications Server Standard
Edition deployment is intended to support only instant messaging and presence. For
more information about server roles in Office Communications Server, see the “Microsoft
Office Communications Server 2007 R2" documentation at http://go.microsoft.com/fwlink/
?LinkID=133608 and the Microsoft Office Communications Server 2007 R2 Resource Kit at
http://go.microsoft.com/fwlink/?Linkld=141203.

219

220

Part V Debugging, Tuning, and Deploying Unified Communications Applications

The server roles in Office Communications Server 2007 R2 must be deployed on computers that
are running Windows Server 2003 Service Pack 2 (SP2) or later or Windows Server 2008. You
must have appropriate permissions to install, activate, and administer the server components.
For example, to install, activate, and administer an infrastructure component, you must be a
member of an appropriate Real-Time Communications (RTC) Universal security group that is
created and configured by AD DS preparation before Office Communications Server is installed.
Most administrative tasks require that you belong to the RTCUniversalServerAdmins group. Some
tasks may also require that you have local or domain administrator permissions. For example,
to install and activate a server running Office Communications Server 2007 R2 Standard

Edition, you must be a domain administrator who belongs to the RTCUniversalServerAdmins
security group. To configure a server running Office Communications Server 2007 R2 Standard
Edition, you must be a member of the RTCUniversalServerAdmins group. In general, if you are

a domain administrator and you belong to the RTCUniversalServerAdmins security group, you
can perform all three administrative functions. For more information about the administrative
credentials that are required for deploying Office Communications Server, see the "Accounts and
Permissions Requirements” topic (http.//technet.microsoft.com/en-us/library/dd425321(office.13).
aspx) in the “Microsoft Office Communications Server 2007 R2" documentation at http.//
go.microsoft.com/fwlink/?LinkID=133608.

The application development components can be grouped by the types of UC applica-

tions. These application groups include client-side applications that log on to Office
Communications Server, middle-tier applications that mediate between the client and Office
Communications Server, and server-side applications that extend the functionality of

Office Communications Server. Some of these application development components include
Office Communicator, Office Communicator Automation application programming interface
(API), Unified Communications Client API, Unified Communications Managed APl (UCMA)
Core, UCMA Workflow, and Office Communications Server API. This book mainly discusses
developing applications by using the Office Communicator Automation API, UCMA Core, and
UCMA Workflow.

You can build UC applications by using one or more application development components.
As an application developer, you are responsible for configuring and using the application
development components while relying on system administrators in your organization to
configure and manage the infrastructure components.

For testing purposes, you might want to isolate your development environment from the
production deployment of the UC infrastructure. For example, you can do this when you
reconfigure infrastructure components to enable custom features or extensions. In these
cases, bugs or other unwanted actions can cause UC to operate abnormally in your organiza-
tion. It will be helpful to create an isolated Office Communications Server environment to use
for your application development.

This chapter explains how to create an isolated Office Communications Server environment
for developing and testing your UC applications in an autonomous manner. Prescriptive

Chapter 9 Preparing the UC Development Environment 221

step-by-step instructions explain how to deploy Office Communications Server Standard
Edition for internal users in a single-domain forest topology. This is the most basic environ-
ment required to run Office Communications Server.

Before explaining how to set up and configure the UC application development environment,
this chapter reviews the three central components of the environment: AD DS for managing
a network, Office Communications Server roles, and the UC APIs.

AD DS for Managing a Network

Office Communications Server uses AD DS to store global settings and the user information
that it needs. Global settings include information about the deployment configurations,
routing rules, security groups, and specific access permissions for the Office Communications
Server infrastructure. User information is used to authenticate the user when an endpoint
tries to sign in to Office Communications Server. It is also used to assign user rights to the
user’s endpoints.

In AD DS, users enabled for UC are represented by Active Directory User objects. Applications
or services that are trusted by Office Communications Server are represented by Active
Directory Contact objects. Two AD DS server roles support these features: AD DS and Active
Directory Certificate Services.

When Office Communications Server is deployed, the AD DS schema must be extended.
These extensions involve adding new classes and attributes into the AD DS schema and con-
figuring these settings. This process is known as AD DS preparation and must be performed
before Office Communications Server can be deployed in an AD DS forest.

To start AD DS preparation, you must select an existing AD DS forest or create a new one.
This chapter is based on the assumption that you intend to set up a new UC network for
development. This means that you must install AD DS on a separate network. The resulting
AD DS forest can consist of one or more domains. Make sure that the following requirements
are met:

B All domain controllers and global catalog servers must run Windows Server 2003
SP1, Windows Server 2003 R2, or Windows Server 2008 in either the 32-bit or 64-bit
edition.

® All domains must have a domain functional level of Windows Server 2003 or Windows
Server 2008. Domain functional levels of Microsoft Windows 2000 Mixed, Windows
2000 Native, or Windows Server 2003 interim domain are not supported.

B The AD DS forest must have a forest functional level of Windows Server 2003 or
Windows Server 2008. Forest levels of Windows 2000 Mixed, Windows 2000 Native, or
Windows Server 2003 interim forest are not supported.

222

Part V Debugging, Tuning, and Deploying Unified Communications Applications
AD DS preparation for Office Communications Server consists of three major tasks:

B Prep Schema
® Prep Forest
B Prep Domain

Prep Schema extends the AD DS schema to support new classes and attributes that are
specific to Office Communications Server. To review the schema extensions that the Office
Communications Server created, see the schema file Schema.ldf., which is located in the
installation root directory of the Office Communications Server. To perform Prep Schema,
you must be an administrator in the Schema Admins security group, and you must perform
this operation on a schema master server. Successful AD DS schema preparation creates AD
DS classes and attributes that have names that contain the prefix ms-RTC-SIP-. After Prep
Schema completes successfully, you can verify the ms-RTC-SIP prefix by using ADSI Edit, as
shown in Figure 9-1. (The instructions to navigate in ADSI Edit are given in the “Verifying
Extended AD DS Schemas” section later in this chapter.)

B ADSI Edit :

File Acton View Help
A el NN

[ADSIEdit Name | Class -]
B § schema [dc.contoso. com] E|CN=msRTCSIPRoutellsage dassSchema
[] |eN=Schema,CN=Configuration,DC=contoso,DC=com | =] CN=ms-RTC-5IP-Routellsage... atiributeSchema
& CN=msRTC-SIP-RouteUsage... attributeSchema
E] CN=ms RTCSIP RouteUsages dassSchema
Q CN=ms-RTC-5IP-RoutingPoolDN attributeSchema

QCN=ms—RTC-SIP-RuIENamE atiributeSchema —
CN=ms-RTC-5IP-SchemaVersion atiributeSchema
Q CN=ms-RTC-5IP-Search dassschema

Q CN=ms-RTC-5IP-SearchMaxR... attributeSchema
& CN=msRTC-SIP-SearchMaxf... attributeSchema

=] CN=ms-RTC-SIP-Server dassSchema 2
4 »

|
FIGURE 9-1 AD DS schema preparation.

Prep Forest creates global settings that are used by every server running Office
Communications Server that is installed in the AD DS forest. To perform this task, you must
log on as a member of the Enterprise Admins or Domain Admins group in the AD DS forest
root domain. Active Directory Prep Forest does the following:

B Creates universal service and administration groups for Office Communications Server
B Adds default access control entries (ACEs) to the newly created security groups

Figure 9-2 shows these groups as they appear in Active Directory Users And Computers.

Chapter 9 Preparing the UC Development Environment 223

B Active Directory Users and Computers 4 ;Iglzl

File Action View Help

L EEIEEE Y R R

] Active Directory Use | Name | Type = | Description -]
[Saved Queries .%RTCCcmponenUJnlversaISerwces Security Group - Universal ~ Members can be used as RTC MCU and web com
= f-é cu_ntusu‘cum %RTCHSUniversalSErvices Security Group - Universal ~ Members can be used as RTC IM service logon.
3_ Builtin %RTCPronyniversalServices Security Group - Universal ~ Members can be used as RTC proxy service loga
(] computers .%RTCUniversaIG\obalReadOnIyGraup Security Group - Universal Members have read access to RTC global setting

|2 Domain Con

= %RTCUniversalG\obaIWribeGroup Security Group - Universal Members have write access to RTC global setting
] ForeignSea.

= %RTCUniversaIGuestAccessGroup Security Group - Universal ~ Members have readonly access to various Office
=S %RTCUniversaIREadOn\yAdmins Security Group - Universal Members can only read RTC related server and o
%RTCUniversalServerAdmins Security Group - Universal Members can manage all aspects of RTC servers
.%RTCUnlversaIServerReadOn\yGroup Security Group - Universal Members have read access to RTCrelated serve
%RTCUniversaIUserAdmins Security Group - Universal ~ Members can manage RTC users in this forest.

3 _’I:liﬂl . ' - [ran |I
| | |

FIGURE 9-2 Security groups created by AD DS forest preparation.

%RTCUniversaIUserReadOnlyGroup Security Group - Universal ~ Members have read access to RTCrelated usiill
. P e L .

Prep Domain assigns appropriate permissions to objects and attributes that are enabled

for Office Communications Server in each AD DS domain in the chosen forest. To perform
this task, you must be logged on as a member of the Enterprise Admins or Domain Admins
group for the domain from which you plan to run this task. You must perform Prep Domain
for all of the domains in which you want to deploy Office Communications Server and any
domains where your Office Communications Server users reside. Preparing an AD DS domain
does the following:

B Adds the necessary ACEs to the universal groups that are used to grant permissions to
domain controllers and to manage users in the domain

B Adds ACEs to the domain root and the following built-in containers: Users, Computers,
and Domain Controllers

Office Communications Server Roles

Office Communications Server supports several server roles and is available in two editions:
Standard Edition and Enterprise Edition. Standard Edition is intended for small-scale deployment.
You can deploy the Standard Edition server roles on a single host. Enterprise Edition is used for
mid- and large-scale deployments that involve multihomed server roles and may require a load
balancer. This chapter uses Standard Edition to demonstrate how to set up a UC application
development environment in an AD DS forest topology that consists of a single domain.

A successful deployment of Office Communications Server 2007 R2 Standard Edition results
in the automatic installation of the following server roles, in addition to Microsoft SQL Server
2005 Express Edition SP2 and four applications (Conferencing Attendant, Conferencing
Announcement Service, Response Group Service, Outside Voice Control):

B Front End Server
B Web Conferencing Server

B Audio/Video (A/V) Conferencing Server

224 PartV Debugging, Tuning, and Deploying Unified Communications Applications

® Web Components Server
B Application Sharing Server

To make sure that the deployment of these server roles is successful, verify that the following
minimum operating system and hardware requirements are met:

B Hardware requirements Use only a 64-bit computer that is running a 64-bit edition
of Windows Server for all Office Communications Server 2007 R2 Standard Edition
server roles. Other technical specifications include the following:

0 CPU Quad-core 2.0 gigahertz (GHz) or greater dual processor or dual-core
2.0 GHz 4-way processor

0 RAM 8 gigabytes (GB) of memory

Q@ Hard drive 2 x 72 GB hard drives of 15 kilobytes (K) or 10K revolutions per
minute (RPM), RAID O (striped), or equivalent

0 Network adapter 2 x 1 gigabit-per-second (Gbps) network adapter (2 refers to
dual port)

B Operating system requirements Use only the 64-bit edition of Windows Server 2003
SP2, Windows Server 2003 R2 SP2, or Windows Server 2008.

B Database requirements Use SQL Server 2005 Express Edition SP2 (32-bit version).
This is included with Office Communications Server 2007 R2.

B Administrative tools requirements Install Office Communications Server Administrative
Tools manually, which includes the Office Communications Server Microsoft Management
Console (MMC) snap-in, the Active Directory Users And Computers snap-in, the Computer
Management console snap-in extension, the Communicator Web Access snap-in, and the
Response Group Service snap-in. The administrative tools can be installed independent of
the Office Communications Server deployment on a computer that is running the 32-bit or
64-bit edition of Windows Server 2003 SP2, Windows Server 2003 R2 SP2, Windows Server
2008, Windows Vista Business, or Windows Vista Enterprise with SP1.

UC APIs

UC APIs are major application development components of a UC application development
environment. This chapter discusses the basic requirements for using Office Communicator
Automation API, UCMA Core, and UCMA Workflow.

Office Communicator Automation API

Office Communicator Automation APl is a Component Object Model (COM)-based
Automation API that enables an application to manipulate a locally running instance of
Office Communicator. It can be used by applications in C/C++, Visual Basic, Visual Basic

Chapter 9 Preparing the UC Development Environment 225

Scripting Edition (VBScript), and other scripting languages, and any .NET-based program-
ming languages, such as C#. For security reasons, some API calls are disabled for scripting
languages. To use this API, download the Office Communicator 2007 Software Development
Kit (SDK) from MSDN located at http.//go.microsoft.com/fwlink/?Linkld=141225.

Running an Office Communicator Automation API application requires that Office
Communicator be installed on the application’s local computer. To build and run the Win32
C/C++ application by using the Office Communicator Automation API, you must include the
COM interface IDs definition file in the application’s project. This file is not included automatically
in the Office Communicator 2007 Automation APl SDK. However, you can generate it easily from
the type library by using the Microsoft Interface Definition Language (MIDL) compiler.

To build and run the Microsoft .NET Framework application by using the Office
Communicator Automation API through the COM interop service, you must add to your
application’s project a reference to the primary interop assembly (PIA) that is appropriate
to your application’s target platform. For more information about how to do this, see the
“Configuring the Office Communicator Automation API” section later in this chapter.

UCMA Core

UCMA Core is a .NET-based API that supports the full suite of UC functionality: instant mes-
saging, telephony, A/V conferencing, and presence. It is optimized for use by middle-tier
applications mediating between a UC client and Office Communications Server. The API is
supported in the run-time environment of either the latest service pack of Windows Server
2003 R2 (64-bit edition) or the latest service pack of Windows Server 2008. It also requires
.NET Framework 3.5 SP1 and Visual C++ 2008 Redistributable Package. For more informa-
tion about the deployment requirements, see “Unified Communications Managed API 2.0
Core SDK Documentation” at http.//go.microsoft.com/fwlink/?LinkID=133571. To use the API,
download the Microsoft UCMA 2.0 SDK from the Download Center at http.//go.microsoft.
com/fwlink/?LinkID=139195.

In most application scenarios, a UCMA application must be trusted by Office
Communications Server. In these cases, you must have an Active Directory Contact

object created and configured for the application. To do this yourself, you can use the
ApplicationProvisioner sample application provided with the UCMA Core API SDK. For more
information, see the “Configuring UCMA Core” section later in this chapter.

UCMA Workflow

The UCMA Workflow extends the Windows Workflow Foundation activities to support
instant messaging activities, speech activities, and presence activities that are used in UC. As
with the UCMA Core, this workflow API requires you to install .NET Framework 3.5 SP1, which
includes Windows Workflow Foundation 3.5. It also requires Microsoft Visual Studio 2008

226 PartV Debugging, Tuning, and Deploying Unified Communications Applications

and at least one Microsoft Speech Server Language Pack. To use this API, you must install
the Microsoft UCMA 2.0 SDK at http://go.microsoft.com/fwlink/?LinkID=139195. In addition,
you must install at least one of the Speech Server 2007 Language Packs that are distributed
as part of Office Communications Server. For more information, see the “Configuring UCMA
Workflow” section later in this chapter.

Deploying Office Communications Server
Standard Edition

Deploying Office Communications Server Standard Edition on a private network involves the
following tasks:

Build an AD DS forest.

Prepare AD DS for Office Communications Server.
Configure DNS for automatic sign-in by UC clients.

Set up the Office Communications Server host computer.
Install Office Communications Server Standard Edition.

Configure UC user accounts.

N o u k w N+

Validate Office Communications Server functionality.
8. Install Office Communicator and other clients to verify that users can log on.

The following sections explain how to perform each of these tasks.

Building an AD DS Forest

To build a separate AD DS forest on a private network for development purposes, the
minimal topology is a single-domain forest topology.

Note Skip this task if you plan to use an existing AD DS forest to set up your development
environment.

The AD DS forest fully qualified domain name (FQDN) for the example in this chapter is
“contoso.com.” A single computer running Windows Server 2008 hosts all of the network
services. This includes the domain controller and DNS server. The FQDN of this computer is
“"dc.contoso.com.”

After the AD DS forest is configured, another computer running Windows Server 2008, set
up to host Office Communications Server Standard Edition and one or more application

Chapter 9 Preparing the UC Development Environment 227

hosting computers, is added to the network. For a client application, the operating system
on the host computer can be Microsoft Windows XP, Windows Vista, or Windows Server.
For a server or middle-tier application, the host computer may have to be a server running
Windows Server. In this example, the host computer running Office Communications Server
to be added has the FQDN “ocs.contoso.com”. The application computer names follow the
naming convention of “appN.contoso.com,” where N=0, 1, 2, and so on.

To build an AD DS forest, you must make one computer that is running Windows Server the
root domain controller. You must also create and configure the DNS server if you do not
intend to use existing domain name services. Finally, you must install an Enterprise certifi-
cate authority (CA) that issues certificates to users, computers, and applications within the
network. Having a private CA is especially useful for a private network that consists of a

set of virtual servers and clients. In such a network, it is recommended that Dynamic Host
Configuration Protocol (DHCP) is disabled and that static Internet Protocol (IP) addresses be
assigned to each computer manually.

Assigning Static IP Addresses for Domain Controller and
Other Computers

For the domain controller, you must perform these steps before you run the DCPromo tool
to make the server into a domain controller. In this chapter, the IP address of 192.168.100.1 is
assigned to the domain controller of the private network.

Note Skip this task if you rely on a DCHP server in your network to assign IP addresses to the
computers in your network.

1. On Windows Taskbar, click Start, and then click Control Panel.
2. In Control Panel, double-click Network And Sharing Center.

3. In Network And Sharing Center, under the Tasks pane, click Manage Network
Connections.

4. In Network Connection, right-click Local Area Connection, and then click Properties.
5. Select the Internet Protocol version 4 (TCP/IPv4) options, and then click Properties.

6. In the IPv4 Properties window, as shown here, select Use The Following IP Address,
assign an IP address as the static IP address for the computer, and type 255.255.255.0
in the Subnet Mask field. Select Use The Following DNS Server Addresses, type the IP
address of the domain controller in the Preferred DNS Server field, and then click OK.

228 PartV Debugging, Tuning, and Deploying Unified Communications Applications

Internet Protocol ¥ersion 4 (TCP/IP¥<) Properties = 2lxl

General |

‘fou can get IP settings assigned automatically if your network supports
this capability, Otherwise, vou need to ask your network administrakar
For the appropriate IP settings.

" obtain an IP address automatically

—{% Use the Following IP address:

1P address: I 192 . 166 . 100 , 1
Subret mask: I 255 .255 .2585 . O
Default gateway: I . . .

| Obkain DNE server address automatizally:

—{¥ Lse the Follawing DNS server addresses:

Preferred DNS server: I 192 . 166,100 , 1
Alkernate DMNS server: I . . .

Advanced. ., |

For a private network, the IP address should use the format 192.168.x.y, where x and y are
integers between 0 and 255, inclusive. In the Default Gateway field, use the IP address of the
gateway, if there is one. Otherwise, leave this field blank. The specification of the preferred
DNS server is based on the assumption that your DNS server is hosted on the domain
controller as well.

For other computers, repeat the previous steps and change the host IP address values so that
each computer in the network is identified by a unique IP address. You must do this before
the computer joins the domain.

Promoting a Computer Running Windows Server to a
Domain Controller

To promote a computer running Windows Server to an AD DS domain controller, run
DCPromo.exe on the computer as explained in the following steps. In the example in the
following procedure, the FQDN of the domain is contoso.com.

1. Move the computer running Windows Server into a workgroup if it is currently joined
to an AD DS domain. To do this on a computer running Windows Server 2008, click
Start, right-click Computer, and then click Properties.

2. In the System pane, under Computer Name, Domain, and Workgroup Settings, click
Change Settings, as shown here.

Chapter 9 Preparing the UC Development Environment

g [5]

CK) Fu;l « Control Panel = Syskem - l@] ISearch

File Edit Wiew Tools Help

Tasks ¥iew basic information about your computer

© Devics Manager Windaws edition

@ Remate settings ‘Windows Server® Enterprise

@ Advanced system settings Copyright @ 2007 Microsoft Corporation. All rights reserved,

Service Pack 1

Syskem
Processor: Inkel{R) ¥eon(R) CPU ES450 @ 3.00GHz 3.00 GHz
Memary (RAM): 8.00 GB =
System bype: &4-bit Operating System
Computer name, domain, and workgroup settings
See also Compuker name: rimmo @Change Serhngs
windows Update Full computer name: mimmo

Cararukar Aacevinkinn:

<

o™

3. On the System Properties page, click Change...

229

4. On the Computer Name/Domain Changes page, select Workgroup, if it is not already

selected, and then click OK, as shown here.

Computer Name/Domain Changes 1 x|

‘Y'ou can change the name and the membership of this
computer. Changes might affect access to network resources.
More infarmation

Computer name:

do
Full computer name:
de
Iember of
" Domair:
& Workgroup:
[\wWORKGROUP

oK Cancel

5. When you are prompted to restart the computer, click OK. In this example, “dc” is the
name of the domain controller that is hosted on a computer running Windows Server

2008.

6. To promote the server to a domain controller, from an elevated command prompt, run

DCPromo. This starts the Active Directory Domain Services Installation Wizard.

7. On the Welcome To The Active Directory Domain Services Installation Wizard page,

shown here, click Next.

230 PartV Debugging, Tuning, and Deploying Unified Communications Applications

@ Active Directory Domain Services Installation Wizard 3 x|

Welcome to the Active Directory
Domain Services Installation
Wizard

This wizard helps you install Active Directory Domain
Services [0 DS on this server, making the server an
Active Directory domain controller. To continue, click Mext

[T Use advanced mode installation

Learn more about the additional options that are
available in advanced mode installation.

More about Active Directory Domain S ervices

< Back I Mext > I Cancel |

8. On the Operating System Compatibility page, click Next.

9. On the Choose A Deployment Configuration page, select Create A New Domain In A
New Forest, as shown here, and then click Next.

@/ Active Directory Domain Services Installation Wizard 1 x|
Choose a Deployment Configuration E |E
fou can create a domain controller for an existing forest or for a new farest ==
£~ Existing forest

€ Add|a domain contaller b an existing domain

€ Create a iew domain it at existing forest
This senvenwill besaorme the first damat contrallen i the mew domat

1% Create a new domain in a new forest

ore about poszible deployment confiqurations

< Back I Mest > I Cancel |

10. On the Name The Forest Root Domain page, in FQDN Of The Forest Root Domain,
enter the FQDN of the forest root, as shown here, and then click Next. In this example,
the FQDN is contoso.com.

Chapter 9 Preparing the UC Development Environment 231

@ Active Directory Domain Services Installation Wizard

Name the Forest Root Domain
The first domair in the forest is the forest root domain. Ik name is alzo the name of
the forest.

11. On the Set Forest Functional Level page, as shown here, from the Forest Functional
Level drop-down menu, select Windows Server 2008, and then click Next.

@ Active Directory Domain Services Installation Wizard

Set Forest Functional Level
Select the forest functional level.

12. On the Additional Domain Controller Options page, select DNS Server (if it is not
already selected), as shown in the following screen, and then click Next.

232

Part V Debugging, Tuning, and Deploying Unified Communications Applications

13.

14.

15.

@ Active Directory Domain Services Installation Wizard

Additional Domain Controller Options

Select additional optians for this domain contraller.
¥ DMS server

¥ | Glohal catalog

™| Readionly domain contraller (FODE]

Additional infarmation:

The first domain controller in a forest must be a global catalog server and ;I
cannot be an RODC.

' recommend that vou inzstall the DNS Server service on the first domain
controller.

Mare about addtional domain controller options

< Back I Mext > I Cancel |

If your network uses a DHCP server to assign IP addresses, and you receive a prompt
that asks you whether you want to continue without assigning IP addresses, select No,
| Will Assign Static IP Addresses To All Physical Network Adapters, as shown here.

@l Static IP assignment x|

@ This computer has dynamically assigned IP address{es)

This computer has at least one physical network adapter that does not hawe static 1P
address(es) assigned ko its IP Properties. You should assign static IP addressies) to all
physical network adapters For reliable Domain Mame System (DNS) operation, for both IPw4
and IPve when available. See Help For more information,

Do you want ko continue without assigning static IP address(es)?

=% Yes, the computer will use a dynamically assigned IP address {not
recommended).

| =% No, I will assign static IP addresses to all physical network adapters. |

You must then figure out which network adapter has a DHCP-assigned IP address. If
the IPv6 address is not static, you can either disable IPv6 or assign a static address to it.
After this is done, go back to the Additional Domain Controller Options page, shown in
step 12, and click Next.

On the following page, click Yes to continue without creating a delegation for the new
DNS server.

On the Location For Database, Log Files And SYSVOL page, shown in the following
screen, leave the default values, and then click Next.

16.

17.

18.

Chapter 9 Preparing the UC Development Environment

@ Active Directory Domain Services Installation Wizard

Location for Database. Log Files. and 5YSYOL
Specify the folders that will contain the Active Directory domain controller
database, log fles, and SYSWOL.

For better performance and recoverability, store the databaze and log files on separate
wolumes.

Diatabaze folder:
IC.\W’induws\NTDS\ Browse..

Log files folder:

_Bowe. |
IE:\Windows\NTDS Brawse
_Bonee. |

SYSVOL folder:
IE:\W’indows\SYSVDL Erowse..

More about placing Active Directory Domain Services files

< Back I Mext > I Cancel |

On the Directory Services Restore Mode Administrator Password page, enter and
confirm the password of the restore mode administrator, and then click Next.

233

On the Summary page, review your selections. If your selections are correct, click Next

to finish the installation of AD DS.

On the Completing The Active Directory Domain Services Installation Wizard page,

click Finish to exit the installation. This step takes awhile to complete.

19. Restart your computer for the settings to take effect.

Verifying that the DNS Server Role Is Running

After the domain controller is configured, it is a good practice to verify that the newly
installed DNS server role is running. To verify the DNS server role, perform the following

steps:

1. Log on to the domain controller as a domain Administrator.

2. C(lick Start, click Administrative Tools, and then click Server Manager.

3. In Server Manager, expand the Roles node in the tree view on the left pane.

4. Select DNS Server.

5. Verify that the Status value of the DNS Server row in System Services is Running.

234

Part V Debugging, Tuning, and Deploying Unified Communications Applications

E. Server Manager £ =101 x|
File Ackion Help
= [==
e= ol H
El 3 Rales e EBEEREE——
Active Directary]
[gz DHSServer Provides name resolution For TCPIP networks,
= £ Dhs
g oo . =
Features () System Services: All Running &4 Goto Services
& Di ki
& i \agnastis play Mame Service Hame Status Startup Tvpe | Monitor El Preferences
(i Configuration _
Starage & Running Auto B o
B start
Description: ID Pt
Enables DNS clients ta resolve DNS names by answering DNS queries and dynamic DS update
requests, IF this service is stopped, DNS updates will not occur. IF this service is disabled, any
services that explicithy depend on it will Fail to start,
(~) Resources and Support
'E' Recommended configurations, tasks, best practices, and online resources ﬂ DNS Server Help
DS S TechCent:
Recommendations = = bl
|:gyEnhance DMS server availabiity and performance by adding a domain controller with DS & @ DS Server Communicy Center
| Reduce zone replication traffic by storing DMS data in an application partition in AD DS a Send Feedback to Microsoft
s Enable the DNS server to resalve external namespaces by using forwarders
|:@Pravent potential name resalution errors by automatically removing stale resource records:
g Allows & computer bo respond ko multiple names by creating an alias (CNAME) recard
|:gyEnable clients to locate network resources by using resource records
|:igyHelp prevent attacks against your network by securing your DNS server B
|i@yEnsure proper DNS Functioning in your netwark by configuring DNS client settings L
|i@yUparade your DNS infrastructure by migrating a DNS server
<o Allsss slimebn bn s im0 A dmmee bbb mmrmm b mn i wm i L mlin s >~
J! | =
« 0] |00 Last Refresh: 2/12/2009 6:56:19 PM Configure refresh

Installing a Domain CA

Office Communications Server requires certificates to be issued to servers by a trusted CA. In
a private development environment, the most convenient way to issue certificates is to install
a private CA in the domain. You can install this CA by adding the Active Directory Certificate

Services role to the domain controller. (For more information, see the "Active Directory

Certificate Services Step-by-Step Guide” on TechNet at http.//technet.microsoft.com/en-us/
library/cc772393.aspx.)

Note If you choose other certificate services such as Certification Authority Web Enroliment
or Online Responder, you are prompted to add other supporting roles, such as the Application

Server and Web Server (IIS) roles, that have not been enabled. In such cases, make sure that

you enable the IIS 6 Management Compatibility service of each Web Server (IIS) role during the

installation.

To install a CA for the domain, perform the following steps:

Log on to a computer running Windows Server 2008 that is a domain controller.

Chapter 9 Preparing the UC Development Environment

In Server Manager, right-click Roles, and then click Add Roles.

1.
2.
3. On the Before You Begin page, click Next.
4.

On the Select Server Roles page, shown here, select Active Directory Certificate

Services, and then click Next.

Add Roles Wizard

%} Select Server Roles

Before You Beagin

ADCS
Role Services
Setup Type
CA Type
Private Key
Cryptography
CA Mame
Validity Period
Certificate Database
Confirmation
Progress

Results

Select one or more roles to install on this server,
Roles:

Active Directory Domain Services {Installed)
D Active Directory Federation Services
[] Active Directary Lightweight: Directory Services
D Active Directory Rights Management Services
[application Server
D DHCP Server
DNS Server (Installed)
D Fax Server
[] File Services
[Wetwark Palicy and Access Services
D Print Services
[Terminal Services
D UDDI Services
Wb Server (115} (Install=d)
[windows Deplayment Services

More about server roles

Drescription:

Active Directory Certificate Services
(a0 C5) is used ko create certification
authorities and related role services
that allow you to issue and manage

certificates used in a variety of

applications.

< Previous | Next = I Inistall

Cancel

5. On the Introduction page, click Next.

235

6. On the Select Role Services page, shown here, select Certification Authority, and, if you

want, select Certification Authority Web Enrollment or Online Responder. Then click

Next.

236 Part V Debugging, Tuning, and Deploying Unified Communications Applications

Add Roles Wizard

>
E Select Role Services

Certification Authority

Certification Authority web Enrollment
¥4l Cnline Responder

[Metwork Device Enroliment Service

7. On the Specify Setup Type page, select Enterprise, and then click Next.
8. On the Specify CA Type page, select Root CA, and then click Next.
9. On the Set Up Private Key page, select Create A New Private Key, and then click Next.

10. On the Configure Cryptography For CA page, use the default setting, and then click
Next.

11. On the Configure CA Name page, use the default setting, and then click Next.

Chapter 9 Preparing the UC Development Environment

Add Roles Wizard

%} Configure CA Name

EBefore You Begin Type in a common name ko identify this CA. This name is added ta all certificates issued by the <A,

Distinguished name suFfix values are automatically generated but can be modified.
Server Roles

M Common name For this Ca;
Role Services contoso-DC-CA
Setup Type
PR Distinguished name suffix:
CA Type DC=contoso,DC=com
Private Key
Cryptagraphy

Ch Mame Preview of distinguished name:

CM=conkoso-DIC-CA, DC=contoso, DC=com

Walidity Period

Certificate Database
Confirmation
Progress

Results

More abouk confiquring & CA name

< Previous I Mext = | Inistall | Cancel

12. On the Set Validity Period page, use the default setting, and then click Next.

13. On the Configure Certificate Database page, use the default setting, and then click

Next.

237

14. On the Confirm Installation Selections page, confirm the settings that you selected, and

then click Install if the settings are correct.

15. On the Installation Results page, verify the installation status, and then click Close.

Preparing AD DS for UC

To prepare AD DS for UC, you must perform the following tasks:
1. Extend and verify AD DS schemas for Unified Communications.
2. Configure and verify the Active Directory Forest for Unified Communications.
3. Configure and verify the Active Directory Domain for Unified Communications.

The following sections explain the steps to perform each of these tasks.

238

Part V Debugging, Tuning, and Deploying Unified Communications Applications

Extending AD DS Schemas

To extend AD DS schemas, you can use the Microsoft Office Communications Server 2007 R2
Deployment Wizard to complete the following steps:

1. Log on to the domain controller by using a domain account that is a member of the
Schema Admins security group on the schema master.

2. Double-click SetupSE.exe to start the Microsoft Office Communications Server 2007
R2 Deployment Wizard. If you are prompted to install the Microsoft Visual C++ 2008
Redistributable package, click Yes. If you are prompted to install .NET Framework 3.5
SP1, click Yes. After the added packages are installed, restart the computer and repeat
the procedure from the beginning.

3. On the starting page of the Office Communications Server 2007 R2 Standard Edition
Deployment Wizard, click Prepare Active Directory.

icrosoft Office Communications Server 2007 R2 Deployment Wizard x|

‘Welcome ko Office Cammunications Server, Standard Edition deployment,

*‘, Office Communications Server 2007 R2, Standard Edition

Standard Edition 3
Prepare Active Directory Enable/Disable silent Error Reporting
Prepares the Active Directory schema, forest, and domain For Office Click o enablejdisable automatic uploading of error
Comrmunications Servet, rEpOFts,
Help » Documentation

Click o wiew the latest OFfice Corrunications Server
documentation online for deployment, planning, and
operations,

Deploy Standard Edition Server

Installs all Standard Edition companents and canfigures certificates.
Administrative Tools

Installs the administrative snap-ins For Office
Communications Server and Communicator Web
Deploy Other Server Roles Access, along with the deployment command line kool
Deploys Office Communications Server Archiving Server, Monitaring Server, Edge LosCrod,

Server, Mediation Server, or Communicatar Web Access,

Help »

Tools and Resources
Help» Click to access tools and other resources online to
help manage your Cffice Communications Server
deplovment,

Check for Updates Online
Check Microsoft Update For praduct updates.,

Help »

| Back || Exit |

4. On the Prepare Active Directory For Office Communications Server page, shown here,
under Step 1: Prep Schema, click Run.

Chapter 9 Preparing the UC Development Environment 239

icrosoft Office Communications Server 2007 R2 Deployment ¥izard |
Prepare Active Directory for Office Communications Server
These tasks prepare Active Directory For your OFfice Communications Server installation.
Standard Edition > Active Directory Preparation 3
N
Step 1: Prep Schema ™
Run once per deplapment. Extends the schema Far Office Communications Server.
Prerequisites »
Help v Run |
Step Z: ¥erify Replication of schema Partition
Manual VYerify that the schema partition has been replicated befare preparing the Forest,
Help »
Step 3: Prep Forest
Run once per deployment. Creates global settings and universal groups For OFfice Communications Server server
components.
Mot avallable: The Schema must be prepared befare you can prepare the Forest,
Frerequisices »
Help » Fun _
Step 4: ¥Yerify Replication of Global Settings and Global Catalog
Manual Werify that global settings and the global catalog are replicated before preparing the domain.
Help »
Step 5: Prep Current Domain
Run par OFfice Communications Sarvar user oF sarvar gomann. Sets access control entries (ACES) For Office
Communications Server universal groups.
Lot available: The Srhema and Forest must be orenared before voo can orenare the Domain E‘
Back || Exit |

5. On the Welcome To The Schema Preparation Wizard page, click Next.

6. On the Directory Location Of Schema Files page, either use the default option or
explicitly specify the path of a directory in which the Office Communications Server
extensions of the AD DS schemas are located, and then click Next. The default schema
file name is Schema.ldf, which is located in the same folder as SetupSE.exe.

7. On the Ready To Prepare Schema page, click Next to start the schema preparation.

8. On the Schema Preparation Wizard Has Completed Successfully page, click Finish.

Installing Office Communications Server Administrative Tools

To perform the tasks prescribed from here on, you need to use the Office Communications
Server 2007 R2 Administrative Tools. To install the administrative tools on the AD DS domain
controller, perform the following steps:

1. Log on as a member of the DomainAdmins group to the AD DS domain controller.

2. Start the Microsoft Office Communications Server 2007 R2 Deployment Wizard
(SetupSE.Exe).

3. On the Microsoft Office Communications Server 2007 R2 Standard Edition introduction
page, click Administrative Tools, as shown here.

240

Part V Debugging, Tuning, and Deploying Unified Communications Applications

£ Microsoft Office Communications Server 2007 R2 Deployment Wizard x|

* DOffice Communications Server 2007 R2, Standard Edition

‘Welcome to Office Communications Server, Standard Edition deployment.

Standard Edition 3
Prepare Active Directory Enable/Disable Silent Error Reporting
Prepares the Active Directary schema, forest, and domain For Office Click ko enablejdisable automatic uploading of errar
Communications Server, reports,
Help v « Complzte Documentation

Click to view the latest Office Communications Server
documentation online For deplayment, planning, and

Deploy Standard Edition Server operations.

Installs all Standard Edition companents and canfigures certificates.
Felp Installs: administrative snap-ins far Office
Comrunitations Server and Cormmunicator Web
Deploy Other Server Roles Access, along with the deployment command line tool
Deploys Office Communications Server Archiving Server, Monitoring Server, Edge LesCmd,

Server, Mediation Server, or Communicator Web Access,

Adminﬁ'ative Tools

Tools and Resources
Help e Click to access toals and other resources online to
help manage your Office Communications Server
deplovment,

Check for Updates Online
Check Microsoft Update for product updates,

Help »

| Back || Esit

4. Follow the steps of the wizard to finish the installation.

Verifying Extended AD DS Schemas

After the Prep Schema step completes successfully, verify that the schema extensions are
replicated throughout the system. You may have to wait for this to happen, especially with a
topology that involves multiple domains. However, with a topology that has a single domain
in a single forest, replication is almost instantaneous and verification can start immediately.

Note Performing the procedure described in this section satisfies the requirement set forth
by the Step 2: Verify Replication Of Schema Partition In The Prepare Active Directory For
Office Communications Server page of the Microsoft Office Communications Server 2007 R2
Deployment Wizard.

To verify that the AD DS schemas are extended properly, perform the following steps:

1. Log on to the domain controller where the Office Communications Server
Administrative Tools are installed.

2. On the Windows Tasksbar, click Start, Administrative Tools, and then ADSI Edit.
This assumes that you have already installed the Office Communications Server
Administrative Tools that are available from the Office Communications Server
Installation Wizard.

Chapter 9 Preparing the UC Development Environment 241
3. In ADSI Edit, click Action, and then click Connect To.

4. In the Connection Settings box, shown here, select the Select A Well Known Naming
Context option, select Schema on the drop-down menu, and then click OK.

Connection Settings] x|

Name: | Schema

Path: ILDAP:;’,I’:I:.contoso.com,l’Schama

~Connection Point
" Select or bype a Distinguished Name o Maming Conkext:

| o

' Select a well known Naming Context:

[Computer

" Selact or bype a domain o server: (Server | Domain [:port])

| = |
& Defaulk {Domain or server that vou logged in ko)

™ Use 55L-hased Encryption

Advanced.., | oK I Cancel |

In the ADSI Edit console, expand the Schema node in the left pane, and select
CN=Schema. In the right pane, scroll down until you find CN=ms-RTC-SIP-
SchemaVersion, as shown here.

File Action Yiew Help

e AW XE = | H
Z ADST Edit | Name [Class [Distinguished Mame B
Bl § Schema [de.contoso.com] ||] Cu=ms-RTC-5IP-FresencePdicy attrbuteschema Chi=ms-RTC-SIP-PresencePalicy, CH=Schema, CN=Configur.

| CH=5chema, CM=Confi CN=ms-RTC-5SIP-PrimaryHomes... attributeSchema CN=ms-RTC-5IP-PrimaryHomeServer, Ch=5chema, CN=Con

CM=ms-RTC-SIP-PrimaryUserad... attributeSchema CN=ms-R TC-5IP-PrimaryUserAddress, CN=Schema, Ch=Car

CM=ms-RTC-SIP-Registrar classSchema CN=ms-RTC-5IP-Reqgistrar, CM=Schema, Ch=Caonfiguration,
CM=ms-RTC-SIP-Routable attributeSchema CN=ms-RTC-5IP-Routable, CN=5chema, CN=Configuration, |
CN=ms-RTC-5IP-Routelsage classSchema CN=ms-RTC-5IP-Routelsage, CM=5chema, CN=Configurati

CM=ms-RTC-SIP-RouteUsagedtt. . attributeSchema CN=ms-RTC-5IP-RouteUsageattribute, CN=Schema, CHN=Cc
CN=ms-RTC-5SIP-Routelsagelinks attributeSchema CN=ms-R TC-5IP-RouteUsagelinks, CM=5chema, CN=Config

CN=ms-RTC-5IP-Foutellsages classschema CN=ms-RTC-5IP-Routelsages, C=3chema, Chi=Configurat
CN=ms-RTC-5IP-RoutingPoolDM attributeschema CN=ms-R TC-5IP-RoutingPoolDM, CH=5chema, Ch=Configur.
CN=ms-RTC-5IP-RuleMame attributeSchema CN=ms-RTC-5IP-RuleMame, Ci=5chema, Ch=Configuration

i qur
CN=ms-RTC-5IP-Search classschema CN=ms-RTC-51P-Search, CN=5chema, CN=Configurakion, DC

CN=ms-RTC-SIP-SearchMaxReq... attributeSchema CN=ms-RTC-5IP-SearchMaxRequests, CN=5chema, CN=Car
CN=ms-RTC-SIP-SearchMaxRes... attributeSchema CN=ms-RTC-5IP-SearchMaxResults, CN=Schema, CHN=Canfi
CM=ms-RTC-5SIP-Server classSchema CN=ms-RTC-5IP-Server, CN=Schema, CN=Configuration, Do
CN=ms-RTC-5IP-ServerBL attributeSchema CN=ms-R.TC-5IP-ServerBL, CN=S5chema, CM=Configuration,|
CN=ms-RTC-5IP-ServerData attributeSchema CN=ms-RTC-5IP-ServerData, CN=5chema, CN=Configuratio
CN=ms-RTC-5IP-ServerReferen... attributeschema CN=ms-RTC-5IP-5erverReferenceBl, CN=5Schema, ChN=Conl
CN=ms-RTC-5IP-Servertersion attributeSchema CN=ms-RTC-5IP-Serveriersion,CM=5chema, CN=Configura
CM=ms-RTC-5IP-Service classSchema CN=ms-RTC-SIP-Sarwce,CN=Schama,CN=C0nFigurat\on,_Di;|
3

e T s aec g o

)T

3 = |

If the schema preparation is replicated, you see results that are similar to those shown
here. If the schema extensions are not shown, wait for the schema changes to replicate
in the system, and then refresh the view.

242 PartV Debugging, Tuning, and Deploying Unified Communications Applications

5. Double-click the ms-RTC-SIP-SchemaVersion attribute to open the Properties dialog
box. Scroll down to locate the rangeUpper property value, and verify that it is 1008,
as shown here. This value confirms that the schema for Office Communications Server
2007 R2 has been prepared successfully. Once the schemas are extended successfully,
click OK, and then close the ADSI Edit console.

CN=ms-RTC-5IP-Schema¥ersion Propetties e |
Attibute E ditor | Securityl
Attributes:
Attribute | Walue ;I
ok ObjectClazs <not zets
obdSyntax 2=[INTEGER]

otherwellknownObie... <not sety
partialdttributeDeletia.. <not set

partialdtiributeSet <not zet:

proried]bjectMame <not getr

proxydddresses <not gety

rangelower 11

rangellpper J
replPropertyMetallata AMID Ver LocUSM Org.DSh
replUpT oD ateVectar <not zets

repsFrom <not zety

repsTo <not zety

revision <not sety =

o I _>|_|
Edit | Filtes |
Ok I Cancel | Lpply | Help |

Preparing the AD DS Forest

After you verify that the schema preparation was successful, follow these steps to perform
AD DS forest preparation:

1. In the Microsoft Office Communications Server 2007 R2 Deployment Wizard (SetupSE.
exe), on the Prepare Active Directory For Office Communications Server page (shown
here), under Step 3: Prep Forest, click Run.

Chapter 9 Preparing the UC Development Environment 243

icrosoft Office Communications Server 2007 R2 Deployment ¥izard x|
Prepare Active Directory for Office Communications Server
These tasks prepare Active Directory For your OFfice Communications Server installation.
Standard Edition > Active Directory Preparation 3
N
Step 1: Prep Schema ™
Run once per daplajment. Extends the schema for Office Communications Server.
Prerequisites »
Help » +/Complete Run
Step 2: ¥erify Replication of schema Partition
Manual VYerify that the schema partition has been replicated befare preparing the Forest,
Help »
Step 3: Prep Forest
Run once per deployment. Creates global settings and universal groups For OFfice Communications Server server
components.
Frerequisites »
Help » Run | _
Step 4: ¥Yerify Replication of Global Settings and Global Catalog
Manual Werify that global settings and the global catalog are replicated before preparing the domain.
Help »
Step 5: Prep Current Domain
Run par OFfice Communications Sarvar wrer oF sarvar domain, Sets access control entries (ACES) For Office
Communications Server universal groups.
Lot avalable: The Schema and Forest most be orenared before voo can orenare the Domain E‘
Back || Esit |

On the Welcome To The Forest Preparation Wizard page, click Next.

On the Select Location To Store Global Settings page, shown here, use the default
settings, and then click Next.

On the Location Of Universal Groups page, select the domain that you want, and then
click Next. In this example, there is only one domain from which to choose: the contoso.
com domain.

On the SIP Domain Used For Default Routing page, select the Session Initiation
Protocol (SIP) domain that you want, and then click Next. Again, in this example, there
is only one domain from which to choose.

On the Ready to Prepare Forest page, review the settings, and then click Next to start
the forest preparation.

On the Forest Preparation Wizard Has Completed Successfully page, select View The
Log When You Click Finish, and then click Finish.

Verify that the log was created. The log should look similar to the screenshot shown
here. Expand Execute Action, and then confirm that the value next to Forest Settings is
Ready. This indicates that the forest preparation process has completed successfully.

244

Part V Debugging, Tuning, and Deploying Unified Communications Applications

/2 Office Communications Server 2007 R2 Deployment Log - Windows Internet Explorer

=100x]

| e

A
bt/

o
(L

'1'% @ (Office Cammunications Server 2007 R2 Deployment Log

v I?é Ci\UsersiAdministrator| AppDataiLocall Temp\Forest Preparation Wizard[ZDDQ_DZ_lij |‘f|| x | ILiVE Search

Ca ot
) Office Communications
Server 2007 k2

Office Communications Server 2007 R2 Deployment Log

@v v@-@lﬁ‘agev@molsv»

(21

Time Logged:

Action
[Execute Action

-~ B [nitislize Forest Object

- B Forest Prep

4

Friday, February 13, 2009 7:04:44 P

Action Information

FODN: conkoso. conm

Local Forest: True

Reuse Cached Domain Active Directory Connections: contoso.com
Root Domain Admin: True

Forest Settings: Ready

Collapse
Execution Result

SuCcess

Success

Surcess

|l

|Done

’_ ’_ ’_ ’_ ’_ ’_ ‘H Computer | Protected Mode: OFF

[H100% - 4

Verifying Prepared Forest Settings

If the value next to Forest Settings indicates that the forest is not ready, wait for the system
to replicate the changes, and then type the following command at a command prompt to
verify the forest settings:

LcsCmd /forest /action:CheckForestPrepState /PDCRequired:FALSE

The results that are obtained while executing this command are written to a Hypertext
Markup Language (HTML) file. By default, the file path is %Userprofile%\AppData\Local\
Temp\2\Forest_CheckForestPrepState[<date>][<time>].html.

Preparing the AD DS Domain

After you verify that AD DS forest preparation was successful, you are ready to prepare the
AD DS domain by performing the following steps:

1.

ooR W N

.

In the Microsoft Office Communications Server 2007 R2 Deployment Wizard (SetupSE.
exe), on the Prepare Active Directory For Office Communications Server page, under
Step 5: Prep Current Domain, click Run.

On the Welcome To The Domain Preparation Wizard page, click Next.

On the Domain Preparation Information page, click Next.

On the Ready To Prepare Domain page, click Next to start domain preparation.

On the Domain Preparation Wizard Has Completed Successfully page, click Finish.
Select View The Log When You Click Finish, and then click Finish. The wizard creates a
log file and displays the results in a browser, as shown here.

Chapter 9 Preparing the UC Development Environment 245

/2 Office Communications Server 2007 R2 Deployment Log - Windows Internet Explorer i —10f x|
— P
(S A A ITg Ci\UsersiAdministrator| AppDataiLocall Temp\Domain Preparation Wizard[ZDDQ_DZ_lj |ir| |£| ILiva Search |P '|

@v v@-@lﬁ‘agev@molsv»

527 4& @ (Office Cammunications Server 2007 R2 Deployment Log

Ca o
1 Office Communications
Server 2007 k2

Office Communications Server 2007 R2 Deployment Log

Time Logged: Friday, February 13, 2009 7112:24 PM Collapse
Action Action Information Execution Result
E Execute Action SUCCEss

B [nitialize Domain Object Success

- B Domain Prep FQDN: contoso. com Success

Domain Admin: True
Windows 2000 Native Mode Domain: Trus

Domain Settings: Ready -
| | B

i ’_ ’_’_’_ ,_’_ |/ Computer | Protected Mode: OFf SR

6. In the log file, expand Execute Actions. If the value next to Domain Settings is Readly,
the domain preparation succeeded. If not, wait for the domain changes to replicate,
and then perform the steps in the following section.

Verifying Prepared Domain Settings

To verify domain settings, type the following command at a command prompt:
LcsCmd /domain /action:CheckDomainPrepState /PDCRequired:FALSE

This command creates an HTML file that you can view in a browser. The default location of
this file is %Userprofile%\AppData\Local\Temp\2\Domain_CheckDomainPrepState[<date>]
[<time>].html. In the Action pane, expand Execute Action. If domain preparation succeeds,
the value next to Domain Settings is Ready, as shown in the screenshot under step 5 in the
section entitled “Preparing the AD DS Domain,” earlier in this chapter.

When the domain settings are ready, you can return to the Microsoft Office Communications
Server 2007 R2 Deployment Wizard, and under Step 7: Delegate Setup And Administration,
shown in the screenshot under step 1 in the section entitled “Preparing the AD DS Domain,”
click Run. You need to perform this step only if you want users who are not members of an
authorized security group to be able to set up and manage Office Communications Server
roles.

Configuring DNS for Automatic Sign-In

Before you install Office Communications Server Standard Edition, you can configure the
DNS records that are used to resolve the server's FQDN to its IP address. Doing this supports
automatic sign-in by clients.

246

Part V Debugging, Tuning, and Deploying Unified Communications Applications

Two kinds of DNS records are used. One record type is SRV, and the other is A. The

A record is required for Office Communications Server Enterprise Edition. Office
Communications Server Standard Edition installation automatically creates the A record.
An SRV record of _sipinternaltls._tcp.<domain> over port 5061 (for Transport Layer Security
[TLS]) or _sipinternal._tcp.<domain> over port 5060 (for Transmission Control Protocol
[TCP]) resolves to the FQDN of the server running Office Communications Server Standard
Edition. Office Communicator and other UC clients use this SRV record to locate an Office
Communications Server before they can sign in.

Creating a DNS SRV Record

To create a DNS SRV record for a server running Office Communications Server Standard
Edition, perform the following steps:

1. On the DNS server (domain controller), click Start, Administrative Tools, and then DNS.

2. In DNS Manager, in the left pane, select DC, and then expand Forward Lookup Zones,
right-click the domain in which you want to install the Office Communications Server
(that is, contoso.com), and then click Other New Records.

&, DNS Manager

=101

Update Server Data Fle
Reload

| 2[F R newHost a or nans)... i

File Action View Help

é, ohS Mew Aha.s (CNAME)... I e B
= i o Mew Mail Exchanger (MX)...
Global Logs 20 Rl Thos

B | Forward Lockup Mew Delegation...
|2 _msd cont‘ |

B Rl) Tasks v
_mades
[+ it i »
& j -:L i W= er) Start of Authority (S08) [
] _udp;j Delete er) Mame Server (NS) d
B Domainn| Refresh er) Host (A} 1
7] Forestor| Export List... Host (4} 1
= Host {a) 1
J Reva.rs.e Laokup E—
[Conditional Forw J ﬂ

Help
. |

3. In the Resource Record Type dialog box, under Select A Resource Record Type, select
Service Location (SRV), as shown here, and then click Create Record.

Chapter 9 Preparing the UC Development Environment 247

Resource Record Type ll
Select a resource record bype:
Respansible Person (RP) ;I
h (RT

Route Throug

ignature (51G)
Texk (TAT) =l
Well Known Services (WKS) ;I

Description:

Service {SRY) record, Allows administrators to use several servers :I
far a single DMS domain, to easily move a TCPYIP service from ane

host ko another host with administration, and to designate some

service provider hosts as primary servers for a service and ather

hosts as backups. DNS clients that use a SRY-type query ask For a
specific TCPJIP service and protocol mapped to a specific DNS

domain and receive the names of any available servers, (RFC 2052)

Bl
Create Record,.. I Cancel |

4. In the New Resource Record dialog box, in the Service box, type _sipinternaltls for TLS
or _sipinternal for TCP.

5. In the Protocol box, type _tcp. This applies to both TLS and TCP.
6. In the Port Number box, type 5061 for TLS or 5060 for TCP.

7. In the Host Offering This Service box, type the FQDN of the server running Standard
Edition, as shown here.

New Resource Record x|

Service Location (SRY) |

Domain; I contoso.com

Service: | _sipinkernaltls

Ll L«

Protocol: I _kep

Priotity: I o
Weight: I o
Part number: I 5061

Host offering this service:

I ch‘cuntusu.cum|

™ Allow amy authenticated user to update all DHS records with the same
name. This setting applies only to DMS records For & new name.

[s]4 I Cancel | Help |

8. Click OK, and then click Done when the operation is finished.

248 Part V Debugging, Tuning, and Deploying Unified Communications Applications

Verifying DNS Records Creation

To verify the DNS records that you have created, perform the following steps:

1.

& v > W N

7.

Log on to any computer in the domain by using an account that is a member of the
Administrators group or an account that has equivalent permissions.

Click Start, and then click Run.

In the Open box, type ecmd, and then click OK.

At the command prompt, type nslookup, and then press Enter.
Type set type=srv, and then press Enter.

Type _sipinternaltls._tcp.contoso.com for the TLS record, and then press Enter. The
output is shown here.

. Administrator: Command Promp!

oft Wind e 861 1
Copyright <{c)> Hicrosoft Corporation. All rights reserved.

C:wUserssadministrator.CONTO0S80>ns lookup
DNE regquest timed out.
timeout was 2 seconds.
Default Server: UnKnown
192.168.1668.1

> set type=srv
> pinternaltls._tcp.contoszo.com
i UnKnown
= 192.168.188.1

_sipinternaltls._tcp.contoso.com SRU service location:
priority =8
we ight =8
port = 5861
sur hostname = ocs.contoso.com
ocs.contoso.com internet address = 192.168.160.16008
>

When you are finished, at the command prompt, type exit, and then press Enter.

Setting Up the Office Communications Server Host Computer

Before you install Office Communications Server, make sure that the server has been
properly prepared. The following recommendations assume that the server is running
Windows Server 2008:

Apply operating system updates for Windows Server 2008 by following the instructions
in Microsoft Knowledge Base article 953582, "You may be unable to install a program
that tries to register extensions under the IQueryForm registry entry in Windows
Server 2008 or Windows Vista," at http://go.microsoft.com/fwlink/?Linkld=131392.

You must install this update before you install Office Communications Server 2007 R2
Administrative Tools.

Also, apply the operating system update described in the Microsoft Knowledge Base
article, "AV at mscorwks!SetAsyncResultProperties,” located at http.//go.microsoft.com/
fwlink/?linkid=143318.

Chapter 9 Preparing the UC Development Environment 249

B Start Windows Firewall if you plan to use it and if it is not already enabled. If Windows
Firewall is running when Office Communications Server is installed, activating the
server automatically adds exceptions that are needed for Office Communications
Server. Otherwise, you have to set the exceptions manually. For more information, see
the "Prepare Windows for Setup” topic in the Microsoft Office Communications Server
2007 R2 documentation at http://go.microsoft.com/fwlink/?linkid=143299.

B Disable Windows services that are not required by any of the Office Communications
Server roles that are installed on the server. The required Windows services include
Hypertext Transfer Protocol (HTTP) Secure Sockets Layer (SSL), Windows Management
Instrumentation (WMI), WMI Driver Extensions, and Message Queuing (MQ). HTTP
SSL is a collective reference of HTTP, Internet Information Services (11S) Admin Service,
Remote Procedure Call (RPC), and Security Account Manager (SAM). WMI can include
the Event Log and RPC. MQ is for archiving and can include MQ access control, NT LAN
Manager (NTLM) Security Support Provider (NTLMSSP) service, RRPC, RMCAST [Pgm]
Protocol Driver, TCP/IP Protocol Driver, Internet protocol security (IPsec) driver, and SAM.

For more information, see the “Microsoft Office Communications Server 2007 R2” documen-
tation at http.//go.microsoft.com/fwlink/?LinkID=133608.

Joining the Server Running Office Communications Server
to the Domain

The host computer must be joined to the properly prepared AD DS domain of your choice
before you install or activate Office Communications Server. Before you join the computer to
the domain, make sure the computer uses your network’s DNS server as the preferred DNS
server. You can verify and change these settings on the Internet Protocol Version 4 (TCP/IPv4)
Properties console, as shown in Figure 9-3.

Internet Protocol Yersion 4 (TCP/IP¥4) Properties , 2=l

General

‘ou can gek IP settings assigned automatically iF wour network supports
this capability, Otherwise, vou need to ask your network administratar
far the appropriate IP settings.

£~ obtain an I address automaticaly
—{% Use the Following IP addr

TP address: I 192 . 16 . 100 . 100
Subnet mask: I 255,255 255 . 0
Default gateway: I . . .

£ Gbtain DNS server address automatically

—{% Use the Follawing DMS server addr

Preferred DNS server: I 192 . 168 . 100 . 1
Alkernate DS server: I . . .

Advanced. .. |

FIGURE 9-3 Specifying the DNS server for your host computer running Office Communications Server.

250 PartV Debugging, Tuning, and Deploying Unified Communications Applications
To join a server running Windows Server 2008 to your domain, perform the following steps:
1. On the computer running Windows Server 2008 that you want to host Office

Communications Server, in the Initial Configuration Tasks dialog box, shown here, click
Provide Computer Name And Domain.

E{ mitial Configuration Tasks =101 %]
Perform the following tasks to initial [;
. 9 ly A_Ef Windows Server-2008
configure this server Enterprise
[Jl Provide Computer 7j| Specifying computer —
Information information
P
:’ Set time zone Time Zone: {GMT-08:00) Pacfic Time (US Canada)
_E, Configure Local Area 192.168.100.100
- networking Connection:
ﬁ Provide computer Full Computer ocs L
name and domain Name:
Workgroup: uca
TR - 53| Updati
@ Update This Server vt Al
Enable automatic Updates: Install updates automatically using
) updating and Windows Update
feedbac Feedback Windows Emor Reporting off
Mot participating in Customer
Experience Improvement Program =
™ Do not show this window at logon Close

2. In System Properties, on the Computer Name tab, shown here, click Change.

System Properties x|

CofﬂPMEfNamelHafdwa'eleaﬂcedl F{emotel

@ Windows uses the following information to identify your computer
© on the network.

Computer description: ||
For example: "I15 Production Server” or
oy g Server.

Full computer name: ocs

Workgroup: UCG

To rename this computer or change its domain or Change.. |
workgroup, click Change.

’TI Cancel | Apply |

3. In Computer Name/Domain Changes, select the Domain option, type the name of the
domain that you want this computer to join, as shown here, and then click OK.

Chapter 9 Preparing the UC Development Environment 251

Computer NamefDomain Changes x|

You can change the name and the membership of this
computer. Changes might affect access to network resources.
More information

Computer name:
ocs

Full computer name:
ocs

Member of
' Domain:
Icunlusu.cum

" Workgroup:
Juca

cous

4. When prompted, enter the credentials of a network account that has the permissions to
perform the operation.

5. Restart the computer.

Verifying Office Communications Server Host Name Resolution

To verify Office Communications Server host name resolution, perform the following steps:

1. Log on to a computer in the domain.

2. Click Start, and then click Run.

3. In the Open box, type emd, and then click OK.
4

. At the command prompt, type ping ocs.contoso.com. This is the FQDN of the server
running Office Communications Server Standard Edition that you specified earlier in
this chapter. Press Enter.

5. Verify that the IP address that is returned is correct for the server specified earlier.

Installing and Configuring Office Communications Server
Standard Edition

To install and configure Office Communications Server Standard Edition, perform the
following steps:

1. Log on to the computer running Windows Server 2008 that has been set up for Office
Communications Server by using an account that is a member of the Domain Admins
and RTCUniversalServerAdmins security groups in the domain.

2. Install the Web Server (lIS) server role on the computer where Office Communications
Server will be installed.

252 PartV Debugging, Tuning, and Deploying Unified Communications Applications

3. Install and activate Office Communications Server Standard Edition.

4.
5.
6.
7.

Configure Office Communications Server Standard Edition.
Install a server certificate on the local computer.
Install a Web Server certificate for the Web Components Server role.

Configure A/V and Web conferencing.

The following sections describe how to perform these tasks.

Becoming a Member of the RTCUniversalServerAdmins Security Group

To deploy Office Communications Server, you must be a member of the Domain Admins and
RTCUniversalServerAdmins security groups. If you are not already a member of these security
groups, perform the following steps to add yourself to these groups.

1.

Log on as a domain administrator to the domain controller or a computer that is joined
to the domain in which the Active Directory Administrative Tools are installed.

Click Start, Administrative Tools, and then Active Directory Users And Computers.

In the left pane, under the name of the domain that you want to use, click Users, right-
click a user in the right pane, and then click Properties. In this example, the user is
Administrator.

Click the Member Of tab to view the group memberships that are available. If the user
is already a member of required groups, click Cancel. Otherwise, click Add to add the
user to a group.

To add the user to the RTCUniversalServerAdmins group, type the group name in the
Enter The Object Names To Select box, as shown here. Click Check Names, and then
click OK.

Select Groups 2=l
Select this object type:
IGrnups or Built-in security principals Object Types... |
Fram this location:
Icunlusucum Locations... |
Enter the object names to select [examples]:
BT CUniversalS erverddming Check Mames |
Advanced... | Cancel |
v

6. Click OK to close the User Properties page.

Chapter 9 Preparing the UC Development Environment

253

Installing the Web Server (1IS) Server Role

Office Communications Server requires that the Web Server (IIS) server role be installed on
the host computer. To install Web Server (lIS), perform the following steps:

1. Click Start, Administrative Tools, and then Server Manager.

2. Click Action, and then click Add Roles to start the Add Roles Wizard, as shown here.

3
4
5
6
7
8

File | Action V“iew Help

E__ Server Manager

=lolx|

Remove: Rnﬂg

Refresh

Help

& Configuration
Shorage

HEKNEH

% Wiew the health of the ro|e<3

B =

server and add or remmiill
>

(~) Roles Summary

(=) Roles: 0of 16 instaled

] E—

i

£ Last Refresh: 2/14/2009 8:23:06 PM

Configure refresh

|Add roles bo this server,

. On the Before You Begin page, click Next.

. On the Select Server Roles page, select Web Server (lIS).

. On the Add Features Required For Web Server (IIS) page, click Add Required Features.
. On the Select Server Roles page, click Next.

. On the Web Server (IIS) page, click Next.

. On the Select Role Service page, shown here, select the following role services:

0 Under Application Development, select ASP.NET.

0 Under Security, Select Windows Authentication.

0@ Under Management Tools, select IS 6 Management Compatibility.

Once you have selected the services, click Next.

254 PartV Debugging, Tuning, and Deploying Unified Communications Applications

Add Roles Wizard x|
ﬁ} Select Role Services
Before You Begin Select the role services ko install For Web Server (I15):
Server Roles Rale services: Description:
web Server (115) 5 [web Server | Security provides infrastructure for
— securing the Web server from users
=] Com!-nol? HTTR Features and requests, 115 supports multiple
P = [@ Application Develapment authentication methads, Pick an
EInlTEEm ASP.MET appropriate authentication scheme
Progress MET Extensibility based upon the role of the server,
[asp Filter all incaming requests, rejecting
Results without processing requests that
[car) makch user defined values, or restrick
ISAPT Extensions requests based on originating address
ISAPI Filters Space.

[] server Side Includes
[E Health and Diagnostics

HEHMH

@ Performance
= [E Management Tools

115 Management Console

[] 115 Management Scripks and Tools

D Management Service

=] 115 & Management Compatibility B

115 & Metabase Compatibility
115 & WHI Compatibility
115 & Scripting Tools LI

More about role services

< Previous | Mext = I Inistall Cancel

9. On the Confirm Installation Selections page, click Install.

10. Click Close after the installation finishes.

Installing Office Communications Server Standard Edition

To install Office Communications Server Standard Edition, perform the following steps:

1. Log on as a member of the DomainAdmins and RTCUniversalServerAdmins groups to
the computer on which you want to install Office Communications Server Standard
Edition.

2. Insert the Microsoft Office Communications Server 2007 R2 CD, and then click
Standard Edition to start the Microsoft Office Communications Server 2007 R2
Deployment Wizard. Alternatively, browse to the \Setup\Amd64\ folder on a network
share and double-click SetupSE.exe. When asked to install Microsoft Visual C++ 2008
Redistributable, click Yes. When asked to install Microsoft .NET Framework 3.5, click Yes.
You may need to restart the computer and then repeat steps 1 and 2 of this procedure.

3. In the wizard, click Deploy Standard Edition Server.

Chapter 9 Preparing the UC Development Environment

iy Microsoft Office Communications Server 2007 R2 Deployment

'y

Dffice Communications Server 2007 R2, Standard Edition
‘welcome to OFfice Communications Server, Standard Edition deployment,

Standard Edition

=
“

Prepare Active Directory
Prepares the Active Direckary schema, forest, and domain Far Office
Communications Server,

Help » +Complets

Deploy Standard Edition,Server
Installs all Standard Editiun%punents and configures certificates,

Help »

Deploy Other Server Roles
Deploys Office Communications Server Archiving Server, Monitoring Server, Edge
Server, Mediation Server, or Communicator \Web Access,

Help »

Check for Updates Online
Check Microsoft Update for product updates.,

Help »

Enable/Disable Silent Error Reporting
Click ko enabledisable automatic uploading of errar
reports,

Documentation

Click to view the latest Office Communications Server
dacumentation online for deployment, planning, and
operations.

Administrative Tools

Installs the administrative snap-ins for Office
Communications Server and Communicator Web
Access, along with the deployment command line taol
LesCrd,

Tools and Resources

Click to access tools and other resources online ko
help manage your Cffice Communications Server
deployment.

| Back || Esit

255

4. On the Deploy Standard Edition Server page, under Step 1: Deploy Server, click Run, as

shown

here.

Microsoft Office Communications Server 2007 R2 Deployment Wizard

A

Deploy Standard Edition Server

Run these kasks sequentially. Certain tasks are disabled when completed or nok ready ta run.

Standard Edition > Deplay Standard Edition

Ix

Step 1:

Step 2:

Step 3:

Step 4:
Manual

Deploy Server

Installs and activates the Front End and conferencing server components of Office Communications Server.

Prerequisites »

Help »

Configure Server
Collects deployment information For certificate, DS, and validation tasks,

Mot available: Deploy Server must be completed before you can Configure Server,

Prerequisites »

Help» Fun
Configure Certificate

Requests, processes, and assigns certificates for this server,

Mot available: Deploy Server must be completed before you can Configure Certificate.

Prerequisites »

Help » Fun

Configure Web Components Server Certificate

Install or configure a certificate in I15. This certificate is required to obtain the services that are provided by the Web

Components Server,

Frerequisices »

Help v

[r]t

Back || Exit

256 PartV Debugging, Tuning, and Deploying Unified Communications Applications

5.
6.

10.

On the Welcome To The Deploy Server Wizard page, click Next.

Review the license agreement, click | Accept The Terms In The License Agreement, and
then click Next.

. On the Location For Server Files page, use or modify the default location for server

files, and then click Next.

. On the Application Configuration page, use the defaults or modify the selections that

you want to install, and then click Next.

. On the Main Service Account For Standard Edition Server page, type the name of a

new or existing service account that will run the core Office Communications Server
service on this computer. Also, type the password for the account, as shown here, and
then click Next.

Deploy Server Wizard

Main Service Account for Standard Edition Server Z‘\
Specify a service account to be used by major server functions. &

' Use an exisking account

% Create a new account

Account infarmation

Account name; I RTCService

Fassword: Iouuooo"

Confirm password: | ITTITTITITY

< Back I Next§ I Cancel |

When you create a new account, activation might fail until the account has been
replicated in AD DS. If activation fails, wait until the account has been replicated, and
then try again.

On the Component Service Account For This Standard Edition Server page, type the
name of a new or existing service account that will run the A/V Conferencing Server
and Web Conferencing Server components on this computer. Type and then confirm
the password for the account, as shown here, and then click Next. The default account
is RTCComponentService.

Chapter 9 Preparing the UC Development Environment 257

Deploy Server Wizard

Component Service Account for this Standard Edition Server Z‘\
Specify a service account to run conferencing servers, Web component, and r
ather server companents,

" Use an existing account

% Create a new account

Account infarmation
Account name: I RTCComponentService
Fassword: I ssssansens
Confirm password: | ITTITTITITY

< Back I Next > I Cancel

11. On the Web Farm FQDNs page, verify that Internal Web Farm FQDN displays the FQDN
of your server, as shown here, and then click Next. This FQDN is used by internal users
for client downloading of Web conferencing content, distribution group expansion, and

Address Book information.

Deploy Server Wizard

Web Farm FQDNs Z‘\
The Web farm provides a location to download meeting content and Address
Book data, Ik also hosts the distribution group expansion service.

Internal web Farm FODMN:

External web Farm FQDM (optional):

<Type herex

< Back I Mext = I Cancel

If you plan to enable external user access to Web conferences, under External Web
Farm FQDN, type the FQDN that resolves to the external IP address of your reverse
proxy server. This FQDN is used by external users for client downloading of Web
conferencing content, distribution group expansion, and Address Book information. It
is also used by anonymous and federated users to download Web conference content.
For more information, see “Deploying Edge Servers for External User Access” at

http://go.microsoft.com/fwlink/?LinkID=143690.

12. On the Location For Database Files page, accept or modify the default directories for
user database and transaction log files, and then click Next.

258 PartV Debugging, Tuning, and Deploying Unified Communications Applications

13. On the Ready To Deploy Server page, shown here, review the settings that you speci-
fied, and then click Next.

Deploy Server Wizard

Ready to Deploy Server b

W

The wizard has gathered the necessary information ta begin deploying Standard Edition
Server,

Please review the settings vou have selected below, IF wou wank to change any settings, click
Back, Click Next to start,

Current Settings:

installation Path: C:\Program FilesiMicrosoft Office Communications Server 2007 R2) -
Selected applications:

Microsoft. Rtc. Applications. Caa

Microsoft, Rkc.Applications. Cas

Microsoft, Rkc.Applications. Acd

Microsoft. Rc.Applications. Cos
Main service account name; RTCService j

< Back I Mext = I Cancel |

14. The installation takes some time to complete. After the files are installed and the wizard
has completed, select the View The Log When You Click Finish check box, and then
click Finish.

15. In the log file, verify that Success appears under the Execution Result column at the end
of each task, as shown here, and then close the log window.

,P’f Office Communications Server 2007 RZ Deployment Log - Windows Internet Explorer ﬁ = |E||1|
pr—— = e
1S L I@ Ci\Users\administrator CONTOSOVAppDataiLocal\Temp! Deplay Server W\zardj |‘?| ‘ X | ILive Search |}3 '|
- [] o »»
12? et @Office Communications Server 2007 R2 Deployment Log | @ v - @Q o é Page - \9) Tools -
=
Office Communications Server 2007 R2 Deployment Log
Time Logged: Saturday, February 14, 2009 10: 18:35 PM o
Action Action Information Execution Resi
B Execute Action Success
Install Core Components Install MSXML Parser: Skipped Success

Install SQL Native Client: Required
Install Core Components Location: C:Program FilesiMicrosoft Office
Communications Server 2007 RECore
Core Components Install Log: LC Core Components[2009 02 14]
[22 18 58Llog
Install Skandard Edition Server Install UCMA Redist: Required Success
Install SQL Express: Required
Install Standard Edition Server Location: C:\Praogram Files\Microsoft Office
Communications Server 2007 R23\Server
standard Edition Server Install Log: LC Server[2009 02 14122 24 541log
Install Web Components Server Install Web Components Server Location: C:\Program FilesiMicrosoft OFfice Success
Communications Server 2007 R24\Web Compaonents

Web Components Server Install Log: LC Web Components[2009 02 14]

[22 26 38llog
Install web Conferencing Server Install 1#: Required Success
| Install Web Conferencina Server Location: C:\Proaram FilesiMicrosoft Office | _ILI
4 2

Computer | Pratected Made: QFF H100% v
i : A

Chapter 9 Preparing the UC Development Environment 259

Configuring Office Communications Server Standard Edition

The server running Office Communications Server Standard Edition that you installed must
be configured by using the Configure Server Wizard. To configure the server, perform the
following steps:

1. On the Deploy Standard Edition Server page of the Microsoft Office Communications
Server 2007 R2 Deployment Wizard, under Step 2: Configure Server, click Run, as shown
here.

icrosoft Office Communications Server 2007 R2 Deployment Wizard

[

* Deploy Standard Edition Server

Run these tasks sequentially. Certain tasks are disabled when completed or nak ready ta run.

Standard Edition > Deplay Standard Edition

[rite

Step 1: Deploy Server
Installs and activates the Front End and conferencing server components of Office Communications Server.

Prerequisites »
Help » «/Complete Fun

Step 2: Configure Server
Collects deployment information For certificate, DMNS, and validation kasks,

Prerequisites »
Help » —IRun

Step 3: Configure Certificate
Requests, processes, and assigns certificates for this server,

Prerequisites »
Help » —IRun

Step 4: Configure Web Components Server Certificate
Manual Install or configure a certificate in 113, This certificate is required to obtain the services that are provided by the web
Components Server,

Prerequisites »

Help »

| Back || Esit |

2. On the Welcome To The Configure Pool/Server Wizard page, click Next.

3. On the Server Or Pool To Configure page, shown here, select the server that you just
installed from the list, and then click Next.

260 PartV Debugging, Tuning, and Deploying Unified Communications Applications

Configure Pool/Server Wizard

Server or Pool to Configure Eﬂ
u

Select an existing server or pool ko configure:

< Back I Next > I Cancel |

4. On the SIP Domains page, shown here, verify that your SIP domain appears in the list.
If it does not, type your SIP domain in the SIP Domains In Your Environment box, and
then click Add. Repeat these steps for all SIP domains that the server running Standard
Edition Server supports. When you are finished, click Next.

Configure Pool/Server Wizard

SIP domains Eu
u

SIP domains in your environment:

«<Type here> Add

Remove |

< Back I Mesck = I Cancel |

5. On the Client Logon Settings page, shown here, select Some Or All Clients Will Use
DNS SRV Records For Automatic Logon, and then select Use This Server Or Pool To
Authenticate And Redirect Automatic Client Log Requests. The above choices require
that you have followed the steps given in the "Configuring DNS for Automatic Sign-In”
section earlier in this chapter. If you did not configure DNS for automatic sign-in, you
must select the Client Will Manually Configure For Logon option, and then click Next.

Chapter 9 Preparing the UC Development Environment 261

| Configure Pool/Server Wizard

Client Logon Settings Eu
1 i

% Some or all dients will use DKS SRY records For autamatic logon

[V Use this server or pool o authenticate and redirect automatic dient logon requests

Moke: To support automatic client logon, one server or pool must be designated for this
function,

" Clients will be manually configured Far lagon

< Back I et I Cancel |

6. On the next page, select the domains that the server supports for automatic sign-in,
and then click Next.

Configure Pool/Server Wizard

SIP Domains for Automatic Logon
Select SIF domains supporked by this server or pool for aukomatic dient logon. [l

SIP domains supported by this server or poal For automatic lagon:

< Back I Next > I Cancel

7. Unless you plan to test the external user access scenario, on the External User Access
Configuration page, select Do Not Configure For External User Access Now, as shown
here, and then click Next.

262 PartV Debugging, Tuning, and Deploying Unified Communications Applications

External User Access Configuration Eﬂ
u

Indicate below if vou are ready For external deployment and have external kopalogy
information.

" Configure for external user access now

Mote: Changes in edge topology must be updated internally For internal poal or server
routing and authorization to work

% Do not configure For external user access now

Mote: If wou want ko configure external user access later, wou can rerun this wizard
From the Office Communications Server administrative snap-in.

< Back I Mext = I Cancel |

8. On the Ready To Configure Server Or Pool page, review the settings that you specified,
and then click Next.

9. When the files are installed and the wizard is complete, select the View The Log When
You Click Finish check box, and then click Finish.

10. In the log file, under Action, expand Execution Action. In the Execution Result column,
verify that Success appears next to each task, as shown here. When you are done, close
the log window.

/2 Office Communications Server 2007 R2 Deployment Log - Windows Internet Explorer = |E||1|
% - IT,Q FiIe:,l’,i,l’C:,I’Users;’adm\n\strator.CONTOSO,I’AppDatafLDcaI,I’Temp,l’ConFig°f02DPoo|j |“}H X | ILive Search |}3 '|
{3 - B - @ - [shrage - Grrook - 7

12? el @OFFice Communications Server 2007 B2 Deployment Log

Ly e L
1.0ffice Communications
Server 2007 12

Office Communications Server 2007 R2 Deployment Log

Time Logged: Saturday, February 14, 2009 11:08:46 PM Co

Action Action Information Execution Resi

B Execute Action Success
Connect bo local WHT Success
Process global SIP domains SuCCess
Pracess client auto-lagon SIP damains far Add new client auto-logon SIP domain: contoso,com Success

this director

=
4 | 3

Computer | Prakected Mode: OFf HA00% -
+ i 4

As part of the Office Communications Server 2007 R2 installation, the Address Book Server
is configured automatically. In addition to the configuration steps described earlier, you can
configure additional Office Communications Server roles. For more information about server
roles, see the "Microsoft Office Communications Server 2007 R2" documentation at http.//
go.microsoft.com/fwlink/?LinkID=133608.

Chapter 9 Preparing the UC Development Environment 263

Installing and Configuring TLS/MTLS Certificates for Servers Running
Standard Edition

Office Communications Server requires that each host computer be configured with a trusted
server certificate to communicate with each other. For a trusted application, the application
hosting computer must also have a certificate installed. The certificates are required for
establishing Mutual Transport Layer Security (MTLS) connections among servers, between

a trusted application hosting computer and the server running Standard Edition, and for
establishing a TLS connection between a client and the server. These certificates are also
used by the Web Component Server role to support SSL over Hypertext Transfer Protocol
Secure (HTTPS), which is described in detail in the “Configuring IIS Certificates for the Web
Components Server Role” section later in this chapter.

To install the certificates that are required for TLS or MTLS on the computer that is running
Office Communications Server, perform the following steps:

1. Log on to the server on which you want to install the certificate by using an account
that has permissions to request a certificate from your CA and to install it on the local
computer.

2. Insert the Microsoft Office Communications Server 2007 R2 CD, and then click Standard
Edition; if you are installing from a network share, browse to the \Setup\Amd64\ folder
on the network share, and then double-click SetupSE.exe.

3. On the Deploy Standard Edition Server page, under Step 3: Configure Certificate, click

Run.
e:5 Microsoft Dffice Communications Server 2007 R2 Deployment Yizard 1[
Deploy Standard Edition Server
Run these kasks sequentially. Certain tasks are disabled when completed or nak ready ta run.
Standard Edition > Deploy Standard Edition ‘:«
-
Step 1: Deploy Server ™
Installs and activates the Front End and conferencing server components of Office Communications Server,
Prerequisites »
Help » +/ Complete Fun
Step 2: Configure Server
Collects deployment information For certificate, DMNS, and validation kasks,
Prerequisites »
Help » +/Complete | Run Again |
Step 3: Configure Certificate
Requests, processes, and assigns certificates for this server,
Prerequisites »
Help » —IRun
Step 4: Configure Web Components Server Certificate
Manual Install or configure a certificate in 113, This certificate is required to obtain the services that are provided by the web
Components Server,
Prerequisites »
Help »
Back || Exit |

264 PartV Debugging, Tuning, and Deploying Unified Communications Applications
4. On the Welcome To The Certificate Wizard page, click Next.

5. On the Available Certificate Tasks page, select the Create A New Certificate option, as
shown here, and then click Next.

0ffice Communications Server Certificate Wizard
Available Certificate Tasks
Select a task to run, l
u

Select From common tasks:

% Create a new certificate
= Process an offline certificate request and import the certificate

" Assign an existing certificate

Select from impart and expart tasks:
= Import a certificate chain from a .p7b file
= Import 3 certificate from a .pFx File

= Export a certificate to a .pfx file

< Back I Next = I Cancel |

6. On the Delayed Or Immediate Request page, select Send The Request Immediately To
An Online Certification Authority, and then click Next.

7. On the Name And Security Settings page, in the Name box, type the name of the
certificate that you want to use. In the Bit Length box, select the bit length to be used
for encryption. Use the default settings for the other options. Click Next.

Office Communications Server Certificate Wizard

Name and Security Settings
Your nevw certificate must hawve a name and a specific bit length. l
u

Type a name for the new certificate. The name should be easy for you ko refer ko
and remember,

Mame:

=]

The bit length of the encryption key determines the certificate's encryption strength.
The greater the bit length, the stronger the security. Howewer, a greater bit length
may decrease performance.

Eit length: I 1024 'I

[V Mark etk as exportable

™ Include client EKL in the certificate request

< Back I Next = I Cancel

Chapter 9 Preparing the UC Development Environment

265

8. On the Organization Information page, shown here, type the names of your organization

and organizational unit, and then click Next.

Office Communications Server Certificate Wizard

Organization Information
Your certificate must include infarmation about your organization that l
u

distinguishes it from other organizations.

Select or bype your organization's name and your organizational unit. This is bypically
the legal name of your organization and the name of wour division of department,

For Further information, consult the CA web site,

Crganization:

I contosa,com 'I

Organizational unit:

[ed =

< Back I Next > I Cancel

9. On the Your Server’s Subject Name page, shown here, in the Subject Name box,
type the FQDN or pool name of your server. Leave the default value in the Subject
Alternative Name box, and then click Next. For the server running Standard Edition,

the subject name should be the FQDN of the server and the Subject Alternative Name

(SAN) is not required.

Office Communications Server Certificate Wizard

Your Server's Subject Name
Subject names can cantain only alphanumeric characters and a leading wildcard l
(e.q., sip.contoso.com or *,contoso,com), u

Type the Fully Qualified Domain Mame of your server or Select Fram the list, If the
server is part of a Pool, vou should use the server's Pool Mame, IF these names
change, you will need a new certificate.

Subject name:

Type any alternate names for your server, Use comma bo separate multiple names.
Subject Name will be automatically appended if the Alternate Mame Field is non empty.

Subject Alternate Name:

Sip, COnkosa, com j

Specify whether the wizard should automatically add the FQDM of the local computer
a5 an alkernate name.

I | Butomatically add local machine name o Subject Al Rame

< Back I Next > I Cancel

City/Locality boxes, and then click Next.

10. On the Geographical Information page, fill in the Country/Region, State/Province, and

266

Part V Debugging, Tuning, and Deploying Unified Communications Applications

11. On the Choose A Certification Authority page, use the default option, and then click
Next.

12. On the Request Summary page, verify that the settings are correct, and then click Next.

13. On the Assign Certificate Task page, select Assign Certificate Immediately, and then
click Next.

14. On the Configure The Certificates Of Your Server page, click Next.
15. On the Certificate Wizard Completed Successfully page, click Finish.

Configuring IIS Certificates for the Web Components Server Role

The MTLS-required certificate for a server that is running Office Communications Server
Standard Edition is also used for the Web Components Server role. The certificate is required
for establishing SSL connections over HTTPS. However, you must use the Internet Information
Services (IIS) Manager to assign the certificate to the Web Components Server role. The

following steps explain how to configure the Web Components Server certificates by using
[IS 7 on Windows Server 2008:

1. Log on to the server that is running the Web Components Server as a member of

the Administrators group. In the example in this chapter, this would be the computer
running Office Communications Server Standard Edition.

2. Click Start, Administrative Tools, and then Computer Management.

3. Expand the Services And Applications node, as shown here, and then expand the
Internet Information Services (IIS) Manager node.

E:!:'Eomputer Management _Io 5'
File Action View Help

= n[F|H
_ .
= it OO (% soreee J&E S R 1@ -

Task Scheduler

E Event Viewer
] Shared Folders @,' H l | l&

Local Users and Groups --‘@j Stark Page

% Feeliability and Performance ..Qj QS (CONTOS0,admi
& Device Manager

=] E Storage

=7 Disk Management

Connect to localhost

Bl B Services and Applications 9o Connect ko a server...
\ Inkernet Information 5) Manager Connect ko asite...
fs) Routing and Remate Access) I _,I Connect to an application. ..
L4 Services

|
WML Contral
SQL Server Configuration Manager

115 Mews is disabled, click the Enable 115 Mews link to get: the most r

=
4 v 4] | »

4. In the Connections pane, expand Web Components Server.

5. Expand Sites, and then click Default Web Site.

Chapter 9 Preparing the UC Development Environment

267

6. In the Default Web Site Home pane, under IS, click Authentication, as shown here.

&5 Computer Management
File Action View Help

~=1o1x|

le=5EIHE

(@) Task Scheduler
2] Event: Viewer
fz] Shared Folders

&
%‘%Em;“t:rM?"algem”mm‘) @_@ [@ » ocs » sies » Defaubwebsic »
ystem Tools

had = N Eal| S

Local Users and Groups || Start Page

4y Device Manager

B £3 storage 8] Sites
{5 Disk Management

B By Services and Applications

Internet Information Se
Ty Routing and Remate Ac

% Services
WHMI Control
SGL Server Corfiguratic

0| G| K

% Reliability and Performal || OCS (CONTOSO|administrator
£} Application Pools

(€D Default Weh Site

0 Default Web Site Home

Group by: prea

& Explore

Compression

Directory Error Pages

= Edit Permissions...
Edit Site
Bindings...

@ Biasic Settings. .

Default View Applications
Document o

View Virtual Directaries

[l =D'l Manage Web Site ()

Hander w| || & Restart

P Start

[=1 Features view |2 Content View

B stop

Open Feature =

7. In the Actions pane, shown here, click Bindings.

ﬂtomputer Management

File Action Wew Help

=10l x|

= *[m |

& Computer Manage: @_@ [@ > ocs v skes >
= ﬁ’ System Tools

Default web Site »

E3] . (D Task Schec
E Event View,

[z Shared Fol iﬁ,‘ H lzl l&s

Local User: '@a Start Page
@
 Device Mar
=] E Storage
=9 Disk Manag
=] 5‘%& Services and A

Internet Ir
rs) Routing an

Ch Services
WML Contr
SOL Servel

Q| | i3 K

B[l Sites

Reeliability & ej Q5 (CONTOSO administ
Q Application Pools

&% Default web Ste

@ Default

Web
Site
Home
Group by:
-mal =
II5 =1

Authentication j

@ Features View

Open Feature

42 Explore
Edit Permissions. .,

Edit Site

Bindings.
Basic Sat[’j;s...

Wiew Applications

Wiew virtual Directories

Manage Web Site
Fj Restart

b Start

B stop

”~
()

8. In the Site Bindings dialog box, click Add.

9. In the Add Site Binding box, from the Type drop-down menu, click Https. Verify that IP
Address is set to All Unassigned. Verify that Port is set to 443. Select the certificate for
the Web Components Server in the SSL Certificate drop-down menu, as shown here,

and then click OK.

268 PartV Debugging, Tuning, and Deploying Unified Communications Applications

Add site Binding 2] x|
Type: 1P address: Part:
Ihttps j IAI\ Unassigned j |443
Host name:;

551 certificate:

I - | v
[8]4 I Cancel |

10. On the Site Bindings page, click Close to finish configuring the Web Components Server
certificate.

Starting Office Communications Server Services

Before starting the services, make sure that the changes made to AD DS have been replicated
and Windows Firewall is running. As part of starting the services, Office Communications
Server opens the required ports in the firewalls. If the firewalls are not running, Office
Communications Server does not open the required ports. For Office Communications Server
to open the required ports, you must add the necessary exceptions to the firewall. To add
the required exceptions automatically, complete the following steps while the firewalls are
running:

1. On the Deploy Standard Edition Server page, under Step 6: Start Services, click Run, as
shown here.

£ Microsoft Office Communications Server 2007 R2 Deployment ¥izard x|

Deploy Standard Edition Server
Run these kasks sequentially. Certain tasks are disabled when completed or nak ready ta run.
Standard Edition > Deploy Standard Edition

Help » +/Complete | Run Again |

Step 4: Configure Web Components Server Certificate
Manual Install or configure a certificate in 115, This certificate is required to obtain the services that are provided by the web
Components Server,

[t

Prerequisites »

Help »

Step 5: Yerify Replication
Manual Confirm the Active Directory changes have replicated before starting the services, Pl

Help »

Step 6: Start Services
Starts the services for this server, Some services may not successfully start until certificates have been assigned and
Active Directory replication has campleted.

Help » —IRun

Step 7: ¥Walidate Server Functionality
validates server configuration, connections, and end-user Functionality,

Prerequisites »

Help »

|

Back || Esit

Chapter 9 Preparing the UC Development Environment 269

2. On the Welcome To The Start Services Wizard page, click Next.
3. On the Start Office Communications Server 2007 R2 Services page, click Next.

4. On the last page of the Start Services Wizard page, select View The Log When You Click
Finish, and then click Finish. If the services do not start successfully, examine the log
file, fix the problem, and then restart the Office Communications Server services. Some
services might fail to start because they have not been installed or enabled; these
can be ignored safely. For example, the Monitoring Agent service fails to start when a
Monitoring Server role is not installed. You can also use Windows Event Log to examine
the cause of the failure.

Configuring Audio/Video and Web Conferencing

To configure or modify the configuration of A/V and Web conferencing, perform the
following procedure.

Note You do not have to complete the steps in this section if you plan to use only instant
messaging and presence.

For detailed instructions, see Microsoft Office Communications Server 2007 R2 documentation.

1. Log on to a server running Office Communications Server as a member of the
RTCUniversalServerAdmins group.

2. Click Start, Control Panel, Administrative Tools, and then Office Communications Server
2007 R2.

3. Right-click the forest node, point to Properties, and then select Global Properties, as
shown here.

270 PartV Debugging, Tuning, and Deploying Unified Communications Applications

It osoft Office Communications Server 2007 R2] =] 3
File ‘Window Help | = |
E Office Communications Server 2007 R | e L

om 'J,mceCommunlcatlons

Woice Properties
Conferencing Attendant Properties

Mew Window From Here

Refresh

Help
nline Technical Documentation:

Office Communications Server 2007 Technical Library

» Office Communications Server 2007 Administration Guide
= Office Communications Server 2007 SDK Documentation

Online Tools:

» Office Communications Server 2007 Resource Kit

» Office Communications Server 2007 Web Scheduler
Additional Online Resources

» Product support & Unified Cammunications blag & Downloads

TechMet & Public Farum & Developer center

4] | >l | i

4. To add or modify a Meeting policy, click the Meetings tab, and, from the Anonymous
Participants drop-down list, select one of the available options, as shown here.

0ffice Communications Server Global Properties i x|

Federation | Archiving | Call Detail Records |
General I Search I User Meetings | Edge Servers

Anonymous participants: |

[~ Policy settings

Global policy: Default Policy j

Palicy Defirition |
Default Policy

Policy 1 {High)

Policy 2 {Medium High)

Policy 4 {Medium Low)

Policy 5 {Low)

Add... | Edit... | Remaoye |

oK I Cancel | Apply | Help |

Chapter 9 Preparing the UC Development Environment 271

The Anonymous Participants options are as follows:

u]

Allow Users To Invite Anonymous Participants Allows all users to be able to
organize Web conferences that allow anonymous participants to join

Disallow Users From Inviting Anonymous Participants Prevents all users from
organizing Web conferences that allow anonymous participants to join

Enforce Per User Allows only some users to be able to organize Web confer-
ences that allow anonymous participants to join

Note By default, all users can create Web conferences that allow anonymous participants
to join unless you deny this privilege to organizers on an individual basis. For more infor-
mation about how to deny this privilege, see the “Configuring UC User Accounts” section
later in this chapter.

5. To add or modify a policy, do one or all of the following under Policy Settings:

u]

u]

To modify a policy, select an entry from the Policy Definition list (for example,
Default Policy), and then click Edit to modify the policy definition.

To add a new policy, click Add to specify the new policy definition.

6. In the Add Policy or Edit Policy dialog box, perform the following steps:

b.

C.

d.

For a new policy, type a name in the Policy Name text box. For an existing policy,
skip this step.
To set or change the maximum number of meeting participants, set an appropriate

integer value in the Maximum Meeting Size text box.

To enable or disable Web conferencing, select or clear the Enable Web
Conferencing check box, and make appropriate selections for other Web confer-
encing settings.

To enable or disable audio or video, select or clear the Enable IP Audio check box
and make appropriate selections for other A/V settings, as shown here.

272

Edit Policy x|

Part V Debugging, Tuning, and Deploying Unified Communications Applications

Palicy name: I Default Policy

Maximum meeting size:

—

¥ Enahble web conferencing

[V Use niative format For PowerPaint flles

—Iv Enable program and deskbop shating

Select settings For non-Ackive Directory Users:
¢ Mever allow control of shared programs or deskhop
" allow control of shared programs

" allow control of shared programs and desktop

Color depth: ITrue wolor {24 bit)

—Iv allow presenter ta record mestings

I Presenter can allow attendees to record mestings

¥ Enable IF audio

¥ Enable IP video

Enable PSTN conference diakin
™ PaTniconference dial-n requires passcods

]

Cancel

Help

e. Click OK.

7. On the Office Communications Server Global Properties page, click Apply.

8. After you have finished adding the new features or editing the enabled features by

each policy, decide which policy to apply to Web conferences that are organized by
users, and then select one of the following options:

0 To apply the same policy to all users, click Global Policy, and then click the name
of the policy that defines the features you want to enable for all users.

0 To apply different policies to different users, click Global Policy, and then click Use

Per User Policy.

9. Click OK.

1. Create a user account in AD DS.

3. Configure the user account for UC.

Configuring UC User Accounts

Users created in AD DS are not enabled automatically for Office Communications Server.
Enabling users for Office Communications Server requires that you complete the following
tasks in sequence:

2. Enable the user account for Office Communications Server.

Chapter 9 Preparing the UC Development Environment

To perform these tasks, you need to access the Active Directory Users And Computers
management console, which has been enabled for Office Communications Server. You
can meet these requirements by installing the Office Communications Server 2007 R2
Administrative Tools and then running the tasks on the domain controller.

The following sections explain in detail how to complete these steps.

Creating a User Account in AD DS

To create a user account in AD DS, perform the following steps:

1. Log on as a member of the DomainAdmins group to your AD DS domain controller
that has the Office Communications Server Administrative Tools installed.

2. Click Start, and then click Run.

3. In the Open box, type dsa.msc, and then press Enter.

4. Right-click the Users container or another organizational unit in which you want to

create users, click New, and then click User.

5. Complete the New Object — User Wizard, shown here, and click Next.

New Object - User

& Create in. contoso.com/Lsers

First narne: Adarn Initials: l—
Last name: IEarr
Full name: IAdam Bar

User logon name:

Iadam I@contoso.com

Uzer logon name [pre-windows 2000]:

|CDNTDSD\ Iadam

< Back I Mest > I

Cancel

6. On the following page, click Finish.

Enabling a User for Office Communications Server

After a user account is created in AD DS, it must be enabled for Office Communications
Server. To enable a user for Office Communications Server, perform the following steps:

273

1. Log on as a member of the RTCUniversalUserAdmins group on to your AD DS domain
controller that has the Office Communications Server 2007 Administrative Tools installed.

2. Click Start, and then click Run.

274 PartV Debugging, Tuning, and Deploying Unified Communications Applications
3. In the Open box, type dsa.msc, and then click OK.
4. Navigate to the Users folder or to the organizational unit where your users are.

5. Select one or more users that you want to enable for Office Communications Server,
right-click your selection, and then click Enable Users For Communications Server, as

shown here.
~ioix]
File Action Wiew Help
B EPEIEEEEE IR YR -
j Active Directory Users and Compy | Mame | Type | De_scriDtiUn =
] Saved Queries w Copy... ._
B E contoso. com 5 Admi Add ta a group... adi
J Builin 82, llows Disable Account P
% ;Umputirs ol S CertR Reset Password,., up
= Domain Controllers .
j ForeignSecurityPrincipals HDerie) pove., P
O %Dns.\\ | Gr
H2,0nstl Configure Communicabions Server Users, ., pe
H0oma| Delete Communications Server users. .. ra_ |
%Doma Move Cammunications Server users... E
%Doma Cpen Home Page 51
%Dnma Send Mail
%Doma
2 Enten All Tasks [
%Enter cut up
B6roug pefete up
E' Guest pename au
35 john
&?RRS 4 Properties hew
1] S — HS Help =i
|Moves the current selection to another arganizationalanit. T T

6. On the Welcome To The Enable Office Communications Server Users Wizard page, click
Next.

7. On the Select Server Or Pool page, shown here, select the Office Communications
Server that you want to place the users on from the drop-down list (in this example, the
server is ocs.contoso.com), and then click Next.

Enable Office Communications Server Users Wizard :

Select Server or Pool
Select the Standard Edition server or Enterprise pool to which the selected users u
1}

are ko be assigned.

Assign users not previously enabled for Office Communications Server to the
fallawing Standard Edition Server or Enterprise poal:

« Back I Next = I Cancel

Chapter 9 Preparing the UC Development Environment 275

8. On the Specify Sign-In Name page, select one of the following options to specify how
to generate the SIP address:

O To generate the SIP address from the user’s e-mail address, click Use User's E-mail
Address. Select this option only if you have configured an e-mail address for your
users.

0 To generate the SIP address from the user’s principal name, click Use
UserPrincipalName.

0 To generate the SIP address by using the user’s full name, click Use The Format:
<first name>.<lastname>@, and then select the Office Communications Server
domain.

0 To generate the SIP address by using the user’s SAM account, click Use The
Format: <SAMAccountName>@, and then select the Office Communications
Server domain.

Note If you need to configure SIP addresses by using a different format from the options
presented, you can enable users individually or build your own management tool to bulk-
enable users with the SIP address format of your choice.

9. On the Ready To Enable Users page, click Next.

10. On the Enable Operation Status page, verify that the users were enabled successfully,
and then click Finish.

Verifying Replication of Users Enabled for Office Communications
Server

After you enable users for Office Communications Server, make sure that the settings for
the newly enabled users replicate before you configure the users. To verify that user settings
have replicated, perform the following steps:

1. Log on as a member of the RTCUniversalUserAdmins group to your AD DS domain
controller that has the Office Communications Server 2007 R2 Administrative Tools
installed.

2. Click Start, Control Panel, Administrative Tools, and then Office Communications Server
2007 R2.

3. Expand the forest node and the pool node, and then click Users. For the server running
Standard Edition, the pool node corresponds to the server node.

4. Confirm that the users that you enabled for Office Communications Server are listed in
the details pane on the right, as shown here.

276

Part V Debugging, Tuning, and Deploying Unified Communications Applications

'f’ﬂ Microsoft Office Communications Server 2007 R2

File:

Window Help

=10
JREDE

[Display name_[51P URI

[tvpe |

E Office Communications Server 200 | | Enabled
[l £t Forest - contoso.com Enabled
[Enterprise pools M Enabled

=[] Standard Edition Servers

] Users
[] Assigned Conferer
EJ ocs.contoso. conm
[Archiving Servers
[Maonitoring Servers
[Unassigned users

[Unassigned ApplicationioILI
4 I I »

HEBK

Adarn Barr
BEnabIed john

sip:Administrator@contoso, com
siptadam@contoso. com

siprjohn@contoso.com

User
Liser
User

Configuring Users for Office Communications Server

After users are enabled and their settings replicated, you can configure them to be enabled
or disabled for federated access, remote access, public instant messaging, or Enhanced

Presence. When applicable, you can also enable or disable the supported archiving capabili-
ties for the users. To configure users for Office Communications Server, perform the follow-

ing steps:

1. Log on as a member of the RTCUniversalUserAdmins group to your AD DS domain
controller that has the Office Communications Server 2007 R2 Administrative

Tools installed.

2. Click Start, Control Panel, Administrative Tools, and then Office Communications Server

2007 R2.

3. Expand the forest node, expand the Standard Edition Servers node, select your Office

Communications Server computer, and then click Users.

4. From the list of users in the details pane on the right, select one or more users,
right-click the selection, and then click Configure Communications Server Users, as

shown here.

'f’ﬂ Microsoft Office Communications Server 2007 R2

~=lojxf
IRETE

| Display name | SIP LRI

[tvpe |

B Fle window Help
E Office Communications Server 200 | | Enabled
[l £t Forest - contoso.com Enabled

[Enterprise pacls

= [Standard Edition Servers
B i) ocs

| Users
[Assigned Conferer
EJ ocs.contosa,com

[Archiving Servers

] Monitoring Servers

[Unassigned users

[Unassigned Applicatiuni:lLI
4 I I »

Enabled
BEnabIad john

HEBK

Adam Earr

siptAdministrakor@conkoso. com

sipi

Delete users...
Move users...

Properties

Help

Lser

User

|ConFigure users' Office Cammunications Server settings

5. On the Welcome To The Configure Users Wizard page, click Next.

Chapter 9 Preparing the UC Development Environment 277

6. In the Configure Office Communications Server Users Wizard, on the Configure User
Settings page, select the check box next to the settings that you want to configure, and
then click Enable or Disable to configure those settings, as shown here. Then click Next.

Configure Dffice Communications Server Users Wizard

Configure User Settings
Select the external connectivity, enhanced presence, and archiving settings you ﬂ
u

want ta configure for the selected users,

1 Federaton ———————— 1 Remote user access
¥ Enable £ Disahl= % Enable £ Disabls
— Public IM connectivity ———— —¥ Enhanced Presence
{® Enable) Disatle + Enable
1| Archiveinternal messages ——————— | Archive federated messages
* Enable & Disabl= Enable ¥ Disable

User settings are enabled only if corresponding Global settings allow per user enforcement,

< Back I Next = I Cancel

Note If you did not configure the global properties on the Meetings tab to enforce
per-user settings, some of the options are not available because they are enforced by the
global policies you configured.

7. On the Configure Meeting Settings page, select the Organize Meetings With
Anonymous Participants check box, click Allow or Disallow to enable or disable this
option, and then click Next. The options may or may not be enabled, depending on the
existing global settings.

8. On the Configure User Settings page, under Meeting Policy (if it is enabled), select the
Change Meeting Policy check box. From the Select A Meeting Policy For The Users list,
select the name of the policy that you want to apply to the users, and then click Next.

9. On the Configure Enterprise Voice page, select the Change Enterprise Voice Settings
check box. Then select the Enable Voice check box (if you want to enable Enterprise
Voice and configure the Enterprise Voice policy that will be applied to the selected
users), and then click Next.

10. On the Configure Enterprise Voice Settings And Location Profile page, under the Voice
Policy list, select the name of the policy that you want to apply to the selected user or
users, if one is enabled, select Location Profile for selected users if you want, and then
click Next.

278 PartV Debugging, Tuning, and Deploying Unified Communications Applications

Note To configure a particular Enterprise Voice setting for a specific user, the corre-
sponding setting under Voice Properties must be configured to allow enforcement on a
per-user basis. For more information about Enterprise Voice, see the “Microsoft Office
Communications Server 2007 R2" documentation.

11. On the Ready To Configure User page, verify the status of each user configuration, and
then click Next.

12. On the Configure Operation Status page, verify that the operation is successful, and
then click Finish to complete configuring the selected user or users.

Validating Server Functionality

After Office Communications Server is installed, configured, and activated and the user
accounts are enabled and configured for UC, perform the following steps to validate the
deployed server functionality:

1. Log on as a member of the RTCUniversalServerAdmins group to the computer on
which Office Communications Server has been installed.

2. On the Deploy Standard Edition Server page of the Microsoft Office Communications
Server 2007 R2 Deployment Wizard, click the Step 7: Validate Server Functionality link,
as shown here.

&2 Microsoft Office Communications Server 2007 R2 Deployment Wizard x

Deploy Standard Edition Server
Run these kasks sequentially. Certain tasks are disabled when completed or nok ready ba run.

Standard Edition > Deplay Standard Edition
FETTF - F g

e

Step 4: Configure Web Components Server Certificate
Manual Install or configure a certificate in IS, This certificate is required to obtain the services that are provided by the Web
Components Server,

Prerequisites »

Help»

Step 5: ¥erify Replication
Manual Confirm the Active Directary changes have replicated before starting the services.

Help»

Step 6: Start Services
Starts the services for this server, Some services may nat successfully skart until certificates have been assigned and
Active Directory replication has completed.

Help v —IRun

Step 7: ¥alidate Server Function%ity

Validates server canfiguratia rnections, and end-user Functionality,

Prerequisites -
+ RTCUniversalServeradmins credentials

Help v

Back || Esit

Chapter 9 Preparing the UC Development Environment 279

3. On the Validate Pool Or Server Functionality page, shown here, run Steps 1-6
and complete the rest of the steps in the wizard to verify that the required Office
Communications Server roles are installed properly.

icrosoft Office Communications Server 2007 R2 Deployment Wizard

x

* Yalidate Pool or Server Functionality

These tasks validate the Functionality of a paal or server.

Standard Edition > Deploy Standard Edition » validate Server

[r]td

Step 1: Walidate Front End Server Configuration
Walidates server canfiguration, connections, and end-user Functionality. k

Prerequisites »

Help»

Step 7: ¥alidate Web Components Server Functionality
alidates Web Components Server configuration and connections.,

Frerequisices »

Help v

Step 3: ¥Yalidate Web Conferencing Server Functionality
Walidates Web Conferencing Server configuration and connections.

Prerequisites »

Help»

Step 4: ¥alidate Audio/¥ideo Conferencing Server Functionality
Validates Audio/¥ideo Conferencing Server corfiguration and connections.,

Frerequisices »

Help v

Step 5: Walidate Application Sharing Server Functionality
Walidates Application Sharing Server configuration and connections.

RN

| Back Esit |

Configuring Application Development Components

Most requirements of an application development component in the UC environment are
met if the corresponding SDK is installed correctly. This section focuses on the following APlIs,
which are the primary interest in this book, and highlights the configuration issues that are
not addressed by the SDK installation:

m Office Communicator Automation API
® UCMA Core
m UCMA Workflow

Office Communicator Automation API is distributed in the Office Communicator Automation
API SDK. The UCMA Core and UCMA Workflow are contained in the Microsoft UCMA 2.0
SDK. The SDKs for these APIs are available from the Download Center on MSDN.

280

Part V Debugging, Tuning, and Deploying Unified Communications Applications

Configuring the Office Communicator Automation API

To build an application by using the Office Communicator Automation API, you must have
the Office Communicator Automation API SDK installed on your development computer.
To run and debug the application, you must have Office Communicator installed on the
computer where your application runs.

Installing Office Communicator

Office Communicator is distributed as part of Office Communications Server. It can be
installed in various configurations and by using different methods. For more informa-

tion about how to install Office Communicator 2007 R2, see the “Deploying Office
Communications Server 2007 R2" topic in the “Microsoft Office Communications Server 2007
R2" documentation at http://go.microsoft.com/fwlink/?LinkID=133608.

Installing the Office Communicator Automation API SDK

To build applications using the Office Communicator Automation API, you must install the
Office Communicator Automation API SDK (Ocsdk.msi) on your development computer. You
can download the API SDK from the Download Center on MSDN at http.//go.microsoft.com/
fwlink/?linkid=143206. This SDK must be installed on computers running Windows 2000 SP4,
Windows Server 2003, Windows Server 2008, Windows Vista, or Windows XP SP2.

Generating Class and Interface 1Ds for Win32/C++ Office Communicator
Automation API Applications

When you build a Win32 C/C++ application by using the Office Communicator Automation
API, you must include several C/C++ header files in your project. These include Msgrua.h and
Msgrua_i.c. The latter contains the globally unique identifier (GUID) definition for the class

ID (CLSID) and interface ID (IID). If you do not include these files, your project does not build
because of unresolved link errors. In this case, you can create the required GUID definition
file by using the following MIDL command from the Visual Studio 2008 SDK console in the
directory where Msgrua.idl is located:

midl.exe /ms_ext /char unsigned /c_ext msgrua.idl /out c:\myOcAPIAppProj

Using a Visual Studio SDK console, you can invoke Midl.exe without specifying its full path.
These details are based on the assumption that you have Visual Studio 2008 installed on
your application development computer. If you still use Visual Studio 2005, you can open the
Visual Studio 2005 SDK console to execute this command.

Chapter 9 Preparing the UC Development Environment 281

The previous MIDL command produces the interface and class ID file, Msgrua_i.c, in the
specified output directory C:\MyOcAPIAppProj. You can then add the resultant Mgrua_i.c file
to your Win32/C++ application project. In Visual Studio, perform the following steps:

1. In the Solution Explorer pane, right-click Header Files, as shown here, and then click
Add.

olution Explarer - Solution 'UCAppDevBookD.. ~ & X
B8 EL

[Salution 'UCAppDevBaakDebugChapter (4 prajects)
= EE debuggingOcApilniiini2

Add 2
Cut

Copy
Paste

o
X fE i %=

Rernowve

Renarne

Properties
gULWerkflowipp

il

13
=
=
o

2. Select Existing Item.

3. Navigate to the folder where the Msgrua_i.c file is located, and then double-click the
file to add it to the project.

Configuring UCMA Core

There are two requirements that must be met before a UCMA Core application can be
developed, tested, and deployed. The first one is to enable TLS or MTLS connections
between the application and Office Communications Server. The second requirement is to
establish trust between the application and Office Communications Server. The steps that
you must take to meet these requirements are explained in the following sections. The
discussion also includes where to download and install the SDK.

Installing the UCMA SDK

You can install the UCMA SDK on computers that are running Windows 2000 SP4, Windows
Server 2003, Windows Server 2008, or Windows Vista. Before installing the UCMA SDK, make
sure that you have Visual Studio 2008 SP1 and .NET Framework 3.5 SP1 installed on your
application development computer.

To install the Microsoft UCMA 2.0 SDK, visit the MSDN Download Center at
http://go.microsoft.com/fwlink/?LinkID=139195 and follow the instructions.

282 PartV Debugging, Tuning, and Deploying Unified Communications Applications

To summarize, the installation is a two-stage process, briefly described as follows:

1. Download and run the UcmaSdkWebDownload.msi file. This installs the component
SDKs and other supporting resources on your local drive. By default, all of the files are
installed in the C:\Microsoft Unified Communications Managed API 2.0 SDK Installer
Package folder.

2. Go to the Installer Package folder on the local drive and navigate to the
SetupUCMASdk.exe file. Double-click this file to start the SDK installation. In the last
step of the installation, follow the Language Pack Download link to install at least one
speech language package. The language pack is required by the UCMA Workflow
application.

Enabling TLS or MTLS Connections

When a UCMA Core application communicates with Office Communications Server over TLS
or MTLS, the application host computer and Office Communications Server host computer
must have valid certificates installed. The certificates must be issued from a mutually
trusted CA. With TLS, the application host presents its certificate to Office Communications
Server before the connection can be established. The connection succeeds only if Office
Communications Server can validate the certificate that is presented by the application.
With MTLS, Office Communications Server also presents its certificate for the application

to validate. The connection succeeds only if both Office Communications Server and the
application can validate the certificates from one another. MTLS is required if the applica-
tion is trusted by Office Communications Server. TLS can be used when the application does
not have this kind of trust relationship. A UCMA Core client application can use either TLS or
MTLS; however, a UCMA Core server application must use MTLS.

On the server running Office Communications Server, the certificate can be created and
installed by using the Certificate Wizard in Office Communications Server. For more informa-
tion, see “Configuring Internal and External Interfaces and Certificates for Edge Servers” at
http://go.microsoft.com/fwlink/?linkid=143222.

On the computer that hosts the application, you must create or import a certificate and
install it in the Console Root\Certificates (Local Computer)\Personal\Certificates folder.

In addition, a root certificate must be installed in the Console Root\Certificates (Local
Computen\Trusted Root Certificate Authorities\Certificates folder on the server running
Office Communications Server. For more information about how to configure the certificates,
in the Microsoft Office Communicator 2007 R2 documentation, see the “Set Up Certificates
for the Internal Interface” topic at http://go.microsoft.com/fwlink/?linkid=143691 and the
“Set Up Certificates for the External Interface” topic at http.//go.microsoft.com/fwlink/
?linkid=143692.

Chapter 9 Preparing the UC Development Environment 283

Verifying That the Certificate Is Installed on the Application Hosting
Computer

A UCMA application using the server platform or TLS or MTLS must be trusted by Office
Communications Server. To enable this trust relationship, the application must present to the
server the hosting computer’s certificate, which must be issued by a CA common to both
the application hosting computer and the Office Communications Server hosting computer.
To ensure that the UCMA application runs successfully, make sure that the proper certificate

is installed. If the required certificate is not installed, you must then install the required
certificate.

To verify that the certificate is installed on the computer that hosts the UCMA application,
perform the following steps:

1. Log on as a local administrator to the computer where the UCMA Core application is to
be installed and run.

2. Open an MMC window, shown here, by typing mmc at a command prompt or by
clicking Start, Run, and then typing mmc.

3. On the MMC Console Root, click File, and then click Add/Remove Snap-In to add the
Certificates Snap-In, as shown here.

= Consolel - [Console Root] [I] 4|
ﬂ Ackion Wiew Favorites Window Help | =1=1 x|
|g New CtrkHh
— Open.. Chrl+O | -
| Save Chrl+3 Actions
Save As... s to show in this view, Console Root S

AddjRemave Snap-in... Chrl+M More Actions
Options. ..

1 \WRTCSnap2
2 Cii\Windows)System32| compmgmt

Exit

|Enablas yau to add snap-ins ta or remaove them From the snap-in cansale. ‘ |

4. In the Add Or Remove Snap-Ins dialog box, under Available Snap-Ins, double-click
Certificates.

5. On the Certificates Snap-In page, under This Snap-In Will Always Manage Certificates
For, select Computer Account, as shown here, and then click Next.

284 Part V Debugging, Tuning, and Deploying Unified Communications Applications

Certificates snap-in

6. On the Select Computer page, select Local Computer, as shown here, and then click
Finish. This adds the local computer to the selected snap-in list.

Select Computer

7. In the Add/Remove Snap-Ins window, click OK to display the certificates that are
installed on the computer.

8. In the Console Root, in the left pane, expand Personal, and then click Certificates to
display available computer certificates, as shown here.

Chapter 9 Preparing the UC Development Environment 285

= Consolel - [Console Root'Certificates (Local l:umputer)"-.,Persunal"-.,l:ertificat. i =] 5]
@ File Action Yiew Favorkbes Window Help | ==l
4= [== il = —
I EIEIEEN]
[Console Root Issued To = | Issued B Actions
I [GH Certificates (Local Co ﬁapm.contoso.com contoso-DC-CA | cartificates .

E] Personal
= More Actions

= s
[Trusted Root Cel
[7] Erkerprise Trust
[Intermediate Cet
[Trusted Publishe
7] Unkrusted Certifi
[Third-Party Roct
[Trusted People
[Certificate Enrall
(7] Smart Card Trust

« | i3 | 1 | i

|Contains more actions that can be performed. | |

Installing a Computer Certificate on a UCMA Application Host

If the computer certificate has not been installed, you can request one from your CA or
import one that you have requested previously. To request a new certificate and install it on
an application computer, perform the following steps:

1. In the Console Root, in the left pane, expand Personal, right-click Certificates, click All
Tasks, and then click Request New Certificate, as shown here.

7= Consolel - [Console RoothCertificates {Local Computer)Personal’ Certificate - | Ellll
@ File Action View Favorites Window Help |-|E‘|5|

I EEIEE

] Console Root Issued To_ = | Issued B Actions
= Eﬁl C_z?rtificates {Local Cc | %] app1. contasa.com contaso-DC-CA Certificates -
= [Personal
- = 2l Tasks More Actions 3
Yiew
New Window from Here Advanced Operations. . . L4
Mew Taskpad Wiew. ..
- Refresh
Expork List. ..
F Help
<« | el | i

|Request a new certificate From a certification autharity (CA) in your doma‘ |

2. In the Certificate Enrollment Wizard, on the Before You Begin page, click Next.

3. On the Request Certificates page, select Computer, and then click Enroll.

Enabling a Trusted Application

As a server application or middle-tier application, a UCMA Core application must be trusted
by Office Communications Server. This includes applications that use the ApplicationEndpoint
object. A trusted application has a mutual trust relationship between the application and

286

Part V Debugging, Tuning, and Deploying Unified Communications Applications

Office Communications Server. This trust relationship is enabled when a trusted service entry
(TSE) is created in AD DS for the application. This trusted application is represented by an
Active Directory Contact object and is identifiable by its SIP Uniform Resource Identifier (URI)
and the application Globally Routable User Agent URI (GRUU).

In general, you may need to be a member of the Domain Admins security group to create

a TSE for your application. This may not be practical if you are working in a large enter-

prise network. Fortunately, the UCMA Core SDK provides an application provisioning tool
(ApplicationProvisioner.exe) that you can use to enable an application to be trusted by Office
Communications Server. However, you still have to belong to an RTCUniversalServerAdmins
group to perform this operation.

The application provisioning tool is installed as part of the installation of the UCMA Core
SDK. By default, this application project is located in the C:\Program Files\Microsoft

Office Communications Server 2007 R2\UCMA SDK 2.0\UCMACore\Sample Applications\
Collaboration\ApplicationProvisioner directory. Before you can use the application provision-
ing tool to make your applications trusted by Office Communications Server, perform the
following steps to build the application provisioning tool executable:

1. Make sure that your domain user account is a member of the
RTCUniversalServerAdmins group before you run ApplicationProvisioner.Exe.

2. Click Start, All Programs, Microsoft Visual Studio 2008, Visual Studio Tools, and then
Visual Studio 2008 Command Prompt.

3. At the command prompt, change the directory to the ApplicationProvisioner solution
directory where the ApplicationProvisioner.sin file is located, and then run MSBuild
against the solution. This builds the ApplicationProvisioner.exe image.

For example, the following commands are based on the assumption that the applica-
tion solution folder is in the default installation path and the application executable is
output to the Bin\Debug subdirectory.

cd c:\program files\Office Communications Server 2007 R2\UCMA SDk 2.0\UCMACore\Sample

AppTlications\Collaboration\ApplicationProvisioner

MSBuild
After the Application Provisioner executable (ApplicationProvisioner.exe) is built, perform
the following steps to enable a UCMA application that is trusted by Office Communications
Server:

1. Run the ApplicationProvisioner.exe executable as a member of the RtcUniversalServerAdmins
group to create a Contact object for the application (in this case, the application is
named myUcmaApp). In the Application Provisioner dialog box, shown here, in the
Application Name box, type myUcmaApp, and then click Find Or Create.

Chapter 9 Preparing the UC Development Environment 287
Application Provisioner EI@
Application name: myllcmatpp
Application
Application poal: Add..
Contacts: Servers:
Add.. Remove... Edi... Add... Remove.. e

dialog box, shown here, select or specify the

2. If the application name myUcmaApp does not exist, in the Create Application Pool

following, and then click OK:

0 From the OCS Pool Fqdn drop-down list, select the FQDN of your Office
Communications Server host.
0 In the Application Server Fqdn text box, specify the FQDN of the computer hosting
this application that is to be trusted by the Office Communications Server host.
@ In the Listening Port input field, specify a port number for the application.
Application name: Im}.u cmatpp
OCS Paol quﬂ. Iocs.contoso.com j
Listening port: IW
Application server Fodi: |app1.contoso.con'| ™ Localhost
™ Load balanced application
Load balancer Fqdn: I
Cancel

open the Create Contact dialog box.

3. In the Application Provisioner dialog box, shown here, under Contacts, click Add to

Application Provisioner !E E
Application name: ImyLlcmaApp Find or Create...
—myllcmatpp

Application poal: Iaplﬂ contoso. com j Add..
Contacts: Servers:
appl.contozo.com
Add... Femove. . Edit:.. Add,. Femoye.. e

288 PartV Debugging, Tuning, and Deploying Unified Communications Applications

4. In the Create Contact dialog box, enter the contact’s SIP URI, display name, and TEL
URI for the application. These values are entered in the Contact Uri, Display Name, and
Phone Uri boxes, respectively, as shown here. If specified, the value entered for the TEL
URI must be unique. Using a TEL URI that is already assigned to another contact causes
an exception to be thrown.

Create Contact =] B3

Contact Uri |gip;mpU cmatpplEicontaso. com

Display name: IMy Ucma &pp
Phone Ur: ||

0CS Paol Fgdn: Iocs.contoso.com |

™ Enabled for federation

" Enabled for public IM connectivity

Cancel

5. Click OK to have the newly specified Contact object created and added to AD DS and
to return to the Application Provisioner dialog box.

6. In the Application Provisioner dialog box, the specified application should now appear
under Contacts, as shown here.

Application Provisioner !EI E
Application name: ImyLlcmaApp Find or Create. .. |
— mylcmadpp

Application pool Iapp‘l contoso.com j Add...
Contacts: Servers:
add. | Remove. | Edt. | pcd. | Remove. | wiew. |

7. To view the application’s GRUU, in the Application Provisioner dialog box, under
Servers, double-click an application server that is listed there. Then select and copy the
GrUU value that you want to view.

Yiew Server |_ (O] x|
Server Fodn: E contoso.co | Localhost
Listering paort: Igm 3
Gruu:: Isip:app‘l .contoso.comi@ contoso. com;gruu;opaque=srvrmyLlom:

Cence

Chapter 9 Preparing the UC Development Environment 289

In this example, the complete value of the application’s GRUU is sip:appl.contoso.com@
contoso.com;gruu;,opaque=srvr:-myUcmaApp:GtUqdL83qkGvVYLhCt2AKAAA. In addi-
tion to the application type, a trusted application can be identified by a combination of
the application’s host computer name and the port number. Therefore, the following
string is also a valid GRUU for this application: sip:appl.contoso.com@contoso.
com,gruu;opaque=srvr: appl.9901:GtUqdL83gkGvVYLhCt2ZAKAAA. The difference is
shown by the substring that is in bold type.

8. To verify that the specified Contact object was created in AD DS, open Active Directory
Users And Computers, and then click the Search button on the toolbar, as shown here.

~iBix]
File Action Wiew Help
Lo I = ENTERENEN I E SR I
;tl\;ea\lj);r:g&:fi;sers and Compy Na:Zam Iu\iu d Ubjec:san:ructive Directory Domain Serlvirc\as. |PUL;
B & contosa.com 2, administrator User Built-in accaunt
(2] Buitin Alice: User
J_ Corputers %nllowed RODC Password Replication Group Security Group - Damain Local — Members in this
% Dormain Contrallers B2, Cert Publishers Security Group - Domain Lacal Members of this
% ForeignSecurityPrincipals F&Deniad RODC Password Replication Group Security Group - Domain Local — Members in this
] Users %Dnsndmins Security Group - Domain Local DS Adminiskrat
%DnsUpdateProxy Security Group - Global DMS clients who
%Dumain Admins Security Group - Global Designated adm
S.S,Domain omputers Security Group - Global Al workskations
%Domaln Controllers Security Group - Global All domain contr
_-O&Dnmain Guests Security Group - Global All domain gues!
82, Domain Users Security Group - Global Al domain users o
ey o

9. In the Find Users, Contacts, And Groups dialog box, in the In text box, specify Entire
Directory as the search scope. In the Name box, enter the display name of the Contact
object that you just created (“My Ucma App”), as shown here, and then click Find Now.

& Users, Contacts, and Groups
File Edit Yiew Help

Find: |Users, Contacts, and Groups j In: I@ Entire Directary j Browse... |

Users. Contacts. and Groups | Advanced |

Mame: I My Ucma App
Stop |
Description: |
Clear all |

Search results:

Hame Type Drescription
[E=Ha451601B-A390-410F-B955-DEFE3,,. Contact

4] |

|1 item(s) Found

alE

290 PartV Debugging, Tuning, and Deploying Unified Communications Applications

10. Verify that the Contact object shown in the Search Results pane is correct by double-
clicking the result entry.

{84516D1B-A39D-410F-A958-DEF63D0D8TB1} Properties
tember Of I Object I Sectrity I
General | Address I Telephones I Organization

{8451601B-4390-410F-4358-DEFE3D0DETE 1}

First name: || Iitials: I

Last name: I

Dizplay name: IM_I,I Uerma App

Drescription: I

Offige: I

Telephone number: | Other... |

E-mail: I

‘wieb page: I Other |

Ok I Cancel | Apply |

11. Verify that the Contact object is a member of the RTCUniversalReadOnlyGroup and
RTCUniversalWriteGroup groups that have Read and Write permissions, respectively. If
not, click the Member Of tab, as shown here, and then click Add to add the contact to
these two groups.

{84516D1B-A39D-410F-A958-DEF63D0D87E1} Properties [<]
General | Address I Telephones I Organization I
Member OF I Obiject | Security
Member of:

Mame | Active Directory Folder
RTCUniverzsalGlobalReadOnlyGroup contoso.comd/U sers
RTCUniversalGlobafwriteGroup contoso. com/l sers

d | o

Eiemayve |

Ok Cancel Apply

Chapter 9 Preparing the UC Development Environment 291

Configuring UCMA Workflow

UCMA Workflow extends the Windows Workflow Foundation to UCMA. The core require-
ments are the same as those of the UCMA Core, the details of which are presented in the
“Configuring UCMA Core” section earlier in this chapter.

In addition, the UCMA Workflow activities require that .NET Framework 3.5 is installed on the
application development computer. Visual Studio 2008 automatically installs this component.

UCMA Workflow is installed as part of the UCMA SDK installation. There is no separate
download.

Installing a Language Pack

UCMA Workflow supports speech-enabled activities, such as speech recognition and
text-to-speech. This requires a language-specific engine and other related resources that
are available in the Speech Server Language Pack for the language that you plan to use. The
language packs are distributed as part of the Speech Server. You must install at least one
language pack before you use the API. You can also download language packs individually
from MSDN by following the link provided in the last step of the UCMA SDK installer.

Summary

This chapter divided the UC development environment into two categories of components:
infrastructure components and application development components. Configuring, activat-
ing, and administering infrastructure components is the responsibility of a system administra-
tor unless it is delegated to someone else. Setting up application development components
is the responsibility of the application developer, who may not be a system administrator.

To develop a UC application by using a UC API, you must have the corresponding SDK
installed on the development computer. To download and install the SDKs, see the links
provided in the next section.

To run an Office Communicator Automation API application, Office Communicator 2007 R2
must be installed locally. To run a UCMA Core or UCMA Workflow application as an Office
Communications Server trusted service, you can use the ApplicationProvisioner tool provided
as a sample application in the UCMA Core SDK.

If you want to set up an autonomous development environment, this chapter discussed what
is required to set up and administer the most basic infrastructure components based on
Office Communications Server 2007 R2 Standard Edition.

292 PartV Debugging, Tuning, and Deploying Unified Communications Applications

Additional Resources

Microsoft Office Communicator 2007 SDK (http://go.microsoft.
com/fwlink/?LinkID=141199)

Microsoft Unified Communications Managed API SDK (http.//go.microsoft
.com/fwlink/?LinkID=127908)

“Unified Communications Managed API 2.0 Core SDK Documentation”
(http://go.microsoft.com/fwlink/?LinkID=133571)

Microsoft Office Communications Server 2007 R2 Resource Kit (http://go.microsoft
.com/fwlink/?Linkld=141203)

“Microsoft Office Communications Server 2007 R2"” documentation (http.//go.microsoft
.com/fwlink/?LinkID=133608)

“Configuring Internal and External Interfaces and Certificates for Edge Servers”
(http://go.microsoft.com/fwlink/?linkid=143222)

“Prepare Windows for Setup” (http://go.microsoft.com/fwlink/?linkid=143299)

“Deploying Edge Servers for External User Access” (http.//go.microsoft.com/
fwlink/?LinkID=143690)

Microsoft Knowledge Base article 953990: “AV at mscorwks!SetAsyncResultProperties”
(http://go.microsoft.com/fwlink/?linkid=143318)

Microsoft Knowledge Base article 953582: "You may be unable to install a program
that tries to register extensions under the IQueryForm registry entry in Windows Server
2008 or in Windows Vista" (http://go.microsoft.com/fwlink/?Linkld=131392)

IQueryForm Registry Entry (http.//go.microsoft.com/fwlink/?Linkld=131392)

Chapter 10
Debugging a Unified
Communications Application

This chapter will help you to:

B Understand the general framework for debugging a Unified Communications (UC)
application.

B Understand how to debug or troubleshoot a Microsoft Office Communicator
Automation API application.

B Understand how to debug or troubleshoot a Unified Communications Managed API
(UCMA) Core application.

B Understand how to debug or troubleshoot a UCMA workflow application.

Debugging in the UC Platform

Just as with the development of any application, errors can occur when you develop UC
applications. This includes the errors discussed in this book. Errors can be caused by invalid
user input, incorrect API calls, or server and network issues. To help debug programming
errors and troubleshoot failure conditions, all UC APIs support a mechanism for reporting
errors and failures. This reporting occurs in the form of exceptions that are thrown during run
time, or trace statements that are logged to log files. The UC platform also provides tools for
parsing and viewing the logs.

In an Office Communicator Automation AP, errors are reported as HRESULT values or
COMEXxception instances. Trace statements are written to one or more log files or logged to
the Windows Event Log. In the UCMA Core and the UCMA Workflow, errors are reported
as Exception, together with its derived classes that are supported by the Microsoft .NET
Framework. In addition, the Microsoft Office Communications Server 2007 R2 Logging Tool
(OCSLogger.exe) can be used to enable tracing on the server and to analyze the network
traffic generated by applications that use these APIs to communicate with the server.

Sources of Errors and Failures

Errors and failures can generally be classified as compile-time errors or run-time exceptions.
Common compile-time errors occur when, for example, a compiler detects a type-checking
error in the source code. These errors can be caused by typographical errors in the programming
statements, use of undefined or mismatched types, or incorrect calls to members of a type;

293

294

Part V. Debugging, Tuning, and Deploying Unified Communications Applications

for example, setting a value on a read-only property. With modern compilers, such errors are
easily caught and making the corrections is usually straightforward.

Run-time exceptions occur during the execution of an application. The source of these errors has
a wider scope and the resolution is frequently more involved. Providing incorrect user account
information that prevents a user from logging on successfully is one example of a run-time error.
Another example, although less common, is linking to a reference or dependent assembly that

is formatted incorrectly. This prevents the assembly from loading and causes the application to
end prematurely when a call is made to the library. For example, a 64-bit application must link
and load the 64-bit Office Communicator Automation API library assembly. Otherwise, a run-
time exception of the BadImageFormatException type is thrown at the first call to the API.

Usually, run-time exceptions are caused by defects in application logic, misunderstandings

of the behaviors of the underlying API, or failures to follow expected programming patterns.
For example, in any UC application, an endpoint connection must be established to Office
Communications Server before it can function. Calling properties or methods on an endpoint
that is not enabled throws an exception.

Run-time exceptions can also be traced to unexpected network disruptions caused by the
server being unavailable or heavy network traffic. All of this can make debugging run-time
errors a more challenging task. In addition, the asynchronous nature of the UC applications
adds more complexity to the application interaction.

Error Codes and Exception Classes

In a native Win32/COM API such as Office Communicator Automation APl and Unified
Communications Client API, errors and failures are described by error codes. Some of these
APIs may provide a descriptive message in addition to the error code. In Component Object
Model (COM), an error code is represented by an HRESULT value, which is a 32-bit integer
defined by a COM component or API. Each number identifies a specific error or warning and
is associated with a named constant that communicates more user-readable information. As
an example, Table 10-1 shows some HRESULT values with the corresponding named constants
that are defined in Office Communicator Automation API.

TABLE 10-1 Examples of Error Codes Defined in Office Communicator Automation API

HRESULT Named Constant Error Condition

0x80004005 MSGR_E_FAIL Unspecified failure

0x81000301 MSGR_E_CONNECT Failed to connect

0x81000302 MSGR_E_INVALID_SERVER_NAME Failure due to invalid server name
0x81000303 MSGR_E_INVALID_PASSWORD Failure due to invalid password

For a complete listing of Office Communicator Automation API error codes and the
corresponding named constants, see the “Microsoft Office Communicator Automation API
Error Codes” documentation at http://go.microsoft.com/fwlink/?linkid=143321.

Chapter 10 Debugging a Unified Communications Application 295

When a Win32 or COM APl is called from a .NET Framework application, the COM error is
wrapped in a COMException class by the COM Interop service. The ErrorCode property of
the COMException class represents the original HRESULT value. The Message property holds
the error description, if any, that is supplied by the API. For more information about the
COMException class, see the section titled "Additional Resources” later in this chapter.

The Office Communicator Automation API is built on top of Microsoft Office Communicator,
which in turn is built on top of the Unified Communications Client APl (UCC API). When
troubleshooting an Office Communicator Automation APl application, see the "Unified
Communications Client API Error Codes” documentation at http://go.microsoft.com/fwlink/
?linkid=143308.aspx and the “Microsoft Office Communicator Automation API Error Codes”
documentation at http.//go.microsoft.com/fwlink/?linkid=143321 for an HRESULT value.

UC also supports managed APIs, such as Unified Communications Managed APl (UCMA).
UCMA consists of three parts: the UCMA Core, the UCMA Workflow, and UCMA Speech.

For these APIs, errors and failures are described by .NET Framework exception classes. A
managed application can use a try/catch code block to handle the run-time exceptions by
catching and handling one or more exceptions thrown by the managed APl and the underlying
framework components. Exception classes provide more debugging information than what

is returned through the HRESULT type of error code. In addition to the error message, an
exception class provides a call stack that leads to the origin of the exception. The call stack is
exposed as the StackTrace property on the exception class.

In the .NET Framework, all exception classes are derived from the System.Exception type.

In the UCMA, the object model of the exception classes starts from the RealTimeException
class. This is the base exception class for other exceptions specific to this APl. More specific
exception classes cover operation-specific error and failure conditions. For example, a
ConnectionFailureException instance indicates that an application did not connect to

the server. The RegisterException class encapsulates an error that occurred in an attempt

to register or unregister a user. For a complete list of the exception models, see the

“Unified Communications Managed APl 2.0 Core SDK Documentation” at http://go.microsoft
.com/fwlink/?linkid=126312.

Session Initiation Protocol Error Codes

Another source of run-time errors reflects the exceptions that are encountered in network
operations. Such exceptions are recorded and reported, as part of the signaling, by using

the error codes, also known as the response codes, that are defined by the Session Initiation
Protocol (SIP). For example, an attempt to invite an offline contact to a conversation results in a
failure in the SIP dialogue. The following is a summary of the different SIP response code levels:

B 1xx These provisional or informational responses indicate that a request has been
received and is being processed. For more information, see http.//www.voip-info
.org/wiki/view/SIP+response+class1.

296 PartV Debugging, Tuning, and Deploying Unified Communications Applications

B 2xx These successful responses indicate that a request is received, accepted, and
processed successfully. For more information, see http://www.voip-info
.org/wiki/view/SIP+Response+class2.

B 3xx This class of responses indicates that a request is redirected because further
action is needed to complete the request. For more information, see http://www
.voip-info.org/wiki/view/SIP+Response+class3.

B 4xx This class of responses indicates client errors that the request contains syntactic
errors or cannot be processed by the server. For more information, see http.//www
.voip-info.org/wiki/view/SIP+Response+class4.

B 5xx This class of responses indicates server errors that a server is unable to
process an apparently valid request. For more information, see http://www.voip-info
.org/wiki/view/SIP+Response+class5.

B 6xx This class of responses indicates global failures that no server is able to process
the request. For more information, see http.//www.voip-info.org/wiki/view/
SIP+Response+classé.

For more information about the SIP error codes, see RFC 3261, “SIP: Session Initiation
Protocol,” at http://go.microsoft.com/fwlink/?LinkID=143940 and “[MS-SIP]: Session Initiation
Protocol Extensions” at http://go.microsoft.com/fwlink/?linkid=143292.

Tracing

In addition to error codes and exceptions, the UC platform supports the ability to log the
execution state of an application. The records may contain errors, warnings, events, or
general information. They can be logged in one or more text files that can be examined

by using a text editor or the Office Communications Server 2007 protocol analysis tool
(Snooper.exe). Snooper is a tool that enables you to examine log files more conveniently. You
can also enable Event Tracing for Windows (ETW) for a UC application. ETW tracing is logged
into one or more .etl files. These files can then be used by Microsoft Technical Support for
troubleshooting.

Office Communicator can be used to enable tracing that is logged to text files or .etl files.
You can use the Office Communications Server Logging Tool (OCSLogger.exe) to enable
tracing and to analyze the logs for applications that use the UCMA Core and the UCMA
Workflow. For more information about how to enable tracing for various UC applications,
see the sections titled “Debugging Office Communicator Automation API Applications” and
"Debugging UCMA Core Applications” later in this chapter.

While error codes and exceptions can help you to determine errors on the application call
stack, tracing is especially useful for uncovering failures that originate from the protocol stack.
For example, an asynchronous application may not execute as expected if it mishandles an
event or misses handling it altogether. In this case, the application may not break; instead, it

Chapter 10 Debugging a Unified Communications Application 297

may appear nonresponsive because the protocol requires that the event be handled properly.
Examination of trace logs can help uncover such problems even when no error is reported or
no exception is thrown.

Debugging Tools for UC Applications

The following sections focus on three tools that you can use to debug or troubleshoot UC
applications:

B Visual Studio Debugger This is part of the Microsoft Visual Studio development
environment and can be used to trace the call stack of an application. You can use
this tool to follow the execution of an application step by step from the beginning of
the application or from a preset breakpoint. The execution can also jump to the next
breakpoint, followed by more step-by-step examination. This procedure continues until
the application exits normally, an error is reported, or an exception is thrown.

B Snooper This tool (Snooper.exe) can be installed from the UCMA Software
Development Kit (SDK) or the Office Communications Server Resource Kit. It can be
used to parse and view tracing log files. This is especially useful when there is a need
to follow the SIP protocol stack. The information displayed in Snooper can help you
understand the underlying network topology and error or failure conditions that are
detected by the server or caused by nonfunctioning remote partners.

B OCSLogger The Office Communications Server Logging Tool (OCSLogger.exe) is
available from the UCMA SDK. This tool is required to enable tracing for a UCMA
application and to analyze the resulting logs. For more information about how to
use this tool, see the section titled “Debugging UCMA Core Applications” later in this
chapter.

Using Visual Studio Debugger

Visual Studio Debugger is a powerful debugging tool that can be used to debug any UC
application. This tutorial is provided for those who are new to Visual Studio. If you are an
experienced Visual Studio user, you may want to skip it.

Using Visual Studio Debugger to debug an application involves performing the following
steps:

1. Set a breakpoint.

To set a breakpoint, select a code statement for which you want to set the breakpoint,
and then press the F9 key on the keyboard. (Note that the F9 key is a toggle switch;
repeatedly pressing it turns a breakpoint on or off for the currently selected statement,
as shown by the highlighted code statement in the following screenshot).

298 PartV Debugging, Tuning, and Deploying Unified Communications Applications

‘)SdebugOcApiApp.Forrnl - v Forml_Load(object sender, EventArgs) -

this. listViewlontacts.Colums. idd ("3tatus") ;

// Pre-requisite: must have added reference to ComunicatoriPI nawmest
/¢ To enforce platform-compatibility, use the following command sedque

i Add Reference->CON->"Nicrosoft Office Comkunicacor 2.0 APIT

/¢ The following comwand sequence way work only for 32-hit app H
I idd Reference-»Browse->c:hprogram files (x86)4WMNicrosoft Office
Iy —»CommunicatoriPI.DLL

/{ Using the above sequence for a 64-bit app will result in an except
/¢ the BadImageFormException type thrown.

i = Iz rLPI. ¥
wyQC. Ondignin += new ConpunicatorAPI.DHessengerEvents OndioninEyve
my0C, Ondignout += new CommunicatorAPI.DHessengerEvents_OnSignoutl
i
cateh (BadlmageFormatExdception ex)
{
gtring meg = ex.Message;
Application.Exit():

Normal execution of the application stops at the beginning of the statement that is
marked by a breakpoint. Alternatively, you can set a breakpoint by right-clicking the
target statement, clicking Breakpoint, and then clicking Insert Breakpoint, as shown

here.
% debugOcApitpp.Forml + G9Forml loadlohiect sender FuentfArgs €)
|_J-:| private void Forml Load{oblject sender, View Designer
{ Refactor 3
this.listViewContacts.Clear () Organize Usings >
this.listViewContacts.Viey = View.D
this.listViewContacts.Ful lRovielect E—i Create Unit Tests...
thiz.listViewContacts.Sorting = Sor L'E]_) Insert Snippet...
this.list¥ViewContacts.Columns. Ldd ("] s d With
= urround With...
thiz.listViewlontacts.Columns. Rdd (7| *
8 | Go To Definition
/4 Pre-—reguisite: must hawve added r Find All References it or API natnespace.
/4 To enforce platform—compatibilit nimand Sermiehce
IF Add Reference-»COM-»>"Microsof Breakpoint ¥ | @ Insert Breakpoint
/4 The following command secquence 1 sz | RunTo Cursor ‘ e e e
i 2dd Reference->Browse-:c:'ipro _—
i —»Communicacor ap| & | Cut
/4 Using the above sequence for a 6 B3 Copy in an exception o
the BadlmageFormException type ¢
£ o 4 v | Paste
LYy AN A RS b |
1 Outlining >
myQC = new ComunicatorAPIl.Nesselger Ty
myoC . OnFignin 4= new CommunicatordAPI. DMessengerEvents OniigninEwentHern
a m

2. Run the application to a breakpoint.

To run the application to the next breakpoint by using Visual Studio Debugger, press
the F5 key on the keyboard. Alternatively, you can click Debug on the Visual Studio
toolbar, and then click Start Debugging, as shown here.

Chapter 10 Debugging a Unified Communications Application 299

" UCAppDevBookDebugChapter - Microsoft Visual Studio (Administrator)

File Edit View Refactor Project Build | Debug | Data Tools Test Window Help
@'J'EE@|?@%J|:1' |Windows b lrms =
HIES I | i= = |D gl P Start Debugging F5
E‘ Forml.«s]/me]_G [Design] rStart Page]

Start Without Debugging Ctrl+F5

thi=.listViewCq New Breakpoint y ing:
this.listViewCo P

. . X Delete All Breakpoints Ctrl+Shift+F9
this.listViewCo

(| Disable All Breakpoints
/¢ Pre-requisite: must have added reference LO Communicator
/¢ To enforce placform-compatibilicy, use the following oo

E S | Attach to Process..,

g "ﬁdebugOcAplApp.mel L; nder, EventArgs
@ - - Exceptions... Ctrl+D, E
m f—] private woid Formil |

E { %E | StepInto F11
E £his. 1iStViewCq [=| step Over F10
jg this.listViewCq -

i this.listViewCq Toggle Breakpoint 3
g

=3

=

e Ldd Feference-»>COM->"Microsoft Office Communicator Z.
£¢f The following command sequence wmay work only for 32-bit
I idd Reference->Browse-»c:hprogram files (x86)%Microso
£ —>CommunicatorAPI.DLL

3. Step through the code execution.

From any breakpoint, you can step through application execution one statement at
a time by pressing either the F10 or F11 key. When the statement involves a call to a
method or property that is defined in the running application, pressing the F10 key
causes the application to step over the member call, and pressing the F11 key causes
the application to step into the member call. You can also complete these actions by
using the Debug menu, as shown in step 2.

4. Examine execution states at each step.

As you step through the code, the execution stops and the execution context, including
variables and constants, can be examined. Rest the mouse pointer on a variable of
interest to open a tooltip that displays the value of the variable at the current execution
step, as shown here.

CollasborationPlatform zollakbP lat,forr& = ar.lsyholtate as CollaborstionPlatform:
try @ collabPlatForm | {Microsaft. Rtc. Collaboration, CallabarationPlatForm} |

{

In this example, the tooltip shows the value of the variable collabPlatform, which is an
instance of the CollaborationPlatform type of the UCMA Core. Expanding the tooltip
window reveals the member values of the platform object.

collabPlatforn. EndStarcup (ar) ;

Conzole|E @ collabPlatform | {Microsoft. Ric Collaboration. CollaborationPlatform} |
} T B activeGruu Q-"
": ActivelisteningIPEndpoint nll

7 AllowedauthenticationPratocal NHm | Kerberos
7 ApplicationUserAgent A = "UCMASampleCode”
/¢ Connect® 2T ConnectionManager {Microsoft, Rtc. Signaling. RealTimeClientConnectionManager
" 2 CurrentMessageThrottlingCount 1}
Clientck %

" =7 Defaultudio¥ideoProviderEnabled true
£ TODO (1mp InstantMessagingSettings {Microsaft. Rtc, Callaboration. InstantMessagingFlowTemplate)

catch (Connect
i

Console. W B 2 ListeninglPAddress null
¥ 27 Localhost Q-
. [Transpork Tls
finally 143 static members

{ @ Mon-Public members

300

B

Part V Debugging, Tuning, and Deploying Unified Communications Applications

More Info Visual Studio Debugger provides other ways for you to examine the execution states
as well. For more information, see Visual Studio Help.

Using Snooper

Snooper is used to parse and display logs. Logging can be enabled by using Office
Communicator or OCSLogger. Figure 10-1 displays the output produced by Snooper

as it traces a SIP dialogue in a failed invitation from one user to another. Four entries in
the log file are relevant here, which are shown at the bottom of the display. They record
the sequence of a call that one user sent to another at the times between 12:01:12.601
and 12:01:12:901.

i} diwirtualpesicommunicator-uccapi-0.uccapilog - Snooper \E’E

File Options Reports Help

[] }i® v B BB

Message Preview 02/17/2008[12:01:12 601 BCA.C INFO -
Sending Packet-192 168 100100:5061 [
Time. IfO |Startline From Tao ~ |(From Local Address
12:00:51.030 |In |SIPf2.0 200 OK adarnicontos [adama 182168.100.1:60812) 1715 hytes:

12:00:51.030 | Out|SERVICE sipiadam@contasa.com SIP/2.0 |adami@contos|adamdd :]SCI?TIEDD,BIT ZI!“ EEDT‘EM CINFO -
12:00:51.090 | Out |[SUBSCRIBE sip:adami@contoso.com SIP/2.0 [adarm@contos |adamd SIPI2 “s'p'a teeficontoso.-com

m

12:00:51.160 |In|SIPf2.0 200 0K adam@rontos [adamg@ Via: SIPY2 O0TLS 192,168,100 1:60912
12:00:51.160 |In [BENCTIFY sip: 192,168, 100.1:60912; trango |adam@contos [adam@ Max-Forwards: 70
12:00:51.160 | |SIP/2.0 200 0K, adamcontos[adame | rom: <sipiadam@sontaso com?itag=

3145961488, epid=82904872c1

12:00:51.180 | Out|SUBSCRIBE sipralice@contoso.com SIPJ2.0 [adarmd@contos |sliced@: To: csip:alice@contoso.com>

=

12:00:51.220 |In [SIP/2.0 200 OK adarni@contos | dicedc Call-ID:
12,01:02,637 | Out [SERVICE sipiacs. contosn, com:iS061; transpor |adard@contos [adamea ccall2086315046cb85e15fd 96741/
120102667 |In |SIP/2.0 200 OK sdamronios|adame [Soe T INVITE

Contact
12:01:02.857 |In [BEMOTIFY sip:192. 168, 100, 1:60912; trangmo [adami@contos [adamid <sip:adam@contoso.com;opaque=userep

12:01:02.857 | Out|SUBSCRIBE sip:ocs contoso.com:S061; trans [adam@contos |dice@o id: UuFY-04-0FOMBx-rw/witQggdd gruu>
12:01:02.907 |In |SIP/2.0 200 OK adarndcontos |aliced: User-Agent: UCCAPI3.5.6837.0
b |12:01:12,601 | Out|INVITE sip:alice@contoso.com SIP/2.0 adarn@contos |iced: ggngjg;gﬂ(M\cmwﬂ Office
In |SIF/2.0 100 Trying adarn@rcontos [slicedr Ms-Text-Format; textplain;
npol charset=UTF-

IEE@EDntsD.[Dm SIPf2.0 S megr=WANAE DATAETACIASQENACDAR

pcemOconiesiaicett (00RO aHGAOgAgAEYATgASAEDAL
| [12.01553.590 [1n [BENOTIFY 5pi192.168,100. 1160212 rangpn [aclam@rontos [aeam < || A DA BB TAGOAZ O B ot b D DA

q | | ﬁ RABsAG A 04 DAAM AT ACAAROBGAD

A A AR AT, WARAP LAt ThAALL A

Ready - File: divirtualpesicommunicator-uccapi-0.uccapilog - (53 messages in view)

FIGURE 10-1 Display of a log using Snooper.

In the example shown in Figure 10-1, at 12 hours, 1 minute, and 12.602 seconds, a SIP INVITE
is sent on behalf of a user (sipzadam@contoso.com) to another user (sip:alice@contoso.com).

The SIP message detail is displayed in the right pane when the INVITE entry is selected in the
Message Preview pane.

The next record entry displays a SIP response of SIP/2.0 100 Trying from the server. It is a
provisional response indicating that the server has received the INVITE request and that the
request is being processed. The response details are displayed in the right pane when the
entry is selected. The Call-ID value in the details pane confirms that this response is part of
the SIP dialogue initiated in the previous entry.

Continuing to the next entry, Snooper shows another response of SIP/2.0 480 Temporarily
Unavailable from the server that arrived at 12 hours, 1 minute, and 12.901 seconds. The

Chapter 10 Debugging a Unified Communications Application 301

480 response indicates a client error. This response was returned because the invited user
was offline when the request was made. The entry is colored red because it indicates a failure
condition of the INVITE request.

The last entry related to this dialogue was recorded at the same time (12:01:12.901) as when
the previous 480 response was received. It shows that the inviting client closed the dialogue
by sending an acknowledgement to the server.

Best Practice for Debugging or Troubleshooting
a UC Application

Most robust UC applications offer multiple communication capabilities, including instant
messaging, audio/video calling, conferencing, and application sharing. Some UC applications
also take advantage of Enhanced Presence information to integrate the communications
features with the user’s availability, capabilities, and willingness. The asynchronous nature of
the UC APIs can add even more complexities to developing such applications.

When you debug or troubleshoot a complex application, a prudent approach is to isolate
problems in separate areas and then troubleshoot or debug each area. For a UC application,
one way to divide the problem space is by feature or operation, as shown in the following

groupings:

B Initialization In this phase, possible error sources include incorrect application config-
uration or a mismatched assembly format of a referenced or dependent library. Errors
and failures are shown by exceptions and the premature termination of the application.

B Endpoint sign-in Possible sources of errors in this phase include invalid user account
information that might include user credentials and signaling settings. Other possible
failures may be caused by an unresponsive server and server policy.

B Communication sessions During instant messaging, audio/video calling, confer-
encing, and data sharing, possible failure sources include insufficient or unsupported
media capabilities, blocked media traversal across firewalls, or unrecognized application
protocol.

B Presence publication, subscription, and query Possible error or failure sources
include invalid presence schemas; loss of interoperability between applications, for
example, name collisions or semantic conflicts with existing presence schemas; and use
of incorrect programming patterns.

B [ntegration with other applications Possible failure sources include the mishandling
of messages or application protocols.

Each group can be divided further into subgroups if necessary. Some examples of applying
this problem-solving strategy are explained later in this chapter.

302 PartV Debugging, Tuning, and Deploying Unified Communications Applications

Debugging Office Communicator Automation API
Applications

Debugging Office Communicator Automation API applications also involves enabling tracing and
examining logs. This section explains how to perform each task and then shows you some exam-
ples of debugging or troubleshooting an Office Communications Automation API application.

Enabling Tracing

An Office Communicator Automation API application can use Office Communicator to turn
tracing on or off. Tracing can be logged to the Windows Event Log or a log file that uses
plain text. To enable tracing to log files, the Windows Event Log, or both, perform these steps
in Office Communicator:

1. In Office Communicator, click the presence-setting button, and then click Options, as

shown here.
Office Communicator
P Adam Barr Ayailable (=
/M
Bl Tipe anote Lo~
@ Avalable Hher x

@ Busy
@ Do Mat Disturb
) BeRight Back
© Away

Fesefl Status
Current Location ¥
Options...

Sigrn Ot

a3 I

2. Under Logging, select Turn On Logging In Communicator to log tracing to log files that
are generated by Office Communicator. Select the Turn On Windows Event Logging For
Communicator to log tracing to the Windows Event Log, as shown here. Click OK.

Chapter 10 Debugging a Unified Communications Application

Office Comrunicator - Options

Personal
Phones
Alerts
General

Instant message settings
Show emoticons in instant messages

Change the background color when the writer changes

Change Font...

File transfer
Store received files in this folder:
CARTC\DevBook

Windows Media Player

Language

[¥] Pause Windows Media Player for calls, video calls, and conferences

Browss...

communicator language: English

Quiality

performance of Microsoft software and services,

Logging
Turm o 16gging in Cormrmunicator
[] Turn on Windows Event logging for Communicator

Jain our Customer Experience Improvement Prograrm and help improve the quality, refiability, and

Allow Microsoft to collect information about how T use Comrunicatar

More Information. ..

More Infarmation. ..

K] l Cancel

Help]

3. An optional step is to specify the location of the log files. To specify the location of
the log files, open Registry Editor. Under HKEY_CURRENT_USER\Software\Microsoft\
Tracing\uccapi\Communicator, edit the FileDirectory key, as shown here.

Q Registry Editor
File Edit \iew Favorites Help

E=3 Eol)

4

<. Terminal Server Client

- s

. Windows Collaboratior
L Mindows Live

o Mindowes Mail

) Mvindowes Media

o Windows Media Found

<0 SQMClient - || Mame
SRU B (28] (Default)
| SysternCertificates i’;'_-ﬂAdvancedOptions

fg'gi]Conso\eTracmgMask

;TR s, :
Tracing J;Q]DebuggerTracmgMask
| lcapi 84| EnableCansaleTracing
LecMedia i’;'_-ﬂEnab\eDebuggerTracing
: UcClient i’;'_-ﬂEnah\eﬁ\eTracmg
ueep b FileDirectory |
| WPPMedia Iﬁ]FiIeTracingMask
| uccapi o) MaxFiles
e) Communicator o] MaxFile Size
UCCPIatform
. WBA
J WisualStudio
| WSA
J WiComman =
| MAR
| Wieh Service Providers |=
<L Windos -

Type

REG_SZ
REG_DWORD
REG_DWORD
REG_DWYORD
REG_DWWORD
REG_DWORD
REG_DWWORD
REG_EXPAMND_SZ
REG_DWORD
REG_DWORD
REG_DWORD

Data

{value not set)
0:00000000 {0}
DFHFO000 (4294901760)
DfFEFO000 (4294901760)
000000000 {0}
000000000 {0}
0x00000001 (1)
HUSERPROFILE®\ Tracing
000000000 (0}
000000002 {3}
000800000 {9388608)

Mfindrunes bMedia Plaver ™ |
3 4

1

ComputeryHKEY_CURRENT_USERNSoftwareiMicrosoft\TracingiuccapitComrmunicator

303

304

Part V Debugging, Tuning, and Deploying Unified Communications Applications

Examining the Windows Event Log

When the Windows Event Log is enabled for logging on Office Communicator, any failure
that originates from an operation by Office Communicator is logged and can be viewed in
the application logs by using the Windows Event Viewer. To view these logs, perform the
following steps:

1. Click Start, right-click Computer, and then click Manage.

2. In Server Manager (on a server) or Computer Management (on a client) in the left pane,
expand Event Viewer, expand Windows Logs, and then click Application to display a list
of events in the center pane. When you select an event in the Event Viewer, as shown
here, information about the selected event is displayed in the pane underneath. The
Warning event from Office Communicator indicates that a SIP request made by Office
Communicator failed because the invited party is not available to answer the call.

.'E Computer Management @
File Adion Wiew Help
L IR ol
& Clcvmputer Managerment || | gye| Date and Time Source EventID Task Categ.. | Actions
a .
& (SSStTeka;:ISd ‘ P\ warning 1/16/2000 11:47:20 AM Communicator 11 None Application ~
3
ask scneduler 4 warning 1/16/2009 11:46:26 AM Communicator 11 None <||= open.
4 @ Event Viewer 3 = v -
i+ [Custorn Views F Sreat.
4 7‘* Windows Logs Event 11, Communicator x Impo...
] Application || ["Ganeral C Clear..
& security T Filter ..
& setup A SIP request made by Communicator failed in an unexpected manner (status code = Prop...
B system B0ef01e0). More information is contained in the fellowing technical data: E @ -
= Forwarded s
b B ~pplications ar RequestUri: sip alice@contoso.com m Save ..
:_’l Subscriptions From: sip a.xdam@:nnmsﬂ corntag=d07a8e06dd Attac..
» &5 Shared Folders To: sip:alice@contoso.com;tag= 85D3331BB881E0D65FBSEZD 463430003
- Call-ID: 09h42670353e defho0bAf5acebbledbe view, b
> % Local Users and 6| | |~ nntant-rune: annlicatinn fern-call-rimaz im 2 a
i G Refre..
& @ Reliability and Perl
i Device Manager Log Name: Application H Help
4 3 storage Source: Communicator Logged: 1/16/2009 11:47:20 AM Event11, . =
=9 Disk Managerment EventID: 11 Task Category: Mone Event..
» s Services and Applicat|| | Level: Warning Keywords: Hlpdie @ attac
User: M/A Computer: clientl.contaso.com ”
By 3
OpCode: Sel Copy
More Ewent Log Online Help. b save ..
|G Refre..
< I 3 »
F m » l @ el

Examining Log Files

When file tracing is enabled, Office Communicator creates a detailed log to one or more log
files. The maximum number of files is set by the MaxFiles registry key for Office Communicator.
By default, this number is set to 2. The name of the first log file is communicator-uccapiO
.uccapilog. When the log file reaches its maximum size as set in the MaxFileSize registry

key value, Office Communicator continues logging to the next log file and increments the
file name by 1. If MaxFiles is set to 2, the name of the next file becomes communicator-
uccapil.uccapilog. After the last file is full, Office Communicator returns to the first log file
and overwrites the existing information in that log file.

Chapter 10 Debugging a Unified Communications Application 305

The Office Communicator—generated log files are text-based files that contain the following

four types of information:

B Run-time exceptions (ERROR)

m S|P traffic and information about the application’s execution context (INFO)

B Application-generated tracing (TRACE) for Office Communicator and the Office
Communicator Automation API

B Cautionary information (WARN)

Figure 10-2 shows an excerpt of a log file displayed in Notepad. For more information about
the format and meaning of the different types of log entries, see the Office Communications
Server 2007 R2 Resource Kit.

j Communicator-uccapi-0.uccapileg - Motepad
File Edit Format View Help

==y

02/17,/2000|12: 691 BCd:C
02/17,/2000[12:01:12. 691 BC4:C
02/17,/2009[12 1691 BCd:C
02,/17,/2000[12 1651 BC4:C
02,/17,/2000[12 1651 Bod:C
02,17/2000[132: 1651 BCd:C
02/17,/2005|12: (601 BCd:iC
02/17,/2005|12: L0l BCd:C
02/17,/2005|12: LTOL BC4:C
02/17,/2005|12: LTOL BC4:C
02/17,/2005|12: LTOL BC4:iC
02/17/2000|12: LFOL BC4:C
02/17/2000|12: LFOL BC4:C
02/17/2000|12: LFOL BC4:C
02/17/2000|12: LFOL BC4:C
02/17/2000|12: L0l BC4:C
02/17/2000|12: L7 BC4:C
02/17,/2000|12: L7 BC4:C
02/17,/2000]|12 L7 BC4:C
02/17,/2009[12 c
02/17,/2009[12 c
02/17,/2009[12 c
02/17,/2009[12 c

: End of pata received - 192.168.100.100:5061 (To Local Address
: SIP_STACK::Findrrovidersacontext Sa_CONTEXT found:sip/ocs. cor

TSALTSTENTry Sa [02086080] targetname si
dsaToList found sa [02DB6DEO] from Tist
TSALiSTENTry Sa [02D86DBO] targetname 8

: verified buffer: <kerberos><80B265615><17><SIP Commumdcations
: call.setstate[02080040] SIP_CALL_STATE_COWMECTING-—>SIP_CALL
Il SIP_CALL: Nntwfycaﬂstatechangl;
Il MULTIPARTY_SESSION Notwfyca'\ Change[02E73638]- call-leg:0208
11 ocuccMultipartysession: Not'lfypartychamge[DOAzlaAc] - for part
1 cuccsessionparticipant::Internalsetstate [02BC8E844] - state:
: Function: SIP_MESSAGE: :GetHeadsr
1 SIP_MESSAGE: :GetHeader: HRESULT failed: 80ee0005 = hr. GetHe:
:: header not present
1: Function: SIP_MESSAGE::GetHeader
11 SIP_MESSAGE: :GetHeader: HRESULT failed: 80es0005 = hr. GetHe:
: Pv[020E7E48] -Update(02080040,3-35)
: [020E7B38]msp. updatecall{0208D040):3-55

e[02080040] : callstate : § Ste

MSP.Updatestata[02DEFE38]-State 3-»5, call(3-»5)

MSP. SetState[0JE73638] SIP_CALL_STATE_COMNECTING->SIP_CALL_ST

cuccsessionparticipant::Internalsetstate [02BC7CE4] - sTate:

SECURE_SOCKET: decryptwg buffer size: 773 (first 8):

17 03 01 03 00 OE_AQ 96 .
58

061 (To Local aAddress: 192.1
011100FFFFFFFF4EC401F68F39]

ati In er 712
via: SIPS2.0/TLS, 192 168.100.1: 60912 ms-received-port= 60912 ms - recewed cid=17500
From: "adam Barr"<sip:adam@contaoso. com>;tag=3145961d33; epid=82904872c1
To:_<sipralice@contoso. coms; ta1g. SES3E1E20A7ADOEDA EBE4 5E6650C7 065

da6741ff3e

Call-ID: cCal2cB6315046¢h85els
Csea 1 INVITE
‘|agnust‘|cs:

content-Length: ©

02/17,/2009|12:01:12. 901 BC4:C INFO
q

m

2;reason="5ee response code and reason phrase";source="ocs.contosa. com"; AppUri="http

:: End of pata Received - 192.168.100.100:5061 (To Local Address =

»

FIGURE 10-2 Plain text log file generated by Office Communicator.

When you compare Figure 10-2 and a corresponding Windows Event Viewer display, you

see that a log file contains more information than what is displayed in Snooper. However,
examining log files by using a text editor can be cumbersome and overwhelming when the
file is large. It is easier to review the log files by using Snooper. For more information, see the
section titled “Using Snooper” earlier in this chapter.

Handling Exceptions Using HRESULT Error Codes

In Office Communicator Automation API applications, run-time errors that originate from
the APl are COM errors. They can be detected in Office Communicator, the Automation AP,
the underlying UCC API, and the COM library. These errors are reported as HRESULT values.

306

Part V. Debugging, Tuning, and Deploying Unified Communications Applications

The way they are handled in an Office Communicator Automation API application depends
on how the application is written. If the application is of a native Win32/COM type, every call
to an interface member or COM library function returns an HRESULT value. The application
must check the return value of every method call for possible errors. Only when the HRESULT
value does not indicate any error or failure should the application go to the next call.

Listing 10-1 is a C++ code example that illustrates this point.

LISTING 10-1 C++ Code Example Illustrating the Use of the HRESULT Value to Gauge the Call Status of C++
Statements

// Initialize the COM library
HRESULT hr = CoInitializeEx(NULL, COINIT_APARTMENTTHREADED) ;
if (FAILEDChr))

return hr;

// Create Messenger co-class and retrieve IMessenger interface pointer
// and connect to the running Communicator instance.
hr = CoCreateInstance(CLSID_Messenger,NULL,CLSCTX_LOCAL_SERVER,
(IID_IMessenger), (LPVOID *)&m_pIMessenger);

if (FAILED(Chr))
return hr;

// The IMessenger interface is now ready for use. Gets the caller’s display name
BSTR myName;
hr = m_pIMessenger->get_MyFriendlyName(&myName) ;
if (FAILED(Chr))
return hr;
CoUninitialize(Q);

Listing 10-1 performs the task of creating a Messenger co-class instance to retrieve the
IMessenger interface pointer before it obtains the display name of the caller. Notice that
every statement is followed by a check of the returned HRESULT value. An HRESULT value
of 0 (zero) indicates that the operation succeeded. Any nonzero HRESULT value suggests an
error or warning, and, in this case, the FAILED macro returns True.

If the HRESULT value indicates a failure, the example returns the error code to the caller. In
production code, the HRESULT value can be checked against a known error code and the
situation handled accordingly. An Office Communicator Automation API application may
have to check against the HRESULT values that are defined in the Automation APl and in the
underlying UCC API. For more information about error codes, see “Unified Communications
Client API Error Codes” at http.//go.microsoft.com/fwlink/?linkid=143308.

In a .NET Framework application that uses the COM API, COM errors are encapsulated by
the COMException class that is defined in the System.Runtime.InteropServices namespace.
The HRESULT value in the original COM error is represented by the ErrorCode property of
the COMException type, and the COM error message is represented by the COMException.
Message parameter. The call stack is exposed in the COMException.StackTrace property.

Chapter 10 Debugging a Unified Communications Application 307

You can catch the COM exception by using a try/catch block, as shown in the following
C# code example.

CommunicatorAPI.Messenger myOC;
try
{

myOC = new CommunicatorAPI.Messenger();

my0C.0OnSignin += new CommunicatorAPI.DMessengerEvents_OnSigninEventHandler
(my0C_OnSignin);

my0C.0OnSignout += new CommunicatorAPI.DMessengerEvents_OnSignoutEventHandler
(my0C_OnSignout) ;

myOC.AutoSignIn(Q);

}

catch (COMException cex)

{
// Exception handling
int hr = cex.ErrorCode;
string msg = cex.Message;

}

Troubleshooting Office Communicator Automation API
Applications

To understand the practical aspects of debugging and troubleshooting a UC application that
is built by using the Office Communicator Automation API, the following case studies are
given. Each case study in this section explores the cause of detected bugs.

Troubleshooting Automation APl Assembly Initialization Failures

The first step in building an Office Communicator Automation APl application is to create an
instance of the CommunicatorAPl.Messenger class. Then you must register for notifications of
events to be raised by the newly instantiated Messenger object. In a .NET Framework applica-
tion, the referenced Automation API library is loaded into the application process just in time
before the constructor is called on the Messenger class. Depending on how the assembly
reference is added to the project, an exception of the BadimageFormatException type may
be raised when an attempt is made to create an instance of the Messenger class. The C# code
example in Listing 10-2 illustrates this process.

LISTING 10-2 C# Code Example in Which a BadlmageFormatException Type Will Be Raised if the Referenced
Office Communicator Automation APl Assembly Is Targeted for a Platform Different from the Target Platform
of the Application

public partial class Forml : Form
{
CommunicatorAPI.Messenger myOC;
string userName;
public Forml(Q)
4

InitializeComponent();

308 PartV Debugging, Tuning, and Deploying Unified Communications Applications

myOC = new CommunicatorAPI.Messenger();
my0C.OnSignin +=
new CommunicatorAPI.DMessengerEvents_OnSigninEventHandler
(my0C_OnSignin);
myOC.OnSignout +=
new CommunicatorAPI.DMessengerEvents_OnSignoutEventHandler
(my0C_OnSignout) ;
}

void myOC_OnSignout()
{
}

void myOC_OnSignin(int hr)
{
}

Even though the code in Listing 10-2 should compile without errors, you might encounter a
run-time exception of the BadlmageFormatException type when you execute the code. This is
illustrated in Figure 10-3, which shows the Visual Studio Debugger.

W UCAppDevBookDebugChapter (Debugging) - Microsoft Visual Studio (Sdministrator) == Sl
File Edit View Project Build Debug Tools Test Window Help
HETRREERa == N~ | | % Ba _3|) . [. - ::1>| 3 |Dehug v||M|xed Platforms v“ [h
Phon m B D SE[E B | He % @ -0 IE T b A S 2|08 E3EBARAT
7 .]
filaasaal (11061 debug Ocapinpp-+ illbueedd [1932] Ma /& FileNotFoundException was unhandled X
-]
(T TS Could not load file or assembly 'Communicator®PL Wersion=2.0.6362.0, —
P . Culture=neutral, PublicKeyToken=31bf3856ad364235" or one of its dependencies,
Ui debugOcpitpp P g i P -
8 debugOchpifipp.Program The systern cannot find the file specified,
Hwespace debugdolpilpp -
Troubleshooting tips: -
static class Program Wetify that the file exists in the specified location, -
{ When using relative paths, make sure the current directory is correct, |ﬂ B
T S Get general help for this exception, g
//{ The main entry point fo
- /77 </ swmmarys Search far mare Help Online..
[3TAThread]
=] static void Main() Actions: |
{ Wiew Detail...
Application.EnabhleVisua Copy exception detail to the clipboard
bpplication.SetCompatib e TeR CRENNEL INGUELHULIL [LHLISE] 7
+ 1 Application.Run(new Formli)):
- i
Loy -
a1 il] ¢
Autos -~ 1 X| Error List -1 X
| Mame | value [Tune 2| [11 Errars|I [/ 2 Wiarnings L (1) 0 Messages]
5] Autos (G Locals g5l Watch 1] @ Call. (@ Bre.. [B]0bj.. [iJCo.. [Him.. [5Out.. |_—'(‘$Erro...[
Ready Ln 17 Col13 Chi3 NS

FIGURE 10-3 Unhandled Bad/mageFormatException thrown at run time.

The message associated with this run-time exception indicates that the required
CommunicatorAPI.DLL assembly cannot be loaded correctly. This message helps point

Chapter 10 Debugging a Unified Communications Application 309

out that in the Form1 class constructor, an attempt is made to create an instance of the
Messenger class, which involves loading the assembly. The exception shows up here because
the error was not handled in the code for the Form1 class constructor.

The cause of this exception is most likely that a 32-bit primary interop assembly (PIA) was
used when adding a reference for a .NET Framework application that was targeted for the
64-bit platform. The Office Communicator Automation APl SDK contains the 32-bit version
of the CommunicatorAPI.DLL assembly as a PIA for the API. By default, it is installed in the
\Program Files (x86)\Microsoft Office Communicator\SDK directory (in a 64-bit operating
system). You can use this assembly only when your application is targeted for the 32-bit (x86)
platform. If you choose this assembly to add references to a 64-bit project, you receive the
run-time exception.

The run-time exception situation in this code example can become trickier if you delay calling
the Messenger class constructor until after the Form1 class constructor. For example, if you
create an instance of the Messenger class while the form is being loaded (FormI_Load), you
might not be notified of the exception when the application stops functioning correctly.

To ensure the platform-appropriate CommunicatorAPI assembly is referenced in an
Automation API application, use the Communicator.EXE assembly to add a reference to
an application’s project. This causes Visual Studio to create the platform-appropriate PIA
(Interop.CommunicatorAPI.DLL). To do so, perform these steps in Visual Studio:

1. In Visual Studio Solution Explorer, right-click your application project, and then click
Add Reference.

2. On the COM tab, scroll down and select Microsoft Office Communicator 2007 API
Type Library, as shown here. You also have the option to select Microsoft Office
Communicator 2007 API Private Type Library, if you plan to call the interfaces exposed
in this assembly. Then click OK.

" Add Reference 7 |[nE3al
| MET | COm |Pr0jects | Eraurse | Recent|

Component Name - Typel =
Microsoft Management Consale 2.0 1o
Microsoft MIMEEDIT Type Library L0 10
Microsoft MSM Merge Type Library 20
Microsoft Office 11.0 Object Library 2.3
Microsoft Office 12 Authorization Control 1.0 Type Library 10 D
Microsoft Office 12,0 fccess Database Engine Object Library 130
Microsoft Office 12,0 Object Library 2.4

: Microsoft Office Cornmunicator 2007 AP Type Library 1.0
Microsoft Office Cammunicator 2007 Private Type Library 1o
Microsoft Office Cornmunicator 2007 WAB Extension Object 0., 1.0
Microsoft Office Cantral 1.0 Type Librany i -
4 T | 3

[0k][cancl

310

Part V Debugging, Tuning, and Deploying Unified Communications Applications

Troubleshooting COM Interop Errors

As with any COM Automation API, the VARIANT type is used extensively in the Office
Communicator Automation API. There are many advantages to using VARIANT in COM. For
example, the use of VARIANT as an input parameter type gives you the flexibility to take

on different types of input values, such as a string, integer, object, or array. Through COM
Interop, the VARIANT type in COM is translated into an object type in a .NET Framework
application. However, the usual typecasting in the .NET Framework cannot be applied to such
a translated object type.

To better understand how this works, consider a situation in which you want to start an
instant messaging call. To do this, you have to add code that calls the IMessengerAdvanced.
StartConversation method and starts an instant messaging session that has a list of selected
contacts. The signature of this method, as specified in the Interface Definition Language file
(ocapi.idl), is documented in the Office Communicator Automation APl 2007 documentation.
The second input parameter is of the VARIANT type and can take on an array of BSTR strings
or an array of IMessengerContact objects. Because of COM Interop, this parameter becomes
an object type in a .NET Framework application. The following C# code example calls the
method by passing in an array of IMessengerContact instances as an array of the .NET
Framework object type (List<object>.ToArray). This implementation runs without exceptions.

IMessenger myOC =...; // Assuming that this Messenger object has been created and enabled.
IMessengerAdvanced msgAdv = myOC as IMessengerAdvanced;

void StartImCall(IMessengerContact[] contacts)

{
List<object> Tlist = new List<object>(Q);
foreach (IMessengerContact c in contacts)
Tist.Add(c);
objct contactsAsObj = Tist.ToArray(); // casting object[] into object.
object obj = msgAdv.StartConversation(
CONVERSATION_TYPE.CONVERSATION_TYPE_IM,
contactsAsObj,
null,
null,
null,
null);
}

However, if an array of IMessengerContact instances is passed in instead, as shown in the
following C# code example, the implementation throws an exception that has the HRESULT
value 0x80010105 (RPC_E_SERVERFAULT).

void StartImCall(IMessengerContact[] contacts)
{
// the following statement throws the exception:
// HRESULT: 0x80010105 (RPC_E_SERVERFAULT)
object obj = msgAdv.StartConversation(
CONVERSATION_TYPE.CONVERSATION_TYPE_IM,

Chapter 10 Debugging a Unified Communications Application 311

contacts as object, // This will cause run-time error
null,

"Hello",

null,

null);

Troubleshooting Common Operational Failures

In any UC application, operational failures can occur when, for example, the server is unre-
sponsive, a client does not have the required media capabilities, a message has an incorrect
format, the server refuses a request because of a violation of existing policy, or the client
does not catch an event notification from the server. In these situations, the Visual Studio
Debugger may be insufficient. However, tracing and examining log files provide more useful
information about the source of failures. The following examples show the kind of debugging
information that is available in the logs.

Common sign-in failures The following excerpt from a log file generated by Office
Communicator shows that a sign-in request failed because the strict Domain Name System
(DNS) name checking failed for _sipinternaltls._tcp.contosohost.com.

03/20/2008|14:37:34.018 10DC:163C WARN :: GetDnsResults - failure in do the DNS query.

03/20/2008|14:37:34.018 10DC:163C ERROR :: QueryDNSSrv GetDnsResults query:
_sipinternaltls._tcp.contosohost.com failed 1la9ee37

03/20/2008|14:37:34.018 10DC:163C WARN :: DNS_RESOLUTION_WORKITEM: :ProcessWorkItem query DNS
SRV records failed, Error 8007232b

03/20/2008|14:37:34.018 10DC:163C ERROR :: DNS_RESOLUTION_WORKITEM::ProcessWorkItem
ResolveHostName failed 8007232b

03/20/2008|14:37:34.019 10DC:1CA4 TRACE :: ASYNC_WORKITEM: :OnWorkItemComplete(15D30498)
Enter

Sign-in operations can fail because the server is unavailable A sign-in request can fail
because the client does not have the correct certificate. In the following log file excerpt,
connection failed error 80072746 and failed to send security negotiation token ERROR entries
(shown in bold) may be logged if tracing is enabled on Office Communicator.

16:56:01.797 1F10:360 INFO :: Outgoing 0231BC60-<Sip:john@uc.contoso.coms,
local=(null)

16:56:01.969 1F10:360 TRACE :: Async work item posted for TLS negotiation: this 00C70768

16:56:01.969 1F10:360 ERROR :: ASYNC_SOCKET::SendHelperFn - send failed 0x2746 m_Buffer:
0x000AEA08, m_BytesSent: 0, m_BuflLen: 70

16:56:01.969 1F10:360 ERROR :: ASYNC_SOCKET::CreateSendBufferAndSend
SendOrQueueIfSendIsBlocking failed 80072746

312

Part V Debugging, Tuning, and Deploying Unified Communications Applications

16:56:01.969 1F10:360 ERROR :: SECURE_SOCKET: failed to send security negotiation token

16:56:01.969 1F10:360 ERROR :: OUTGOING_TRANSACTION::OnRequestSocketConnectComplete
- connection failed error 80072746

Another case of sign-in failure occurs when the user is not SIP-enabled or the user is in the
middle of being moved from one Office Communications Server pool to another. In this case,
the log file is displayed as follows.

20:44:25.858 3E0:BEC INFO :: SIP/2.0 480 Target is either disabled or moving away

ms-diagnostics: errorld="2";reason="Unknown Failure";source="ocs.contoso.com";AppUri=http://
www . contoso.com/LCS/UserServices

20:44:25.858 3E0:BEC TRACE :: CUccServerEndpoint::UpdateEndpointState - Update state from
1 to 0. Status 80EFO1EQ. Status text Target is either disabled or moving away.

Common presence failures A client may be unable to publish presence information on
behalf of a user because the to-be-published category instance is out of date, a custom cat-
egory name is not registered with Office Communications Server, or the user's home server is
being switched from one pool to another.

A to-be-published category instance is out of date if its version number is smaller than the
one known to the server. In this case, the client receives a SIP 409 Conflict response, as shown
in the following log entry, in which the ms-diagnositics header describes the reason for the
failure as “Publication version out of date”.

SIP/2.0 409 Conflict

FROM: "Adam Barr"<sip:adam@contoso.com>;epid=31042B029D;tag=d96d11467

TO: <sip:adam@contoso.com>;epid=31042B029D;tag=85D3331BB881EOD65FB5E2D463430003

CSEQ: 25 SERVICE

CALL-ID: b546a613be504ab69bdc4c624dalf4e?

VIA: SIP/2.0/TLS 192.168.0.112:58318;branch=z9hG4bK1830c3dl;received=66.235.34.227;
ms-received-port=58318;ms-received-cid=D34A900

CONTENT-LENGTH: 639

CONTENT-TYPE: application/msrtc-fault+xml

AUTHENTICATION-INFO: NTLM rspauth="01000000000000009522756A0BAEF93B", srand="331B3862",
snum="71", opaque="CA63E6D4", qop="auth", targetname="ur.contoso.com", realm="SIP
Communications Service"ms-user-logon-data: RemoteUser

ms-diagnostics: 2044;reason="Publication version out of date”;source="ocssrv.contoso.com"

When a client attempts to publish a custom presence that has not been registered with Office
Communications Server, the publication fails. In this case, the client receives a 400 response
that indicates an invalid request. This is illustrated in the following log entry, in which

the ms-diagnostics header records the reason for the failure as “XML parse failure”.

SIP/2.0 400 Bad request

FROM: "Adam Barr'"<sip:adam@contoso.com>;epid=31042B029D;tag=4820e69f11

TO: <sip:adam@contoso.com>;epid=31042B029D;tag=85D3331BB881EOD65FB5E2D463430003
CSEQ: 24 SERVICE

Chapter 10 Debugging a Unified Communications Application 313

CALL-ID: 954e54edbd3b4bc0b9f4bc7d6164d3b0

VIA: SIP/2.0/TLS 192.168.0.112:58318;branch=z9hG4bK71daabab6;received=66.235.34.227;
ms-received-port=58318;ms-received-cid=D34A900

CONTENT-LENGTH: 58

CONTENT-TYPE: application/msrtc-fault+xml

AUTHENTICATION-INFO: NTLM rspauth="0100000043453E3COBFA9E530BAEF93B", srand="CA8F86D0",
snum="69", opaque="CA63E6D4", qop="auth", targetname="ur.contoso.com", realm="SIP
Communications Service"

ms-user-logon-data: RemoteUser

ms-diagnostics: 4001;reason="XML parse failure”;source="ocssrv.contoso.com"

When the user’s home server is being switched from one pool to another, the presence is
treated as unknown and the client receives a 504 response from the server.

Common audio and phone calling failures Audio and phone calls may fail because clients
have mismatched media capabilities. This can be corroborated by looking at the ms-client-
diagnostics header that is generated by Office Communicator. The following log entry shows
that a Voice over Internet Protocol (VolP) call invitation is refused because the remote end-
point does not support audio.

SIP/2.0 488 Not Acceptable Here

From: <sip:john@clientee.contoso.com>;tag=dcf94;epid=a0894
To: "" <sip:jane@clientee.contoso.com>;epid=0a33;tag=0cd
Cal1-ID: 032acec238cd42eaa726b6077a3ce550

ms-client-diagnostics: 52036; reason="Audio is not configured"

When placing a call to a remote endpoint, the calling client may receive an exception that
indicates that the remote user cannot be found, as shown in the following log file excerpt.
This can occur because the called party is not SIP-enabled or the federation link is missing for
the user from a federated network.

SIP/2.0 404 Not Acceptable Here

From: <sip:john@clientee.contoso.com>;tag=dcf94;epid=a0894
To: "" <sip:jane@clientee.contoso.com>;epid=0a33;tag=0cd
Cal1-ID: 032acec238cd42eaa726b6077a3ce550

ms-diagnostics: 1003;reason="User does not exist"

314 PartV Debugging, Tuning, and Deploying Unified Communications Applications

Debugging UCMA Core Applications

Debugging an application that is built on top of the UCMA Core involves enabling tracing. This
results in the logging of application failures and error conditions. To handle run-time exceptions
successfully, you should use try/catch blocks around your UCMA code. The following sections
discuss how to enable tracing and handle exceptions for UCMA, before presenting some
debugging examples to illustrate how to catch and handle run-time exceptions within the
framework of the UCMA exception model.

Enabling Tracing

To debug protocol-level failures for a UCMA application, you must enable protocol tracing
before you run the application. You can enable protocol tracing by using the Office
Communications Server 2007 R2 Logging Tool. This tool traces a wide range of Office
Communications Server components over various protocol stacks. The supported protocols
include SIP, S4, UserServices, and other protocols.

When you install the UCMA SDK, it adds S4 and Collaboration components as the default
logging options. You can select other supported components by using the advanced options
in OCSLogger.

There are two versions of this tool available: OCSTracer.exe is the command-line version
and OCSLogger.exe provides a graphical user interface. Both are installed as part of the
UCMA 2.0 SDK.

By default, OCSTracer.exe is installed in the %Programfiles%\Microsoft Office
Communications Server 2007 R2\Common\Tracing directory and OCSLogger.exe is installed
in the %Programfiles%\Microsoft Office Communications Server 2007 R2\UCMA SDK v2.0
R2\UCMACore\Tracing directory. The remainder focuses on how to use OCSLogger. For more
information about OCSTracer, see the “Unified Communications Managed API 2.0 Core SDK
Documentation” at http.//go.microsoft.com/fwlink/?LinkID=133571.

Enabling Tracing for UCMA Core Applications

1. Before you run a UCMA application, open Windows Explorer, right-click OCSLogger.
exe, and then click Run As Administrator to start the Office Communications Server
2007 R2 Logging Tool. Note that the logging tool does not run unless it is started with
elevated permissions.

2. In the Office Communications Server 2007 R2 Logging Tool, under Logging Options, in
the Components section verify that Collaboration and S4 are selected, as shown here. In
the Level section, select the level of tracing that you want. A tracing level specifies a type
of tracing to be performed. The level is cumulative, which means that a selected level
includes the selected message type plus all of the message types that are listed above

Chapter 10 Debugging a Unified Communications Application 315

the selected message type. In the Flags section, select the trace flags that you want. You
can also change the other options if the default settings do not meet your needs.

ol Office Cammunications Server 2007 R2 Logging Toal = = e
Logaging Options Global Options [
Components Level Log File Options
£ Fatal Errars Tope Marimum Size:
) Emors) Che 20 MB
) Warrings o) BEERE Append ta log file
@ Information ! el
) Werbose
=, Real Time Options
L) 21 [Real Time Maritaring
Flags Dizplay only. no log file
[] TF_COMPOMENT ;
] TF_FROTOCIL Filter Options
[#] TF_COMMECTIOM Enable Filkers Clear F
@] TF_DIA&G
7] &l Flags LRI
LRI
FQDN
FQDN
Log File Folder: E
Start Logging “iew Log Files Analyze Log Files Advanced Options] [Exit] [H

Na active log session. Check the components you wish to log in the list on the left. For each checked companent, corfigure the log level and flags for that compone|
Start Logging button to start logging the checked components with the configured level and flags.

<] n | 3

A trace flag specifies the type of messages to be logged. The following flags are
supported:

0 TF.COMPONENT Logs miscellaneous messages that are not covered by the
other trace flags.

0 TF_PROTOCOL Logs protocol messages or data, including SIP, Centralized
Conferencing Control Protocol (CCCP), Session Description Protocol (SDP), or
other text-based messages.

0 TF_CONNECTION Logs connection-related errors or warnings, including
significant network-level information about components that do not support the
concept of connection.

0 TF_DIAG Logs diagnostic events. For SIP, this includes certificate failures or
errors and DNS warnings or errors.

Under Log File Options, in the Type section, Circular specifies that new records will be put
at the beginning of the log file when the file size reaches the predefined maximum size.
Sequential specifies that new records will be put at the end of the file. New File speci-

fies that a new log file will be started when the file size reaches the maximum size. Filter
Options lets you trace the messages to or from the specified Uniform Resource Identifier
(URI) or the specified fully qualified domain name (FQDN).

316 PartV Debugging, Tuning, and Deploying Unified Communications Applications
3. Click Start Logging before you run your UCMA application.
4. Start your UCMA application.

5. After the application finishes running or being debugged, click Stop Logging, and then
click Analyze Log Files to view the trace logs in Snooper, a log file parser.

Alternatively, you can click View Log Files to view the raw data of the log file in
Notepad.

Handling Exceptions Using the UCMA Core Exception Model

The UCMA Core defines a set of exception classes that can be used to debug a UCMA
application. With the UCMA, all exceptions are derived from RealTimeException, which is
the base exception class. More specific exception classes cover operation-specific error and
failure conditions. Table 10-2 lists API-specific exception classes that cover the following
types of failure or error conditions that may occur in a UCMA application. For the complete
exception model, see “Unified Communications Managed API 2.0 Core SDK Documentation”
at http.//go.microsoft.com/fwlink/?LinkID=126312.

TABLE 10-2 Exception Classes Defined in the UCMA Core

UCMA Exception Class Description

RealTimeException The base class for all of the exceptions that are specific to UCMA. It
is thrown when the error condition cannot be mapped to any other
exception types.

ConferencefFailureException Thrown when an error that is associated with conference scheduling
or management occurs. Possible reasons for this exception include
the following:

B The conference could not be created, scheduled, retrieved, or
removed.

The conference could not have its settings modified.

B The check for whether a passcode is optional for a conference
failed.

B The conference passcode could not be verified.
B A failure occurred in the attempt to get the available multipoint
control unit (MCU) types for a conference.
OfferAnswerException Thrown when one of the following errors occurs in a media provider:
® The SDP offer could not be created.

B The answer received from the remote side could not be
accepted.

B A collision in the offer/answer interchange occurred because a
previous negotiation is still pending.

B An answer for a received offer could not be sent.

Chapter 10 Debugging a Unified Communications Application 317

TABLE 10-2 Exception Classes Defined in the UCMA Core

UCMA Exception Class

ConnectionFailureException

FailureResponseException

AuthenticationException

PublishSubscribeException

RegisterException

ServerPolicyException

MessageParsingException

MultipartContentException

OperationFailureException

OperationTimeoutException

TIsFailureException

Description

Thrown when a network connection cannot be made. Applications
might consider prompting for a new URI (host and name) or a server
name.

Thrown when a 4xx, 5xx, or 6xx response is received for a

request. This exception contains the ResponseData property. The
ResponsData property contains the complete response. This includes
response code, reason text, headers, and message body. In some
rare cases, this exception may also be thrown when an error other
than a 4xx or 5xx response occurs. In these cases, the ResponseData
property is NULL.

Thrown when a 401 response is received in authentication. It
exposes the failed response data (ResponseData) and parsed values
of authentication-specific headers.

Thrown when a FailureResponseException occurs during requests

for the SERVICE and SUBSCRIBE types. This class inherits from
FailureResponseException and adds diagnostic information about the
message body and the fault code that is parsed from the body.

Thrown by the Register or Unregister method when an error occurs
in a registration-related operation.

Thrown when an operation is rejected because of a server policy.

Thrown when an incoming response or message cannot be parsed.
For example, an invalid custom signaling header was used.

Thrown when an error occurs during multipart body parsing.

Thrown when an operation fails. The FailureReason property
indicates the cause of failure.

Thrown when an operation cannot be completed in a given
reasonable time. For example, a response from another endpoint or
server was not received after a request was sent.

Thrown when an error occurs during a Transport Layer Security (TLS)
handshake. This error can occur when the remote server certificate
is rejected. This can also occur when the Mutual TLS (MTLS) local
certificate is rejected by the remote server.

At run time, instances of these exception classes contain valuable information that
you can use for debugging an application’s call stacks and the network protocol
stacks. Detailed specification of these exception classes can be found in the “Unified
Communications Managed API 2.0 Core SDK Documentation” at http://go.microsoft

.com/fwlink/?LinkID=133571.

As with any .NET Framework application, these exceptions can be caught and handled by the
try/catch blocks. The code fragment of interest is enclosed in a try block, while appropriate
exceptions are handled in one or more catch blocks. Each catch block handles an exception

318

Part V Debugging, Tuning, and Deploying Unified Communications Applications

of a specific type. The exception types handled in the catch blocks depend on the operations
that are performed in the try block.

Errors may originate from a called member, or they may arise from lower-level APIs or other
platform components. The API has little control over handling exceptions that originate
from these other sources. For a UCMA application, this means that the developer cannot
always anticipate what exception will be caught. For this reason, an error handler of the
RealTimeException type can be used to catch any unhandled UCMA exceptions and to
discover the exception type. Similarly, an error handler of the System.Exception type can be
used to handle any .NET Framework exception and discover the exception type.

In Visual Studio, you can find documented exception types at design time by using the Visual
Studio IntelliSense tooltip. In this situation, an exception is documented in the originating
method only if the triple-slashed Extensible Markup Language (XML) comments preceding
the member definition contain <exception> tags. Any exception that is not documented
this way does not show up in the tooltip. Figure 10-4 provides an example of finding such
documented exceptions. When the mouse pointer rests on the EndStartup member for the
CollaborationPlatform instance, the documented exceptions, InvalidOperationException and
ConnectionFailureException, thrown by this method are shown in the Intellisense tooltip that
appears.

 Platform.cs | Start Page| - X
"ngebugging.Dlatform - ao_ucAppSettings -
&7 [i] private woid Initialize()
1= { i
a9 //Load the local machine's certificate
70 X50%Certificate? cert = GetLocalCertificatel);
71
12 //Collaboration platform initialization
73 serverPlatformSettings platformSettings =
T4 new ServerPlatformSettings(
75 _ucAppfettings["ocsUserigentUCMALakbl "],
76 Dns.GetHostEntry({"localhost") . HostMName,
77 Int3Z.Parse(_ucAppdettings["applocalBort”]),
T8 _ucAppdettings["appsrun”],
79 cert);
a0
g1 _<ollabPlatform = new CollaborationPlatformi{platformfettings);
8z 3
B3 J/dynehronously =all the #tartup method
24 _collabPlatform.EndStartup(collabPlatform.EBeginStartup{null,
83 wvoid CollaborationPlatform.EndStartupasyncResult result)
36 Returns the results from the start operation.
BT }
28 private wvoid CleanupExceptions:
BST { System.InvalidOperationException
o an diAhntd rm;rrrw the | Microsoft.Ric.Signaling ConnectionF ailureException 5 =z
|

FIGURE 10-4 Finding documented exceptions for a given type member at design time.

Listing 10-3 is a C# code example in which a specific list of presence items is published. The
try block encloses a synchronous call to publish presence information from a user’s local

Chapter 10 Debugging a Unified Communications Application

319

endpoint. The failure or error conditions that are specific to such an operation are encapsu-

lated by an exception of the PublishSubscribeException type. Therefore, the first catch block is
used to handle this type of exception. To anticipate other miscellaneous exceptions that may
occur, the error-handling code also includes a catch block for RealTimeException.

LISTING 10-3 C# Code Example That lllustrates the Types of Exceptions and Some Debugging Data That Can
Be Caught in Presence Publication

public void PublishPresence(List<PresenceCategoryiwthMetaData> categorylList)

il

try

{

LocalOwnerPresence myPresence = _userEndpoint.LocalOwnerPresence;

myPresence.EndPublishPresence(myPresence.BeginPublishPresence(categorylist,

null, null));

}

catch (PubTlishSubscribeException psExcept)

{

// Examine user-defined information about the exception
if (psExcept.Data != null)

{
foreach (object data in psExcept.Data)
{
}
}
if (psExcept.DiagnosticInformation != null)
il
// inspect ms-diagnostics or ms-diagnostics-public headers.
string headerName = psExcept.DiagnosticInformation.HeaderName;
string reason = psExcept.DiagnosticInformation.Reason;
string source = pskExcept.DiagnosticInformation.Source;
int errrorCode = psExcept.DiagnosticInformation.ErrorCode;
string value = psExcept.DiagnosticInformation.GetValueQ);
string subErrorWarns = psExcept.DiagnosticInformation.SubErrorWarning;
}

if (psExcept.FaultCode != null || psExcept.FaultCode != string.Empty)
{
// Determine 4xx code returned from server.
Console.WriteLine(psExcept.FaultCode);

if (psExcept.ResponseData != null)
{
SipResponseData responseData = psExcept.ResponseData;
int cSeq = responseData.CSeq;
string cType = responseData.ContentType.Name;
StringDictionary cTypeParams = responseData.ContentType.Parameters;
string userAgent = responseData.UserAgent;
string requestUri = responseData.RequestUri;

320 PartV Debugging, Tuning, and Deploying Unified Communications Applications

int responseCode = responseData.ResponseCode;
string responseText = responseData.ResponseText;

}
}
catch (RealTimeException rtExcept)
d
string msg = rtExcept.Message;
string stackTrace = rtExcept.StackTrace;
I

When multiple catch blocks are used in a single try/catch sequence, the order in which the
exceptions are handled should be such that the handling of a base exception type must
follow that of its derived exception types. In the previous example, the RealTimeException
type is the base class from which the PublishSubscribeException type is derived.

Valuable debugging information can be gleaned from a PublishSubscribeException instance.
This information includes the following:

B User-defined data that is exposed by the Data property.

B Diagnostic information that is exposed by the Diagnosticinformation property. This
property encapsulates the ms-diagnostics or ms-diagnostics-public header as reported
by the server.

B SIP error code that is encapsulated in the FaultCode property.

B Data of a response, which is exposed by the ResponseData property, when a SIP
request for presence publication or subscription is returned.

When an exception is thrown from a worker thread that is used by UCMA and the exception
is not handled within that worker thread, the exception is not caught, even if the application
has a try/catch block to handle the same type of exception. This applies even when the
exception is thrown from the application’s other threads, including the main thread or worker
threads that are created by the application.

In UCMA, two likely sources of these exceptions are event handlers and callback functions
that the API supports. An unhandled exception from such a worker thread causes the
application to fail. In general, this result is expected because it ensures that the exceptions
are investigated. An application should implement all of the required exception-handling
routines in the event handlers and callback functions to catch these exceptions and to
recover or report the errors. It is possible that some exceptions remain unhandled. However,
to prevent applications from failing because of unhandled exceptions, you can use the
UnhandledExceptionManager class that the UCMA API exposes.

To use the UnhandledExceptionManager class, you must create an instance of the Unhandled-
ThreadPoolExceptionHandler delegate and register it with the UnhandledExceptionManager

Chapter 10 Debugging a Unified Communications Application 321

class. You can handle such exceptions in the delegate in two ways: ignore the exception to
keep the application running, or allow the exception to make the application fail.

When an exception is raised in a worker thread and is not handled within the worker thread,
the registered delegate is called. To ignore the exception, the delegate must return True so
that the unhandled exception will not cause the application to fail. If the delegate returns
False, the application fails.

The following C# code example shows how to register an UnhandledThreadPoolException-
Handler delegate with the UnhandledExceptionManager class by setting the VerifyAndlgnore
UnhandledThreadPoolException property.

// Configure UnhandledExceptionManager class to log uncaught exceptions
UnhandledExceptionManager.VerifyAndIgnoreUnhandledThreadPoolException =
this.LogAndIgnoreUncaughtExceptions;

The delegate instance is the LogAndIgnoreUncaughtExceptions method of the calling class.
The following C# code example shows one way to handle the exception: ignore the exception
after you log it.

bool LogAndIgnoreUncaughtExceptions(Exception ex, WaitCallback method, Object state)
{

System.Diagnostics.Trace.WriteLine(ex.ToString());
return true;

Debugging UCMA Core Applications

The following sections look at some case studies in which some common bugs are detected
and debugged.

Troubleshooting Application Initialization Failures

After a UCMA Core application is configured as a trusted application by Office
Communications Server, you must start the UCMA Core application from an account that
permits readable access to certificates and private keys or writable access to log files when
using OCSLogger. Typically, an administrator account has these privileges and can be used to
simplify testing the applications. However, in production mode, it is recommended that you
create a separate account that has the required permissions to run the applications.

When applications are started from an account that does not have the required permissions,
these applications fail during initialization, and the API throws an exception of the
TIsFailureException type. Listing 10-4 shows a C# code example that attempts to start a
UCMA application that uses the server platform and is configured as trusted by Office
Communications Server.

322 PartV Debugging, Tuning, and Deploying Unified Communications Applications
LISTING 10-4 Example of C# Code That Creates a CollaborationPlatform Object Before Starting a UCMA
Application

public void InitializeServerPlatform(X509Certificate2 cert,
string userAgent, string localhost, int port, string gruu)

{
//Collaboration platform initialization
ServerPlatformSettings platformSettings =
new ServerPlatformSettings(userAgent, Tocalhost, port, gruu, cert);
_collabPlatform = new CollaborationPlatform(platformSettings);
}

When the code in Listing 10-4 is invoked without the proper permissions, an exception of
the TIsFailureException type is thrown. Figure 10-5 shows this exception in Visual Studio
Debugger.

. Exception was unhandled x

the operation failed due to issues with Tls, See the exception for more
information,

Troubleshooting tips:

i Get general help forthis exception, -

lom

Search for rore Help Crline..,

Actions:
Wiew Detail ..
Copy exception detail to the clipboard

FIGURE 10-5 Visual Studio display of a t/s-failure exception that is not handled by the application.

If you try to run or debug this code by using correct permissions, it executes without any
exceptions. To open an application using the correct permissions in a test environment
without creating a dedicated account, right-click the application executable file in Windows
Explorer, and then select Run As Administrator.

If you use a console window to test the application, open the application by typing the
command runas/user:administrator myApp.exe at a command prompt.

You are prompted to enter the correct administrator’s password before the application starts.
One way to remind the application user to run the application with the correct permissions

is to catch and handle this exception by using a try/catch block. The following code example
shows an example of this.

pubTlic void InitializeServerPlatform(X509Certificate2 cert,
string userAgent, string localhost, int port, string gruu)
{
//Collaboration platform initialization
ServerPlatformSettings platformSettings =

Chapter 10 Debugging a Unified Communications Application 323

new ServerPlatformSettings(userAgent, localhost, port, gruu, cert);

try
{
_colTlabPlatform = new CollaborationPlatform(platformSettings);

}
catch (Microsoft.Rtc.Signaling.T1sFailureException t1sEx)
{

System.Windows.Forms.MessageBoxShow(

"You must Taunch this application with elevated permissions.™);

System.Environement.Exit(-1);

}

Troubleshooting Endpoint Connection Failures

A UCMA Core application must connect an endpoint to Office Communications Server
before the endpoint can communicate with other endpoints. Such an operation is known as
signing in an endpoint and must be performed after the endpoint is created and before any
other operations are performed. Failures may occur if the server is not available or does not
exist or if the endpoint cannot be authenticated or registered.

Programmatically, the operation of signing in an endpoint begins by calling the
BeginEstablish method and ends after the EndEstablish method returns asynchronously.
When failures are encountered, exceptions are thrown. Any error that occurs in the
BeginEstablish method causes the InvalidOperationException to be thrown. In addition, unless
a more specific exception is raised, any error that occurs in the EndEstablish method causes
the RealTimeException to be thrown. When unhandled, an exception disrupts the execution
of an application, which frequently leads to an unwanted user experience. In production
code, you should always be prepared to catch exceptions at run time and handle them
appropriately. You should also inform the user about the nature of the failures and provide
information about how to recover from the problems.

When signing in an endpoint, a misspelled SIP URI will cause a RegisterException to be
thrown at run time. In this case, it makes sense for the application to display the mistyped
SIP URI and give the user an opportunity to correct the mistake. You can do this by using a
try/catch block in any managed API application.

Generally, the call to start an asynchronous operation (BeginXXX) should have at least one
InvalidOperationException catch block to handle otherwise unhandled UCMA Core excep-
tions. Similarly, a call to end an asynchronous operation (EndXXX) should have at least one
RealTimeException catch block to handle otherwise unhandled UCMA Core exceptions.

More specific exceptions frequently provide additional information that may help you design
a corrective measure programmatically. For example, if an AuthenticationException is caught
and the data in the exception indicates that the credentials are missing, an application can
retry by requiring the user to enter the correct credentials.

324

Part V. Debugging, Tuning, and Deploying Unified Communications Applications

The C# code example in Listing 10-5 shows exceptions that may be caught when establishing
an endpoint. In this example, the error-handling routines are rather trivial in that only error
messages and other related information are displayed in a message box (System.Windows.
Forms.MessageBox). The application proceeds only when the endpoint is established
successfully and shows a SIP response of 200 OK.

LISTING 10-5 C# Code Example That Illustrates the Exception-Handling Pattern That Can Be Caught in the
LocalEndpoint.BeginEstablish and the LocalEndpoint.EndEstablish Methods in a UCMA Application

void BeginEndpointRegistration(LocalEndpoint endpoint)

{
if (endpoint == null)
return;
try
{
AsyncCallback callback = new AsyncCallback(EndEndpointRegistration);
endpoint.BeginEstablish(callback, endpoint);
}
catch (InvalidOperationException ioEx)
{
System.Windows.Forms.MessageBox.Show("InvalidOperationException: " +
ioEx.Message) ;
}
}
void EndEndpointRegistration(IAsyncResult result)
{
try
{
LocalEndpoint endpoint = result.AsyncState as LocalEndpoint;
SipResponseData response = endpoint.EndEstablish(result);
if (response.ResponseCode == 200)
{
GetProvisioningData(endpoint);
if (endpoint is UserEndpoint)
SubscribeToContacts(endpoint as UserEndpoint);
}
}
catch (AuthenticationException authEx)
{
string msg = "AuthenticationException while establishing endpoint" +
Environment.NewLine;
msg += "\tErrorMessage = " + authEx.Message + Environment.NewLine;
msg += "\tFailureReason = " + authEx.FailureReason.ToString() +
Environment.NewLine;
msg += "\tErrorCode = " + authEx.ErrorCode + Environment.NewLine;
msg += "\tSupported Protocols = " + authEx.SupportedAuthenticationProtocols.

ToString(Q);

System.Windows.Forms.MessageBox.Show(msg) ;

// Application can have logic to retry the endpoint establishing
operation with

// the correct credentials.

Chapter 10 Debugging a Unified Communications Application 325

if (authEx.FailureReason == AuthenticationFailureReason.MissingCredentials)
{
// Retry endpoint prep with the correct credentials and start the
endpoint
// registration again.
_userEndpoint.Credentials = CredentialCache.DefaultNetworkCredentials;
this.BeginEndpointRegistration(_userEndpoint);
}
I
catch (OperationTimeoutException otEx)
{
string msg = "OperationTimeoutException while establishing endpoint" +
Environment.NewLine;
msg += "\tErrorMessage = " + otEx.Message;

System.Windows.Forms.MessageBox.Show(msg) ;

// This exception may indicate that the underlying OCS 1is down. In this case,

// The application may want to poll the server to retry the endpoint
connection.

}
catch (RegisterException regExcept)
{
string msg = "RegisterException while establishing endpoint" + Environment.
NewLine;
msg += "\tErrorMessage = + regExcept.Message + Environment.NewLine;
msg += "\tresponseCode = " + regExcept.ResponseData.ResponseCode +
Environment.NewLine;
msg += "\tresponseText = " + regExcept.ResponseData.ResponseText +
Environment.NewLine;
msg += "\tFrom: " + regExcept.ResponseData.FromHeader.ToString() +
Environment.NewLine;
msg += "\tTo: " + regExcept.ResponseData.ToHeader.ToString() + Environment.
NewLine;
System.Windows.Forms.MessageBox.Show(msg) ;

}
catch (RealTimeException exc)
{
string msg = "Caught RealTimeException while establishing endpoint" +
Environment.NewLine;

msg += Exception Name = " + exc.GetType().FulIName + Environment.NewlLine;
msg += " Exception Message = " + exc.Message + Environment.NewLine;
if (exc.GetBaseException() != null)
msg += "\tBaseException="+exc.GetBaseException().GetType().
FulT1Name+Environment.NewLine;
if (exc.InnerException != null)
{
msg+="\tInner Exception Nmae="+exc.InnerException.GetType().FullName+
Environment.NewLine;
msg+="\tInner Exception Message = " + exc.InnerException.Message +
Environment.NewLine;
}

System.Windows.Forms.MessageBox.Show(msg) ;

326

Part V Debugging, Tuning, and Deploying Unified Communications Applications

Figure 10-6 shows a RegisterException caught by the code example in Listing 10-5 when the
owner URI (“sip;john@contoso.com”) of the endpoint does not match any existing user. This
incorrect URI string can be extracted from the FromHeader property of the RegisterException.

RegisterException while establishing endpoint
Errartdessage = The endpoint was unable to register, See the ErrorCode
far specific reason,
responseCode = 404
responseText = Mot found
Frorn: <siptjohni@contoso.corn = epid=3F63941419;tag=126cf0f 1a2
Tor
<sipjohn@contoso.com »;tag=9EADADGFFFF3631DES1IDDASEETTEA232

FIGURE 10-6 An application-generated display of an endpoint registration exception.

The RegisterException instance contains other information that can be useful in determining
what went wrong. For example, the Message property gives the general description of the
exception and the StackTrace or DetectionStackTrace property details the call stack tracing.
The Diagnosticinformation property contains the ms-diagnostics or ms-diagnostics-public
header of the SIP message returned from the server.

When a server name that does not exist is specified in an attempt to establish an endpoint,
an exception of the ConnectionFailureException type is thrown. In the code example in
Listing 10-5, this exception is caught by the catch block for the RealTimeException type, as
shown in Figure 10-7.

Caught RealTimeException while establishing endpoint
Exception Marme = Microsoft.Ric Signaling. ConnectionFailureException
Exception Message = Transport error occured while sending,
BaseException= Systern.Met. Sockets, SocketException
Inner Exception Type=Systern. MetSockets SocketException
Inner Exception Message = Mo such knouwn host

FIGURE 10-7 An application-generated display of an unspecified real-time exception.

If no try/catch block is implemented, you can catch unhandled exceptions and examine
the failure conditions by using Visual Studio Debugger. Figure 10-8 shows an unhandled
ConnectionFailureException instance that is caught by the Visual Studio Debugger when
the execution breaks at a call to the EndEstablish method for an endpoint object. For more
information about the exception, click View Detail.

Chapter 10 Debugging a Unified Communications Application 327

/I, ConnectionFailureException was unhandled by user code X

Transport error occurred while sending.

Troubleshooting tips:
Get general help for exceptions. -

InnerException: Check the ErrorCode property to determine why the socket error occurred. E|

Get general help for the inner exception. -

Search for more Help Online...

Actions:

Wiewr Detail...

Enable editing

Copy exception detail to the clipboard

FIGURE 10-8 Exception caused by a connection failure that is unhandled by the application shown in Visual
Studio.

The View Detail dialog box, seen in Figure 10-9, shows that the attempt to establish a
connection failed because the specified server is unknown.

Wiew Detail E
Exception snapshot:
B Micresoft.Rte Signaling.ConnectionFailureException {"Transport error occurred while sending."}
[Microsoft.Rtc.Signaling.ConnectionF ailureException] {"Transport error occurred while sending.”}
Data {Systern.Collections ListDictionarylnternal}
DetectionStackTrace " at System.Environment.get_StackTrace(yrin at Microsoft.Rtc.Si
HelpLink null
InnerException I"Mo such host is known"}
Message “Transport error occurred while sending.”
Source "Microsoft.Rtc.Collaboration”
StackTrace " at Microsoft Rtc.Signaling.SipAsyncResultl ThrowIfF ailed(iryn
TargetSite fvoid ThrowdfFailed(}

FIGURE 10-9 The View Detail dialog box of an unhandled exception caught by Visual Studio Debugger, show-
ing that the connection-failing exception was caused by an unresolved server.

Connection attempts may fail in other situations. For example, if an incorrect port number
(serverPort) is specified, the ConnectionFailureException instance is thrown when the execu-
tion breaks at the call to the EndEstablish method.

Troubleshooting Conversation Failures

After an endpoint is signed in to Office Communications Server, the UCMA Core application
can initiate a conversation with another active endpoint. The conversation type or modalities
can be any of the following: instant messaging, audio and video calling, data sharing, and
conferencing. The process involves creating one or more conversations; inviting one or more

328

Part V Debugging, Tuning, and Deploying Unified Communications Applications

participants to a conversation call; and exchanging text, media, or data through media-
appropriate call flows.

Failures or errors can occur at each step. Some errors are of local origin caused by the
application. Other errors are caused by network conditions or depend on a remote
participant's state and capabilities. Programmatically, the errors can be caught by using
various exception classes. For example, ArgumentException and InvalidOperationException
encapsulate common errors of local origin. ServerPolicyException and FailureResponseException
represent common failures of remote origin.

OperationTimeoutException reflects a failure of an unknown nature of remote origin, for
example, when the network connection ends while the application is in the middle of an
active conversation.

All of these exceptions can be handled by using appropriate try/catch blocks. You can log
failures of remote origins by enabling tracing and examine them by using Snooper.

An InvalidOperationException is thrown when an application attempts to start a new
conversation with existing conversation settings and then binds itself to the newly created
Conversation instance. For example, calling the following C# code example two times throws
an InvalidOperationException instance unless the existing conversation is terminated first or
the id parameter of the conversation settings is updated.

string priority = ConversationPriority.Normal;

string subject = "Test";

string id = "MY_CONV";

ConversationSettings settings = new ConversationSettings(priority, subject, id);
_conversation = new Conversation(_userEndpoint, settings);

The following error message is produced from this exception.

"The conversation that is being bound already exists."

FailureResponseException may also be thrown during a conversation. This can occur when, for
example, an application tries to invite a user to a conversation but the invited user is either
offline or nonexistent. In this case, the exception is thrown when the application tries to make
the call, as illustrated by the C# code example in Listing 10-6. This code example presents a
simplified version of a functioning routine for starting an instant messaging conversation.

Note The following code example is for illustration only. A production code would most likely
use an asynchronous programming pattern to establish the call and provide more meaningful
exception-handling logic than displaying only the debugging information.

Chapter 10 Debugging a Unified Communications Application 329

LISTING 10-6 C# Code Example That Illustrates FailureResponseException Thrown During a Conversation

Conversation _conversation;
InstantMessagingCall _imCall;

UserEndpoint _userEndpoint;

pubTlic void StartImConversation(string sipUri)

i
try
{
string priority = ConversationPriority.Normal;
string subject = "Test";
string id = "MY_CONV";
ConversationSettings settings = new ConversationSettings(priority, subject,
id);
if (_conversation != null && _conversation.State != ConversationState.
Terminated)
{
_conversation.EndTerminate(_conversation.BeginTerminate(null, null));
}
_conversation = new Conversation(_userEndpoint, settings);
_imCall = new InstantMessagingCall(_conversation);
_imCall.EndEstablish(_imCall.BeginEstablish(sipUri, null, null, null));
_imCall.Flow.MessageReceived +=
new EventHandler<InstantMessageReceivedEventArgs>(Flow_
MessageReceived) ;

// Bubble up the successful call-established event to the caller
if (OnImCallEstablished != null)
Utilities.RaiseEvent(this, OnImCallEstablished, null);
}
catch (FailureResponseException frEx)
{
string msg = "Caught while establishing IM Call." + Environment.NewLine;
msg += "\tMessage=" + frEx.Message + Environment.NewLine;
msg += "\tResponseCode=" + frEx.ResponseData.ResponseCode + Environment.
NewLine;
msg += "\tResponseText=
NewLine;
msg += "\tStackTrace=" + frEx.StackTrace + Environment.NewLine;
System.Windows.Forms.MessageBox.Show(msg, frEx.GetType().FullName);

+ frEx.ResponseData.ResponseText + Environment.

In Listing 10-6, the invited party is specified by the sipUri parameter. If this user is from the
same enterprise as the caller and is offline, a FailureResponseException instance is thrown at the
_IimCall.EndEstablish(_imCall.BeginEstablish(sipUri, null, null, null)) statement. The explanation
is provided in the ResponseCode and ResponseText properties of FailureResponseException,

as shown in Figure 10-10. Their values are 480 and Temporarily Unavailable, respectively.
Such failure conditions also show up in the log file that is generated by running the Office
Communications Server Logging Tool (OCSLogger.exe).

330 PartV Debugging, Tuning, and Deploying Unified Communications Applications

Microsoft.Rtc. Sighaling.FailureResponseException

Caughtwhile establishing IM Call,

Message=The operation has failed. See the exception's properties as
weell a3 the logs for additional infarmation,

ResponseCode=430

ResponseText=Temporarily Unavilable

StackTrace=at Microsoft.Rtc.Signaling. SipAsyncResult~1ThrowFailed()
at Microsoft.Rtc.Signaling Helper End&syncOperation[T]{Object
ouvner, JAsyncResult result) at
Microsoft.Rtc Sighaling.Helper.EndfsyncOperation[T](Object owner, [SsyncResult
result, Stting operationid) at
Microsoft.Rtc. Collaboration. Call.EndEstablish Core@AsyncResult result) st
Microsoft.Ric. Collaboration, Call=endEstablishT&syncResult result) at
Debugging. Client StartlmConversation(String siplr) in Client.csiline581

FIGURE 10-10 An application-generated display of a failure caused by inviting an unavailable user.

When the invited party is unknown, the FailureResponseException instance returns 404 and
Not Found as the ResponseCode and ResponseText property values, respectively. A specified
user is considered not found if the user is not assigned a SIP URI within the same enterprise
as the caller or if the SIP URI refers to a federated user who is either offline or nonexistent.

Debugging UCMA Workflow Applications
Debugging a UCMA Workflow application involves the following three tasks:

B Debugging the workflow (.xoml) components of the application
B Debugging the code of the hosting application

B Debugging the code other than the workflow activities and events, including the
UC-specific instant messaging, speech, and presence-querying activities and events

To debug the hosting application component and the code that is not part of the workflow
activities and events, follow the process for debugging UCMA Core applications that was
discussed earlier in this chapter. The following sections focus only on how to debug the
workflow component.

Specifically, these sections discuss how workflow exceptions are handled by using the fault
handler activities that are defined in the Windows Workflow Foundation. After that, the steps
that are involved in debugging a workflow are explained.

Enabling Tracing

The UCMA Workflow relies on the UCMA Core to enable the local endpoint to communicate
and collaborate with remote endpoints. Therefore, tracing the protocol stack in the workflow
application is the same as in the UCMA Core application.

Chapter 10 Debugging a Unified Communications Application 331

To enable tracing for the hosting application and the code besides the activities, follow
the instructions given in the section titled "Debugging UCMA Core Applications” earlier in
this chapter. To enable tracing for the workflow execution, add the following configuration
settings shown in Listing 10-7 to your project’s App.config file.

LISTING 10-7 Configuration Settings to Enable Tracing for the Workflow Application

<configuration>
<system.diagnostics>
<switches>
<add name="System.Workflow.LogToTraceListeners" value="1"/>
<add name="System.Workflow.RunTime.Hosting" value="A11"/>
<add name="System.Workflow.Runtime" value="A11"/>
<add name="System.Workflow.Activities" value="A11"/>
</switches>
<trace autoflush="true" indentsize="4">
<listeners>
<add name="customListener" type="System.Diagnostics.
TextWriterTracelListener"
initializeData="WFTrace.log" />
</1isteners>
</trace>
</system.diagnostics>
</configuration>

In Listing 10-7, the <system.diagnostics> element specifies trace levels and trace listeners.
The specified trace levels are declared in the <switches> child element. The specified trace
listeners are declared in the <listeners> child element and are used to collect, store, and
route tracing messages. For more information, see “Trace and Debug Settings Schema” at
http.//go.microsoft.com/fwlink/?linkid=143291. In this example, if run-time exceptions are
thrown from any workflow activity of your application, the error conditions are logged into
the specified log file (WFTrace.log). The log file should be located in the application’s current
directory where the application executable is located. The following is an example entry in
this log file.

System.InvalidOperationException: Accept Call activity ‘acceptCallActivityl’ cannot run.
The Call (AudioVideoCall or InstantMessagingCall) 1is not in the incoming state. The current
state is ‘Terminated’.

at Microsoft.Rtc.Workflow.Activities.AcceptCallActivity.AcceptCall()

at Microsoft.Rtc.Workflow.Activities.AcceptCallActivity.Execute(ActivityExecutionContext
executionContext)

at System.Workflow.ComponentModel.ActivityExecutor 1.Execute(T activity,
ActivityExecutionContext executionContext)

at System.WorkfTlow.ComponentModel.ActivityExecutor 1.Execute(Activity activity,
ActivityExecutionContext executionContext)

at System.Workflow.ComponentModel.ActivityExecutorOperation.Run(IWorkflowCoreRuntime
workflowCoreRuntime)

at System.WorkfTow.Runtime.Scheduler.Run()

332

Part V. Debugging, Tuning, and Deploying Unified Communications Applications

The log file should provide a description of the message and the workflow activity call stack.
This shows the location where an error is detected or an exception is thrown.

Handling Exceptions Using the Fault Handler Activity

In Windows Workflow Foundation, on which the UCMA Workflow is based, exceptions
are handled by using fault handler activities. Each fault handler activity is an instance of
the FaultHandlerActivity type. The FaultHandlerActivity type is supported in the Windows
Workflow Foundation and corresponds to an error handler that has a specified .NET
Framework exception type.

Adding a fault handler activity is similar to inserting a try/catch block within the activity. By
default, the UC workflow application templates, which are made available in Visual Studio by
the UCMA SDK, support a general fault handler for the System.Exception type. This general
fault handler is added at the top level of a workflow and catches all unhandled exceptions
that are encountered by any activities in the workflow.

Whenever an exception is thrown, this fault handler is called to invoke an event-handling
code routine. This code routine is named HandleGeneralFault by the UCMA Workflow
application templates. The event-handling code is bound to a Code activity that is part of
the general fault handler. To better understand how this works, the implementation of the
HandleGeneralFault method, as provided by the UC workflow application template, is shown
in Listing 10-8.

LISTING 10-8 Implementation of the HandleGeneralFault Method as Provided by the UC Workflow
Application Template

/// </summary>
/// <param name="sender"></param>
/// <param name="e'"></param>
private void HandleGeneralFault(object sender, EventArgs e)
{
// When an exception is thrown the actual exception is stored in the Fault property,
// which is read-only. Check this value for error information;
if it is an exception,
// ToString() will include a full stack trace of all inner exceptions.
string errorMessage = generalFaultHandler.Fault.ToString(Q);

Trace.Write(errorMessage) ;

if (Debugger.IsAttached)
{
// If the debugger is attached, break here so that you can see the
error that occurred.
// (Check the errorMessage variable above.)
Debugger.Break();

Chapter 10 Debugging a Unified Communications Application 333

When an unhandled exception is thrown, the general fault handler is invoked and the code
in Listing 10-8 is run. This fault handler method stops the debugger at the Debugger.Break
statement so that the reported error message can be examined. The error message is also
logged to a trace listener that is configured by the hosting application or the default trace
listener. This is a simple approach to event handling, and it can be enhanced by adding
application-specific behaviors.

Debugging UCMA Workflow Applications

The following sections demonstrate how to perform the two most basic tasks to debug the
UC workflow application:

1. Step through the workflow in the Visual Studio Debugger.

2. Implement a custom fault handler activity to catch a specified exception.

Stepping Through the UC Workflow

Stepping through a workflow is similar to stepping through code in the Visual Studio
Debugger, but with a somewhat different experience. A workflow defines the flow of activi-
ties or events as the execution proceeds. However, other information about the execution
context is not available. This is the major difference between debugging a workflow and
debugging the code. The following describes the steps for debugging a workflow in Visual
Studio Debugger.

1. Set a breakpoint.

Select a workflow activity in the workflow design (xmol file), and then press the F9 key.
Pressing F9 again toggles the breakpoint off. A red circle appears on the selected
component when the breakpoint is enabled as shown here, where a breakpoint is set
on the speechQuestionAnswerActivity2 instance. This illustration is based on the lab
exercise in Chapter 6, “Business Process Communication.” The speechQuestionAnswer-
Activity2 instance represents the question in the exercise that asks for the caller’s
student ID number.

334 PartV Debugging, Tuning, and Deploying Unified Communications Applications

= communications SequenceActivityl

% speechQuestiond
hisuve R tvity

B ifElsedctivityl
&%
2
| [} |
ifElseBranchictivityl ifElseBranchictivityd

= speechQuestiond
" nswerdctivitg2

L
< 35|-@

getPresencedctivi

tyl
v

| L codedctivitgl

&

2. Start debugging.
Pressing the F5 key starts the debugging process. In the previous illustration, the
execution breaks before the question that is represented by the speechQuestionAnswer-
Activity2 instance is asked. The execution continues until the first breakpoint is hit. The
activity that has the shaded border around it (which appears yellow in Visual Studio)
signifies this first breakpoint being hit in the Visual Studio Debugger for Windows

Workflow.

= communications SequenceActivityl

% speechQuestiond,
nzneerfctivityl

>

B ifElsefctivityl

I hd 7} |
ifElseBranchactivityl ifElseBranchactivity?
= =

IEZ speechQuestiond,
nsweerdctivity?

¥ 1
etPresencefctivi

9
oyl

&

v

| S codedctivityl

3. Step through the workflow.

Chapter 10 Debugging a Unified Communications Application 335

To continue, you can step through the workflow by pressing the F5, F10, or F11 key. The
F5 key causes the workflow to run until it hits the next breakpoint or until the workflow
ends normally. The F10 or F11 key runs the activity and moves the workflow to the next
activity. If a breakpoint has been set on any code routine besides the associated Code
activity, that breakpoint will be hit.

The code routine besides the codeActivityl instance is shown here. When the workflow
passes through codeActivityl, the breakpoint set on the first statement of the code
snippet is hit and the execution is stopped at the boxed line.

EE private void codehetivityl ExecuteCode (object sender, Eventhrgs e)
{

4] ictionary<RealTlimeAddress, PresenceResult> results =
EH this.getPresenceActivityl.Results;]

foreach (RealTimelddress address in results.Keys)
{

if (results[address].PresenceStatus == FresenceAvailability.Online)

this.blindTransferActivityl.CalledParty = address;
this. sipOnlineFound = true;
break;

Catching and Handling Custom Exceptions

Each fault handler has its scope of effectiveness. A scope defines a group of activities such
that exceptions raised by any activity within the group are handled by the fault handler
within the scope. In the Visual Studio Workflow Designer, activities that are enclosed in a
box share the same scope. Activities of a certain scope can be grouped further into smaller
scopes. This means that a scope can be embedded in other scopes.

The fault handlers of a given scope may be added to the first activity along an execution
path fragment. In Workflow Designer, this activity is located at the top of a given box. A
drop-down menu (indicated by an downward-pointing arrow) is displayed when the mouse
pointer rests on the box. When you click the drop-down menu, it displays a list of menu
items that lets you open the Fault Handlers View, where you can add, modify, or remove one
or more fault handlers.

The following steps demonstrate how to add a fault handler for an exception of the
Microsoft.Rtc.Signaling.RealTimeException type to an IfElse activity. The scope of the fault
handler covers all of the activities along the pathways that originate from the /fElse activity.
The workflow example is based on Lab 6, Exercise 1 in Chapter 6 of this book.

1. Click ifEsleActivity? in the Workflow Designer to select the activity. As shown here, the
bounding outline indicates the scope of the fault handler to be added.

336

Part V Debugging, Tuning, and Deploying Unified Communications Applications

= ifElsedctivityd

]
| h |
ifElseBranchactivityd ifElseBranchactivityd
| 0 |
blindTransferdcti speechitaternent
~
* wityl © Activityl
| . |
T

2. Click the arrow under ifElseActivity2, and then select View Fault Handlers to change the
Designer view to display all fault handlers defined in your applications, as shown here.

o W

= ifElseActivity2

ifElseBranchfctivityd

ﬂv

—— % iew FElse

View Cancel Handler

| 1
blindTransferActi speechStaternent
-~
{“' wityl [D Activityl }

. |

3. Drag a FaultHandler activity from the Windows Workflow v3.0 Tools panel in
Visual Studio, as shown here. Drop this fault handler activity into the fault handler
container named faultHandlersActivity3, which is defined for the IfElse activity named
ifElseActivity2. When specifying a fault handler activity, it must be introduced in a fault
handler container.

= ifElsedctivityd
i)

F

faultHandlersfctivity 3

faultHandlersctivity 2

P
|
Drop Activities
Here

v

The added fault handler has a default name of faultHandlerActivity2. You can change
this name by resetting the Name property value in the Properties window in Visual
Studio.

4. In the Properties window, set the FaultType property for the fault handler activity that
you just added (faultHandlerActivity2) to Microsoft.Rtc.Signaling.RealTimeException,

Chapter 10 Debugging a Unified Communications Application 337

as shown here. This makes the fault handler catch all exceptions of type
RealTimeException.

Properties > 1 X
faultHandlerActivity2 Systemiforkflow.Componentiodel FaultHandlerdctivity -
M=
faultHandler Activity 7
Description
Enabled True

Fault
FaultType Microsoft.Rtc.Signaling.RealTimeException

. Drag a Code activity from the Tools panel (under Windows Workflow v3.0) in Visual
Studio and drop it below faultHandlerActivity2. The newly added Code activity instance
is named codeActivity4, as shown here.

B ifElsedctivity?

]
faultHandlersActivity3
Ep
© ©

faultHandlerfctivity?

This Code activity is used to provide exception handling. You need to supply the
exception-handling routine as the code-besides to the Code activity. You can also
use another activity to handle the exception in other ways. For example, you can use
Compensate to revert a failed transaction.

. In the Properties window of codeActivity4 in Visual Studio, enter the HandleRtcFault
string as the value of the ExecuteCode property, as shown here, and then press Enter.

Froperties -1 X
codefctivityd System Workflow Activities Codelctivity -

(Name) codelctivityd
Descriptic

Enabled True
Execute (s HandleRtcFault

Setting the ExecuteCode property creates an event handler stub to which you can add
application-specific exception-handling logic. The event handler stub is listed as the

338 PartV Debugging, Tuning, and Deploying Unified Communications Applications

private HandleRtcFault method in the Windows1.xoml.cs file. The following is a sample
implementation.

private void HandleRtcFault(object sender, EventArgs e)

{

string errorMessage = this.faultHandlerActivity2.Fault.Message;
string stackTrace = this.faultHandlerActivity2.Fault.StackTrace;
Trace.WriteLine("Error message: {0}", errorMessage);
Trace.WriteLine("Stack trace: {0}", stackTrace);

}

Repeat steps 1 through 6 to add another fault handler. However, the order in which
fault handlers are added must be such that the more specific type of exception is
added before the less specific type of exception. For example, if you add a FaultHandler
activity for System.Exception before you add a FaultHandler activity for Microsoft.Rtc.
RealTimeException to the same workflow activity, you get a compile-time error with the
following error message.

Activity ‘faultHandlersActivity3’ validation failed: A FaultHandlerActivity for
exception type ‘RealTimeException’ must be added before the handler for exception type
‘Exception’.

The reason this occurs is that System.Exception is more general than Microsoft.Rtc.
RealTimeException because the latter is derived from the former. The fault handler
for Microsoft.Rtc.RealTimeException never triggers because the fault handler for
System.Exception catches all of the exceptions thrown. After the second FaultHandler
activity is dragged to the beginning of the first one, the project compiles without
error.

Summary

This chapter provided a general overview of debugging in the UC platform. Before covering
the best practice for debugging UC applications, the source of errors and failures that may
be encountered in your applications was examined. COM error codes and common run-time
exceptions that may be raised by the UC APIs and the SIP error codes that will be reported by
protocol tracing were also reviewed.

This chapter also examined how tracing is enabled and discussed how to examine the log
files produced. The information presented should help you understand how to debug three
types of UC applications: Office Communicator Automation API applications, UCMA Core
applications, and UCMA Workflow applications.

Chapter 10 Debugging a Unified Communications Application 339

Additional Resources

B "Microsoft Office Communicator Automation API Error Codes” documentation
(http://go.microsoft.com/fwlink/?linkid=143321)

B "NET Framework Class Library COMException Class”
(http://go.microsoft.com/fwlink/?linkid=143309)

m "Unified Communications Client APl Error Codes”
(http://go.microsoft.com/fwlink/?linkid=143308)

B “"Communicator Error Messages”
(http://go.microsoft.com/fwlink/?linkid=143307)

B "Unified Communications Managed API 1.0 SDK" documentation
(http://go.microsoft.com/fwlink/?LinkID=133767)

B "Unified Communications Management AP| 2.0 Core SDK Documentation”
(http://go.microsoft.com/fwlink/?LinkID=133571)

B “Network Working Group: SIP: Session Initiation Protocol”
(http://go.microsoft.com/fwlink/?LinkID=143940)

m “[MS-SIP]: Session Initiation Protocol Extensions”
(http://go.microsoft.com/fwlink/?linkid=143292)

B “Trace and Debug Settings Schema” (http.//go.microsoft.com/fwlink/?linkid=143291)

Glossary

2007 R2 release of Microsoft Office
Communicator Mobile for Windows
Mobile See Office Communicator
Mobile for Windows Mobile.

2007 R2 release of Microsoft Office
Communicator Web Access See Office
Communicator Web Access.

Access Edge Server A server role that is
located in the perimeter network and
validates external users. In the Office
Communications Server 2007 R2 consoli-
dated edge topology, this server role is
collocated on the same computer as the
Office Communications Server 2007 R2
Edge Server.

Access levels A setting in Office
Communicator 2007 R2 that enables
you to control the level of your presence
information that other people see.
Access levels (from least restrictive to
most restrictive) include Personal, Team,
Company, Public, and Blocked.

ACD Automatic Call Distributor.

ACK A SIP request that is used in a three-
way handshake, similar to Transmission
Control Protocol (TCP).

ACP Audio Conferencing Provider.

Active Directory Domain Services
(AD DS) The Windows-based directory
service. AD DS stores information about
objects on a network and makes this
information available to users and network
administrators. AD DS gives network users
access to permitted resources anywhere
on the network by using a single logon

process. It provides network administrators
with an intuitive, hierarchical view of the
network and a single point of administra-
tion for all network objects.

Address Book service A service that
provides Global Address List (GAL)
information from Active Directory
Domain Services (AD DS) to Office
Communicator 2007 R2. This service
can also perform phone number
normalization for Office Communicator
2007 R2 telephony integration. The
Address Book service runs on an Office
Communications Server 2007 R2 Front
End Server and synchronizes SIP user
data on the client with updates from
AD DS.

Advanced media gateway A category of
media gateway vendors that does not
require deploying Mediation Servers to
interface with Office Communications
Server 2007 R2.

Agent A user who is designated as a
member of a Response Group. Response
Group settings determine which calls will
be routed to a particular agent or group
of agents. There are two kinds of agents:
formal and informal. A formal agent must
sign in and sign out of the Response
Group. An informal agent is not required
to sign in or sign out and would typically
be someone who covers calls on a part-
time basis.

Agent Communications Panel for
Microsoft Dynamics CRM 4.0 An
application add-in that provides presence

341

Glossary

information in addition to instant mes-
saging (IM) and call control capabilities
within Microsoft Dynamics CRM 4.0. This
application can also be used as a Response
Group agent that enables users to sign in
and sign out of Response Groups.

AJAX Asynchronous JavaScript and XML.

Allow/Block lists In the context of an
individual user, a Block list refers to
contacts to whom the user has assigned a
permission level of Blocked, which means
that the contact cannot view the user’s
presence information or contact the
user. The Allow and Block list terminol-
ogy is also used in the context of Office
Communications Server 2007 R2 Edge
Server configuration. Server administra-
tors can configure the Access Edge Server
properties to explicitly allow or block
communication with other domains.

Anonymous user An external user who
does not have credentials in Active
Directory Domain Services (AD DS).
Unlike a federated user, an anonymous
user is not authenticated.

Answering agent Used with the
Deployment Validation tool to simulate
an answering machine. When users call an
answering agent, those users are prompted
to record a message. After the message
has been recorded, it is replayed immedi-
ately. This gives the user an opportunity to
verify the audio quality of the call.

Application Server A component of Office
Communications Server 2007 R2 that
provides a platform to deploy, host,
and manage Unified Communications
applications.

Application Sharing Server A component
that resides on the Front End Server
and is responsible for managing and

streaming data for conferences that
require desktop sharing.

Application Sharing Server A server role
introduced in Office Communications
Server 2007 R2 Front End Server that
manages and streams data for conferences
that share applications or an entire desktop.

ArchivingCdrReporter An Office
Communications Server 2007 R2
Resource Kit Tool that enables you to
quickly create reports drawn from either
the Archiving Server database or the
Monitoring Server database.

Archiving database A SQL Server data-
base that, with the Archiving Service,
comprises the Archiving Server role. This
database stores instant messaging (IM)
conversations and IM group conferences.

Archiving Server A server role in the
internal network that captures all IM
conversations and IM group confer-
ences and stores them in a SQL Server
database. With Office Communications
Server 2007 R2, the Archiving Server role
is separated from the Call Detail Record
(CDR) collection, which is now included in
the new Monitoring Server role.

Array A group of interconnected, identi-
cal processors operating synchronously,
often under the control of the central
processor. A group of servers that are
clustered behind a load balancer and
that are running the same server roles.

Attendant See Office Communicator 2007
R2 Attendant.

Audio conference A call that involves at
least three people.

Audio Conferencing Provider (ACP) A
third-party provider that enables PSTN
conferencing.

Authenticated caller A participant who
joins a VolP conference and is authenti-
cated through Active Directory Domain
Services (AD DS).

Authentication A method of associating
an identity with an entity. In a multiuser-
server operating system, the process by
which the system validates a user’s logon
information.

Authorization The right granted to an
individual to use the system and the data
that is stored on it. Typically set up by a
system administrator and verified by the
computer based on some form of user
identification, such as a code number or
a password.

Auto attendant A feature in Exchange
Unified Messaging (UM) that supplies
a caller with information and performs
an action without the intervention of a
human operator. It automatically routes
calls based on selections made by the
caller.

Autodiscover service A service that
returns server configuration information
for a mobile device or other client by
using only the user’s Simple Mail Transfer
Protocol (SMTP) e-mail address and
password.

Automatic Call Distributor
(ACD) Functionality that classifies,
queues, and distributes incoming calls to
agents or outgoing calls to lines.

A/V Audio/video.

A/V Conferencing Server An Office
Communications Server 2007 R2 server
in the internal network that mixes and
manages audio/video inputs from
multiple audio/video conferences. In
Office Communications Server, an A/V

Glossary

Conferencing Server must be deployed
if you want users to be able to start

a conference call by using Office
Communicator Web Access.

A/V Edge Server An Office
Communications Server 2007 R2 server
role in the perimeter network that
provides a single trusted point through
which media traffic can traverse NATs
and firewalls. It enables audio and video
conferencing and A/V peer-to-peer
communications with external users
equipped with the Office Communicator
2007 R2 or Office Live Meeting 2007
client. This server role can be collocated
with the Access Edge Server and Web
Conferencing Edge Server, or it can
reside on a separate, dedicated server.

Back-End Database A server role that
hosts the SQL back-end database, which
provides user information and conference
state, including persistent user data,
transient user data, and persistent Office
Communications Server 2007 R2 settings
to the Front End Server. The Back-End
Database is collocated with a Standard
Edition server. In an Enterprise pool, the
Back-End Database is deployed on a
separate, dedicated computer.

Basic Media Gateway A category of
media gateway vendors that requires the
deployment of Office Communications
Server, Mediation Server to work with the
Office Communications Server 2007 R2.

Best Practices Analyzer (BPA) The Office
Communications Server 2007 Best
Practices Analyzer Tool is a diagnostic
tool that gathers configuration informa-
tion from an Office Communications
Server 2007 environment and determines

344

Glossary

whether the configuration is set according
to Microsoft best practices.

BPA Best Practices Analyzer.

BYE A SIP request that is used to end a
session.

C3P Centralized Conferencing Control
Protocol.

CA Certificate authority.

Call Back Control A feature that provides
Enterprise Voice functionality and call
control to mobile phones and other
devices that are not otherwise enabled
for Enterprise Voice.

Call deflection The ability of a called party
to redirect the calling party to a different
phone number before picking up the call.

Call delegation A feature that was intro-
duced in Office Communications Server
2007 R2 that enables managers to del-
egate phone-call handling to one or
more administrative assistants or other
delegates. The receiver is notified when
a delegate answers a call, together with
which delegate answered.

Call Detail Record (CDR) A record that
contains information about a call. In
Office Communications Server 2007 R2, a
CDR is part of the Monitoring Server role,
and it captures and reports information
such as user logons and logoffs, instant
messaging conversations, usage details
about voice and video, and conference
starts and joins.

Call forwarding The process of auto-
matically forwarding a missed call to a
user-designated number, which can be
a registered SIP device, a PSTN number,
or voice mail. In Office Communications
Server 2007 R2, one way to configure

call forwarding is through the Response
Group Service.

Call Me Functionality that enables a
Communicator Web Access user to spec-
ify a phone number for joining an audio
conference, which is then used by Office
Communications Server to conference in
the user.

CANCEL A SIP request that is used to
cancel a session establishment process.

Category An Enhanced Presence concept
that is used by a Session Initiation
Protocol (SIP) client to publish or
subscribe to presence information. A
category enables basic identification
of the data that is being published. It
implies an agreed-upon schema for
interpreting the data. A category name
identifies a contract between a publisher
and a subscriber.

Category SUBSCRIBE A SUBSCRIBE
request that specifies the presentities and
the categories for which information is
requested.

Category subscriber A Session Initiation
Protocol (SIP) client that sent a category
SUBSCRIBE request.

CDP Certificate distribution point.
CDR Call Detail Record.

Centralized Conferencing Control Protocol
(C3P) A new conference manipula-
tion protocol that is used by the Office
Communications Server conferencing
servers to modify the conference state.
C3P has request/pending and response/
final response semantics that are similar
to SIP.

Certificate distribution point (CDP) The
location where you can download the

latest certificate revocation list. A CDP
is typically listed in the CRL Distribution
Points field of the Details tab of the
certificate.

Certificate revocation list (CRL) A file that
contains a list of revoked certificates,
their serial numbers, and their revocation
dates. Additionally, the CRL file contains
the name of the issuer of the CRL, the ef-
fective date, and the next update date.

Certificate authority (CA) An issuer
of digital certificates, the cyberspace
equivalent of identity cards. A certificate
authority may be an external issuing
company or an internal company author-
ity that has installed its own server for
issuing and verifying certificates.

Channel Server A server role for Office
Communications Server 2007 R2 Group
Chat that provides core functionality for
chat rooms, except for file posting, which
is managed through the Web Service.

Chat room A persistently available space
for exchanging instant messages where
authorized individuals can enter and
leave at will. Unlike a group IM confer-
ence, the complete contents of the chat
room remain available, even when there
are no participants, as long as the chat
room is open.

Chat Room History A Group Chat feature
that consists of saved messages that are
no longer displayed in a chat room, but
are searchable and readable.

CheckSPN A tool that is part of the
Office Communications Server 2007 R2
Resource Kit Tools, that validates service
principal names (SPNs) to avoid authenti-
cation and topology errors.

Glossary

Class In Active Directory Domain Services
(AD DS), the characteristics of an object
and the kind of information an object
can hold. For each object class, the sche-
ma defines the attributes that an instance
of the class must have and the additional
attributes that it might have.

Click to Call A feature of Office
Communicator 2007 R2 and the 2007 R2
release of Office Communicator Mobile
for Windows Mobile that enables a cel-
lular phone user to place a voice call by
clicking a contact’s single phone number
or SIP URI.

ClientLogReader A script that is part of
the Office Communications Server 2007
R2 Resource Kit Tools that scans client
trace log files to highlight errors, provide
protocol summaries, or filter out specific
protocol messages.

Codec An algorithm that is used to convert
media between digital formats, especially
between raw media data and a format
that is more suitable for a particular pur-
pose. Encoding converts the raw data to
a digital format. Decoding reverses the
process.

COM interop Component Object Model
(COM) objects that have Visual Studio
.NET. interoperability with COM. COM
interop enables you to use existing COM
objects while transitioning to the .NET
Platform at your own pace.

CommunicationsWorkflowRuntime-
Service Windows Runtime Service
that provides a way to pass UCMA call
objects, endpoint objects, and culture
information from the hosting environ-
ment to a workflow instance.

345

346

Glossary

Communicator call A VolP call that is routed
to all of a contact’s devices that are
running Office Communicator 2007 R2.

Communicator Web Access Server A
service that is run by Microsoft Internet
Information Services 6.0 and provides
the Web access to the client functional-
ity supported by Office Communications
Server inside an enterprise network.

Compliance Adherence to federal, state,
and local statutory requirements with
regard to the logging and archiving of
corporate communications.

Computer-level settings Settings that
are applied to a specific server in an
Enterprise Edition pool or to a Standard
Edition server.

Computer Supported Telephony
Applications (CSTA) An interna-
tional standard established by the Ecma
International (formerly ECMA) that
specifies an application’s interface and
protocols for monitoring and controlling
calls and devices in a communications
network.

Computer Telephony Integration (CTI) A
technology that allows interactions on
a telephone and a computer to be inte-
grated or coordinated. As contact chan-
nels have expanded from voice to include
e-mail messages, Web, and fax, the
definition of CTI has expanded to include
the integration of all customer contact
channels (voice, e-mail, Web, fax, and so
on) with computer systems. Computer
Telephony (CT) is the new term for this
technology.

Conference An instant messaging (IM),
audio, or video session that is mediated
by Office Communications Server.

Conference directory A feature that is
used to generate and to resolve personal
identification numbers (PINs) used for
PSTN conferencing. When a new pool is
set up, one Conference directory is asso-
ciated with the pool.

Conferencing Announcement Service An
application that uses a tone or a voice
recording to announce when a phone
user joins or leaves a conference.

Conferencing Attendant An applica-
tion that enables dial-in conferencing,
whereby an enterprise user who does not
have access to a Unified Communications
client can join an audio/video confer-
ence by dialing in using a telephone on
the Public Switched Telephone Network
(PSTN).

Conferencing server A server role that
mixes and matches inputs from multiple
clients in a group session. A conferenc-
ing server typically supports one or more
media types such as audio, video, and
data. Also known as a multipoint control
unit (MCU).

Conferencing Server Factory Provisions a
conference for a particular media type on
a conferencing server.

Consolidated Edge A server that validates
traffic from the edge network and
connects to the internal servers in
the organization. The internal servers
could be a pool of servers or a single
Office Communications Server 2007 R2
Standard Edition server.

Consolidated topology An Enterprise pool
configuration in which all server com-
ponents, including Internet Information
Services (lIS), the Web Conferencing
Server, the Web Components Server, and

the A/V Conferencing Server, are collo-
cated on the pool’s front-end servers. The
Application Host, IM Conferencing Server,
and Telephony Conferencing Server are
also collocated with the Front End Server.
The Monitoring, Archiving, and Mediation
Servers are typically located on a separate
computer (or separate computers).

Contact card A feature that provides
details about a contact’s availability and
activity. A contact card can be viewed by
clicking the Presence button next to a
contact in Office Communicator 2007 R2.

Contact group A logical grouping of
people in a contact list. Contact groups
can be used to communicate with an
entire group of people with one call.

Contact list A list of coworkers, family,
friends, and associates with whom you
communicate most frequently.

Contact objects Active Directory Directory
Service objects that are used to identify
and route to response groups.

Container A data object that is used to
store published presence information
and a list of subscribers who are allowed
to view the information. A container
enables a publisher to publish differ-
ent data values of the same category
and instance, which enables different
subscribers to see different values.

Credential Manager One of several
authentication services that can be
used to authenticate clients accessing
remote resources. Specifically, Credential
Manager deals with managing credential
information, such as user names and
passwords. Credential Manager provides
storage for cached credentials and enables
the sharing of common credentials.

Glossary 347
CRL Certificate revocation list.

CSTA Computer Supported Telephony
Applications.

CTI Computer Telephony Integration.

Custom authentication An authentication
method that allows administrators to use
a third-party authentication system to
enable single sign on (SSO) or two-factor
authentication.

DbAnalyze A tool that is part of the
Office Communications Server 2007 R2
Resource Kit Tools that collects analysis
reports from the Office Communications
Server 2007 R2 database.

DCOM Distributed Component Object
Model.

DDR Double data rate.

Delegate A person designated through
the Call Delegation feature of Office
Communications Server 2007 R2 to
answer the phone for someone else.

Denial of Service (DoS) A category of
threat in which a malicious user launches
an attack against your servers that con-
sumes server processing time and causes
services to become unavailable.

Deployment Validation Tool
(DVT) Included in the Office
Communications Server 2007 R2
Resource Kit Tools, this tool enables
users or administrators to test the
quality of audio connections in an
Office Communications Server 2007 R2
infrastructure.

Desktop sharing A feature of Office
Communicator 2007 R2 that enables a
user in an Office Communicator confer-
ence to share a view of his or her desktop
with the conference attendees.

Glossary

Destination Network Address Translation
(DNAT) Not supported in Office
Communications Server 2007 R2.

A technique in which the destina-
tion IP address of an en route packet
is transparently rewritten and then

changed back on the reply to the packet.

Dial plan Basic unit of configuration in
Exchange Unified Messaging that can be
of the following types: telephone exten-
sions, SIP URI, or E.164. The dial plan is
an Active Directory container object that
logically represents sets or groupings of
PBXs that share common user extension
numbers. An example of a dial plan is
the 10-digit North American Numbering
Plan (NANP) that includes a 3-digit area
code and a 7-digit telephone number.

DID Direct Inward Dialing.

Digest authentication A protocol for use
with HTTP and Simple Authentication
Security Layer (SASL) exchanges, as
documented in RFCs 2617 and 2831. An
authentication method that prompts the
user for a user name and a password,
also called credentials, which are hashed
with other data before being transmitted
over the network. Digest authentication is

available only on domains that have domain

controllers that are running Microsoft
Windows Server operating systems.

Direct Inward Dialing (DID) A service in
which a local phone company provides
a corporation with a block of phone

numbers for calling into the corporation’s

Private Branch eXchange (PBX).

Director A server role in the internal
network that authenticates internal and

external users, and routes traffic between

Edge Servers and the internal Office
Communications Server deployment.

Distributed Component Object Model
(DCOM) Technology that extends the
Component Object Model (COM) to
support communication among objects
on different computers—on a local area
network (LAN), a wide area network
(WAN), or even the Internet.

Distribution group A group of users,
stored in Active Directory Domain
Services (AD DS), whose members can be
contacted as a group.

DNAT Destination Network Address
Translation.

Domain In Active Directory Domain
Services, (AD DS) a collection of
computer, user, and group objects that
are defined by the administrator. These
objects share a common directory
database, security policies, and security
relationships with other domains.

Domain controller In an Active Directory
Domain Services (AD DS) forest, a
server that contains a writable copy of
the AD DS database, participates in AD
DS replication, and controls access to
network resources. Administrators can
manage user accounts, network access,
shared resources, site topology, and
other directory objects from any domain
controller in the forest.

Double data rate (DDR) A type of
synchronous dynamic RAM (SDRAM) that
supports data transfers on both edges
of each clock cycle (the rising and falling
edges), effectively doubling the memory
chip’s data throughput.

DTMF Dual-tone multifrequency.

Dual forking A configuration by which
Office Communications Server 2007 R2
operates in co-existence with the PBX.

Dual-tone multifrequency (DTMF) In
telephony systems, a signaling system
in which each digit is associated with
two specific frequencies. This system
is typically associated with telephone
touch-tone keypads.

DVT Deployment Validation Tool.

Dynamic Host Configuration Protocol
(DHCP) A standards-based network
protocol (IETF RFC 2131) used by
computers to obtain an IP address and
other network configuration information
when they first connect to the network.

E.164 A standard industry format for
number normalization. The E.164 format
consists of a country code (1 to 3 digits)
and a National Significant Number (12
to 14 digits) for a total of 15 digits. The
National Significant Number consists in
turn of a National Destination Number
and a Subscriber Number (extension).
For example, (425) 555-1212 ext. 3011
is represented by E.164 format as
42555512123011.

Ecma International (Ecma) Formerly
European Computer Manufacturers
Association.

Edge Server An Office Communications
Server 2007 R2 server that is located
in the perimeter network and provides
connectivity for external users, feder-
ated users, and public IM connections.
Each Edge Server has one or more
of the following server roles: Access
Edge Server, a Web Conferencing Edge
Server, or an A/V Edge Server. An Edge
Server is managed by using the Office
Communications Server 2007 snap-in

extension for the Computer Management

snap-in, not the Office Communications
Server 2007 Administrative snap-in.

Glossary 349
EKU Enhanced Key Usage.

Endpoint The receiving client software
of a communication, such as Office
Communicator 2007 R2 or Office Live
Meeting 2007.

Enhanced Key Usage (EKU) Both a certifi-
cate extension and a certificate extended
property value. An EKU field specifies the
uses for which a certificate is valid.

Enhanced Presence The publication of
customized presence information to
presence subscribers.

Enterprise cellular telephony Function-
ality that enables users of the 2007 R2
release of Office Communicator Mobile
for Windows Mobile to set up and
control Enterprise Voice calls over their
cell phone providers’ circuit-switched
networks.

Enterprise pool Servers in the inter-
nal network that are running Office
Communications Server 2007 R2,
Enterprise Edition and host the neces-
sary services, including IM, presence,
and conferencing services. Depending
on the pool configuration (consolidated
configuration or expanded configura-
tion), services can all be collocated on the
Front End Server, or specific services can
run on separate, dedicated computers.
The back-end database must be run on a
separate, dedicated computer. Typically,
Monitoring, Archiving, and Mediation
Servers are also on separate computers.

Enterprise user A user who has an iden-
tity in Active Directory Domain Services
(AD DS).

Enterprise Voice A software solution from
Microsoft that enables an enterprise to
manage Voice over Internet Protocol (VolP)

Glossary

and provide full unified communication
capabilities. This includes the ability to
make single-party and multiparty VolP
calls, configure robust call forwarding
features, and receive voice mail in the
Exchange Server mailbox.

Enterprise Voice Route Helper See Route
Helper tool.

ETW Event Tracing for Windows.

Event Tracing for Windows (ETW) A
general-purpose, high-speed tracing
facility provided by the operating system.
By using a buffering and logging mecha-
nism implemented in the kernel, ETW
provides a tracing mechanism for events
that are raised by user-mode applications
and kernel-mode device drivers.

EWS Exchange Web Services.

Exchange Management Console The
Exchange 2007 graphical user interface
(GUI) from which administrators can
perform tasks to configure and man-
age Exchange Servers. The Exchange
Management Console is based on
Windows Microsoft Management
Console (MMC) 3.0.

Exchange Management Shell A
command-line interface and associated
command-line plug-ins for Exchange
Server that enable automation of
administrative tasks. The Exchange
Management Shell is built on Windows
PowerShell technology.

Exchange Web Services (EWS) An exten-
sibility point for clients who connect to
the computer that is running Exchange
2007 and consume information about
user availability and the manipulation of
items that are located in the Exchange
data store.

Exchange Web Services Managed APl An
application programming interface
(API) that enables developers to create
custom client, server, and middleware
applications for Exchange without using
Office Outlook or any server-side code.
It provides a unified, cohesive, open
standards—based API that replaces other
Exchange APIs, while retaining much of
their functionality, and extends them
with an Outlook-compatible business
logic layer.

Expanded topology An Enterprise pool
configuration in which the Front End
Server, Application Sharing Server, Web
Conferencing Server, Web Components
Server, and the A/V Conferencing Server
are installed on separate, dedicated
computers. The Application Host, IM
Conferencing Server, and Telephony
Conferencing Server are collocated on
the Front End Server.

Extensible Application Markup Language
(XAML) A markup language for declar-
ative application programming.

External caller A participant who joins
a conference over the Public Switched
Telephone Network (PSTN) and is not
authenticated.

External user A user who connects from
outside the organization’s firewall.
External users include anonymous users,
federated users, and remote users.

Federated Group Chat A Group Chat feature
that enables members of different orga-
nizations to post and access Group Chat
content in Group Chat rooms.

Federated user An external user who has
valid credentials with a federated partner
and who is authenticated on that basis by
Office Communications Server 2007 R2.

Federation A trust relationship between
two or more SIP domains that allows
users in separate organizations to com-
municate in real time across network
boundaries as federated partners.
Internal users can communicate with
external users of a federated partner by
using IM, audio/video, or conferencing.

Filters In chat rooms, a feature that allows
a user to selectively monitor chat room
messages and execute a specific action if
specified criteria are met.

Focus A conference state server that acts
as the coordinator for all aspects of a
conference. It is implemented as a SIP
user agent that is addressable by using a
conference URI. The Focus server runs in
the User Services module of all front-end
servers.

Focus Factory A conferencing component
that provides the appropriate conferenc-
ing servers requested by the Focus for a
conference and manages their state for
the duration of the conference. The Focus
Factory handles conference creation and
deletion.

Forest Prep Action that prepares an
Active Directory forest through the
creation of objects, containers, and
extended property rights. For Office
Communications Server, Forest Prep
creates universal groups for user and
server administration.

Formal agent See Agent.

Forms-based authentication An authen-
tication method by which a user enters
a user name and password into a Web
page. The Web server compares this
information to a database or XML con-
figuration file to determine whether to
authenticate the user.

Glossary 351

Front End Server An Office
Communications Server 2007 R2 server
in the internal network that hosts the
Application Host, IM Conferencing
Service, Address Book Service, and
Telephony Conferencing Service to
support registration, presence, IM, and
conferencing. In an Enterprise pool, it can
be collocated with the Web Conferencing
Server and A/V Conferencing Server, or it
can be deployed on a separate server.

GAL Global Address List.

Global Address List (GAL) A directory
that contains entries for every group,
user, and contact in an organization'’s
implementation of Exchange Server.

Global group A security or distribution
group that can contain users, groups,
and computers from its own domain as
members. Global security groups can
be granted rights and permissions on
resources in any domain in its forest.

Global-level settings Settings that apply
to the entire Active Directory forest and
affect all servers and users in the forest.

Globally Routable User Agent URI
(GRUU) An Internet Engineering Task
Force (IETF) standard that extends the
Session Initiation Protocol (SIP) so that it
is possible to reliably route to a specific
device that belongs to a user anywhere
on the IP network.

GPMC Group Policy Management Console.

Grammar files Files that provide rules that
define all possible combinations of the
words or phrases that a user can speak
to an application. These rules enable the
speech recognition engine to convert
speech to text and add semantic infor-
mation to the recognized text.

352

Glossary

Group Chat room A topic-specific chat
room, similar to discussion forums, for
Group Chat sessions.

Group Policy A Windows Server feature
that provides an infrastructure for
centralized configuration management
of the operating system and applications
that run on the operating system.

Group Policy Management Console
(GPMC) A downloadable console that
simplifies the management of Group
Policy by making it easier to understand,
deploy, manage, and troubleshoot
Group Policy implementations. GPMC
also enables automation of Group Policy
operations via scripting.

GRUU Globally Routable User Agent URI.

Hardware load-balancing device (HLD) A
single-purpose piece of hardware that is
used in a scaled single-site server topology
on the external and internal side of the
edge network. It manages connections only
across a series of two or more comput-
ers to make it appear as one and handles
the failure scenario when one computer
fails, redirecting traffic to the rest of the
devices.

Hidden Markov Model (HMM) A
statistical model that is often applied to
temporal pattern recognition, such as
speech recognition.

HMM Hidden Markov Model.

Home, homed The user's home server is
the Standard Edition server or Enterprise
pool that is specified in the user’s Office
Communications Server 2007 R2 proper-
ties. The user is said to be "homed” on
the specified server or pool.

HTTP reverse proxy A server in the
perimeter network that is required

to enable external users to download
meeting content, to expand distribution
groups, or to download files from the
Address Book service. The reverse proxy
does not run Office Communications
Server and therefore is not an Office
Communications Server role.

Hunt group A group of PBX or IP PBX
resources or extension numbers that are
shared by users. A hunt group is used to
direct calls to identity-capable endpoints
or to an application, such as voice mail.

Hybrid media gateway A media gateway
vendor category that consists of a Basic
Media Gateway with the functionality of
the Mediation Server coexisting on the
same physical server.

ICE Interactive Connectivity Establishment.
IM Instant messaging.

IM Conferencing Server An Office
Communications Server 2007 R2 conferenc-
ing server that provides server-managed
group IM. It runs as a separate process
on the Standard Edition server or
Enterprise pool Front End Server.

IM Conferencing Service A service that
runs on an Office Communications Server
2007 R2 Front End Server that mixes and
manages inputs from multiple clients in a
group instant messaging (IM) session.

IM service provider A public or private
organization that provides instant
messaging services for multiple domains.

Informal agent See Agent.

Instant messaging (IM) A way to com-
municate interactively with one or more
people by using a live text session.

Unified Communications uses Office
Communicator 2007 R2 as the client for IM.

Integrated Windows authentication
(IWA) An authentication method in
which a user name and password creden-
tials are hashed before they are sent over
the network. Also known as Windows NT
Challenge/Response authentication.

Interactive Connectivity Establishment
(ICE) A network protocol, developed
by the Internet Engineering Task Force’s
(IETF) MMUSIC working group, that
provides a mechanism for Network
Address Translation (NAT) traversal, using
various techniques. In particular, it is
used to allow SIP-based VolP clients to
successfully traverse the many firewalls
that might exist between a remote user
and a network.

Interactive Voice Response (IVR) A
feature of the Response Group Service
that detects and recognizes both speech
and dual-tone multifrequency (DTMF)
keypad input. Response Group Service
IVR also supports text-to-speech and the
WAV file format.

Internal IP address An IP address that can
be accessed from the internal network of
an organization. Also known as a private
IP address.

Internet Protocol Private Branch eXchange
(IP PBX) Device that acts as both a
Session Initiation Protocol (SIP) server
and a voice gateway.

INVITE A SIP request that helps establish
sessions for client-to-client communica-
tion and to establish sessions with servers.
Servers include the A/V Conferencing
Server, the IM Conferencing Server, and
the ACP Conferencing Server.

IP PBX Internet Protocol Private Branch
eXchange.

Glossary

IP/PSTN gate A media gateway that
supports interoperation between
IP-based and PSTN-based systems.

ISA Internet Security and Acceleration.
IVR Interactive Voice Response.

Join Conference An option in an Office
Outlook 2007 meeting invite and
reminder for joining a live meeting.

Kerberos An authentication protocol that
builds on symmetric key cryptography
and requires a trusted third party.

LCSCmd.exe An Office Communications
Server tool that is used to configure
Office Communications Server from the
command line. Configuration options
include setting up AD DS, creating
Enterprise pools, activating and deacti-
vating servers, requesting and assigning
certificates, and exporting and importing
server settings.

LCSDiscover A tool that is part of the
Office Communications Server 2007 R2
Resource Kit Tools that discovers settings
for previous and current versions of Live
Communications Server 2005 and Office
Communications Server R2.

Least-Cost Routing A version of the 2007
R2 release of Office Communicator
Mobile for Windows Mobile in which
Office Communications Server 2007 R2
performs reverse number lookup on
one-number calls and routes the call
over an IP connection to the recipient,
routing the call over an IP connection to
the Public Switched Telephone Network
(PSTN) gateway that is nearest to the
location of the destination number.

Line URI attribute An attribute in a user
object that identifies the unique phone

353

354 Glossary

number assigned to a user that can be MCU Factory Container that stores all

used for routing purposes. The Line
URI contains the phone number that

is assigned to an Enterprise Voice user.
When a user is configured for dual
forking, Office Communications Server

2007 R2 uses the user’s Line URI attribute

defined in Active Directory to route calls
to the PBX.

Location normalization A rule that speci-
fies how to convert numbers dialed in
many formats to standard E.164 format.
Normalization rules are required for call
routing and authorization because users

can, and do, use many formats when they

enter phone numbers in their contact
lists.

Location profile A container that holds a
name, a description, and a set of normal-
ization rules that are used to translate a
phone number into E.164 format.

Lookup Server A server role for Group
Chat that provides the chat room
address, distributes sessions to Channel
Servers, and manages load balancing in
multiple-server topologies.

Match Making component The com-
ponent of the Response Group Service
that is responsible to match an incom-
ing call (also known as a match request)
with an available agent. It is also
responsible to keep track of all of the
agents in the system and their presence
state. The matching is configured by
the administrator—the administrator
configures agent groups and assigns
these groups to queues. When a call
comes in, it goes into a queue, and then
the Match Making component finds an
available agent that serves this queue.

MCU Multipoint control unit.

instances of MCU Factories. An MCU
Factory is created when the first instance
of a specific vendor and type of MCU
(such as Conferencing Server) is acti-
vated. An MCU Factory manages the set
of MCUs of a specific type that belongs
to a Standard Edition Server or Enterprise
pool.

Media gateway A device that translates

signaling and media between the PSTN
or PBX and Office Communications
Server Directors and front-end servers.
Office Communications Server supports
three types of media gateway:

B Basic Media gateway and
Mediation Server deployed on
separate computers.

B Basic-Hybrid Media gateway
and Mediation Server deployed on
the same computer.

B Advanced Mediation Server
logic combined with the media
gateway software.

Media Relay Authentication Server

(MRAS) An internal component name
for the A/V Edge Server Authentication
Service. It provides users and servers
that are authenticated with Office
Communications Server with the
credentials required for setting up
sessions involving the A/V Edge Server.

Mediation Server An Office

Communications Server 2007 R2 server
role in the internal network that medi-
ates signaling and media between the
Enterprise Voice infrastructure (such as

a Director or home server) and another
gateway (such as a Basic Media Gateway).
A Mediation Server is also used to link

Office Communications Server and a PBX
in both departmental deployment and
PBX integration topologies.

MESSAGE A SIP request that is used
to exchange instant messaging (IM)
messages within established sessions.

Message Queuing A message queuing
and routing system for Windows that
enables distributed applications running
at different times to communicate across
heterogeneous networks and with
computers that may be offline. Message
Queuing provides guaranteed message
delivery, efficient routing, security, and
priority-based messaging. Formerly
known as MSMQ.

Microsoft Clustering Service
(MSCS) Software that provides a
clustering technology that keeps server-
based applications highly available,
regardless of individual component
failures.

Microsoft Exchange Unified Messaging
(UM) A server that can tie an office
Private Branch eXchange (PBX) to the
Exchange e-mail server to allow stor-
ing voice mail in Exchange, accessing
calendar and e-mail from a phone, and
generally enabling messaging across
many interactive interfaces.

Microsoft Forefront Family of business
security products that help provide
greater protection and control over the
security of a network infrastructure,
including client, server, and edge.

Microsoft Internet Security and
Acceleration (ISA) Server A family of
Microsoft multilevel firewall and high-
performance caching server software.

Microsoft Management Console
(MMC) Management user interface

Glossary

(Ul) and framework that is part of the
Windows operating system. It enables
snap-ins to be loaded for a more
consistent management experience
across several applications and services.

Microsoft Office Communications Server
2007 R2 See Office Communications
Server 2007 R2.

Microsoft Office Communications Server
2007 R2 Best Practices Analyzer See
Office Communications Server 2007 R2
Best Practices Analyzer.

Microsoft Office Communications Server
2007 R2 Group Chat See Office
Communications Server 2007 R2 Group
Chat.

Microsoft Office Communications Server
2007 R2 Group Chat Administration
Tool See Office Communications
Server 2007 R2 Group Chat
Administration Tool.

Microsoft Office Communications Server
2007 R2 Group Chat Server See Office
Communications Server 2007 R2 Group
Chat Server.

Microsoft Office Communications
Server 2007 R2 Group Chat
Server Configuration See Office
Communications Server 2007 R2 Group
Chat Server Configuration.

Microsoft Office Communications Server
2007 R2 Logging Tool See Office
Communications Server 2007 R2
Logging Tool.

Microsoft Office Communications Server
2007 R2 protocol analysis tool
(Snooper.exe) Resource Kit Tool that can
help you analyze SIP and C3P protocol
logs, including those generated by
OCSLogger.exe.

355

356

Glossary

Microsoft Office Communications Server

2007 R2 Response Group administrative

snap-in See Office Communications
Server 2007 R2 Response Group
administrative snap-in.

Microsoft Office Communications Server
2007 R2 Validation Wizard See
Office Communications Server 2007 R2
Validation Wizard.

Microsoft Office Communicator 2007
R2 See Office Communicator 2007 R2.

Microsoft Office Communicator 2007 R2
Attendant See Office Communicator
2007 R2 Attendant.

Microsoft Office Communicator
Automation APl The Office
Communicator Automation application
programming interface (API) contains a
set of Component Object Model (COM)
interfaces, objects, events, enumerated
types, and other related programming
entities.

Microsoft Office Communicator 2007 R2
chat rooms See Office Communicator
2007 R2 chat rooms.

Microsoft Office Communicator
2007 R2 Phone Edition See Office
Communicator 2007 R2 Phone Edition.

Microsoft Office Communicator Mobile
for Windows Mobile See Office
Communicator Mobile for Windows
Mobile.

Microsoft Office Communicator Web
Access plug-in A plug-in that allows
desktop sharing in Communicator Web
Access.

Microsoft Office Live Meeting 2007 See
Office Live Meeting 2007.

Microsoft RoundTable conferencing
device The 360-degree A/V confer-
encing unit that works as a Universal
Serial Bus (USB) camera and microphone
device for Live Meeting and that shows a
panoramic video of a conference room to
remote participants.

Microsoft SIP Processing Language
(MSPL) A scripting language used
specifically for filtering and rout-
ing SIP messages. Known as “message
filters,” such scripts are embedded in
the application manifests of Office
Communications Server applications.

Microsoft SQL Server Desktop Engine
(MSDE) A redistributable database
engine compatible with SQL Server that
is designed primarily to provide a low-
cost option for developers who need
a database server that can be easily
distributed and installed with a business
solution. MSDE is not supported on
the Microsoft Windows Vista operating
system and was replaced by SQL Server
2005 Express Edition.

Microsoft SQL Server 2008 Reporting
Services (SSRS) A server-based
reporting platform that provides
comprehensive reporting functionality
for a variety of data sources. In Office
Communications Server, it is used in
conjunction with the Monitoring Server
Report Pack.

Monitoring Server A server role in the
internal network that collects Call Detail
Record (CDR) information. Also, it can
collect quality of experience (QoE)
metrics data that is sent by partici-
pant endpoints at the end of each A/V
session.

MPOP Multiple Points of Presence.
MRAS Media Relay Authentication Server.
MSCS Microsoft Clustering Service.

MSDE Microsoft SQL Server Desktop
Engine.

MSPL Microsoft SIP Processing Language.

MSTURN Microsoft extensions to Traversal
Using Relay NAT.

MTLS Mutual Transport Layer Security.
MUI Multilingual User Interface.

Multilingual User Interface (MUI) A set of
language-specific resource files that are
applied as a language pack in Windows
Vista.

Multiple Points of Presence (MIPOP)
Enhanced presence model that
aggregates a user’s presence status from
multiple endpoints, which can include
IP phones, Office Communicator, Office
Communicator Web Access, or Office
Communicator Mobile for Windows
Mobile.

Multipoint control unit (MCU) A plug-
gable component that is responsible for
managing one or more media types. Also
known as a conferencing server.

Mutual Transport Layer Security
(MTLS) The TLS (Transport Layer
Security) and MTLS protocols provide
encrypted communications and endpoint
authentication on the Internet. Office
Communications Server 2007 R2 uses
these two protocols to create its network
of trusted servers and to ensure that
all communications over that network
are encrypted. All SIP communications
between servers occur over MTLS. SIP
communications from client to server
occur over TLS.

Glossary 357

My Chat A feature of Group Chat that
displays all of the chat rooms that you
have joined and the filters that are
active.

NAT Network Address Translation.

Network Address Translation (NAT) The
process of converting network addresses.
A NAT enables computers in organiza-
tions with private networks to access
resources on the Internet or other public
networks.

NOTIFY See SUBSCRIBE.

NTBackup A file system backup solution
available in Microsoft Windows for backing
up meeting content and meeting compli-
ance logs.

NT LAN Manager (NTLM) A Microsoft
authentication protocol that uses a
challenge-response sequence that
requires the transmission of three
messages between the user and the
server.

NTLM NT LAN Manager.

Office Communications Server 2007
R2 Part of the Unified Communications
software solution from Microsoft that
enables integration of VolP, instant mes-
saging (IM), chat, conferencing, presence,
and other communication solutions.
Office Communications Server 2007 R2
includes new features for Call Delegation,
Team Call, server roles, and more.

Office Communications Server 2007 R2
Best Practices Analyzer A tool for
administrators who want to determine
the overall health of their Office
Communications Server 2007 R2 servers
and topology.

Office Communications Server 2007 R2
Group Chat The client application

358 Glossary

that is used to post and access channel basic end-to-end scenarios, and provide
content, including files, links, and text, recommendations.
as well as to exchange instant messages Office Communicator 2007 R2 A

between two users. Windows-based desktop client that

Office Communications Server 2007 R2 enables users to access the communica-
Group Chat Administration Tool A tions and collaboration capabilities of a
component that enables a Group Chat computer.
administrator or delegated user to man- Office Communicator 2007 R2

age Group Chat categories and groups,

Attendant An integrated client
as well as user and group accounts.

application for managing Response
Office Communications Server 2007 R2 Group features.

Group Chat Server A new server role Office Communicator 2007 R2 chat
introduced in Office Communications rooms A desktop client application

Server 2007 R2 that enables users to that makes chat room conversations and
create and maintain conversations that features available to users. Chat rooms
pe.rsist over time ?”d can .be archived. enable users to send and receive instant
This functionality is especially useful for messages, either in a chat room or singly
compliance purposes. with another user outside the chat room.

Office Communications Server 2007 R2 Office Communicator 2007 R2 Phone
Group Chat Server Configuration A
component that allows an Office
Communications Server 2007 R2
administrator or delegate to configure
the Group Chat Server following

Edition An intelligent IP phone
designed to maximize the Unified
Communications platform. It combines
network voice, user-driven design,
up-time reliability, quality audio, and the

installation. enhanced communication and collabora-
Office Communications Server 2007 R2 tion of Office Communications Server

Logging Tool A tool that starts and 2007 R2.

stops server logs as well as filters and Office Communicator Mobile for Windows

displays logs. Mobile The client for instant messag-
Office Communications Server 2007 R2 ing and presence for Windows Mobile-

Response Group administrative snap- powered devices.

in The Microsoft Management Console
(MMC) interface that is used to manage
how the system handles call routing.
This snap-in is used only by the Office
Communications Server administrator.

Office Communicator Web
Access Browser-based client software
that enables users to access instant
messaging, presence, and desktop
sharing capabilities on a Windows, Mac,
Office Communications Server 2007 R2 or Linux computer.
Validation Wizard A tool that analyzes Office Live Meeting 2007 Client software

and valldate§ the current configuration that gives access to the conferencing
and connectivity to detect errors, validate

and application sharing capabilities on a
computer.

One-number calling A feature of the
2007 R2 release of Office Communicator
Mobile for Windows Mobile that allows
users to have a unique single number
through which all of the users’ registered
endpoints, including their mobile phone,
can be reached.

Open authenticated A meeting type in
which all enterprise users can join the
meeting. Users join as attendees unless
they have been designated as present-
ers by the meeting organizer. Federated
users can join the meeting as attend-
ees if they are invited by the organizer.
Federated users cannot join the meeting
as a presenter, but they can be promoted
to presenter during the meeting.

Organizer The owner or creator of a
conference.

Outside Voice Control A service that
connects a mobile device to the enter-
prise network. This service enables a
mobile device user to send and receive
calls that come through the enterprise
network, in addition to calls that come
through the cellular carrier network.

The mobile device must be running the
2007 R2 release of Office Communicator
Mobile for Windows Mobile.

Paired Mode A mode of operation for
Office Communicator and Communicator
Phone Edition in which calls on the
Office Communicator Phone Edition can
be managed on Office Communicator.
Office Communicator and Office
Communicator Phone Edition automati-
cally enter Paired Mode when a Universal
Serial Bus (USB) cable is attached
between them.

Glossary 359

Participant A user who is participating in
a conference or peer-to-peer call or the
object that is used to represent that user.

Participant List A feature of Group Chat
that shows the names and presence
status of all members currently in the
chat room.

PBX Private Branch eXchange.
PCA Personal Call Assistant.

Persistence A Group Chat feature that
enables Group Chat content to be
retained after the end of a Group Chat
session and accessed on an ongoing
basis.

Persistent Shared Object Model (PSOM)
protocol A custom protocol for trans-
porting conferencing content.

Personal Call Assistant (PCA) A presence-
enabled speech service that queues and
routes calls based on an individual’s
availability and communications
preferences.

Phone-only contact A PSTN phone number
that is stored as a contact in the contact
list in Office Communicator 2007 R2.

Phone route A rule that defines which
Mediation Servers should be routed to by
phone calls that match a specific number
pattern.

PIA Primary interop assembly.
PIDF Presence Information Data Format.

Policy A collection of user-specific settings
abstracted by the name of the policy.

Pool A Standard Edition server or an
Enterprise server.

Pool-level settings Settings for a specific
server role that are applied to all comput-
ers in an Enterprise pool or to a specific
server role on a Standard Edition server.

Glossary

Pre-Call Diagnostics (PCD) A tool that
tests the last-hop wireless network
conditions and provides guidance about
possible quality issues before calls are
placed. This tool is especially useful for
mobile or remote users for whom the
quality of the last hop network connec-
tion can vary widely.

Presence The ability to see the status,
such as Available, Busy, Away, and so on,
of a person. Presence is a fundamen-
tal requirement for effective real-time
communications.

Presence-Based Routing A feature of the
Response Group Service that allows call
routing to be configured to take agent
presence into account.

Presence Information Data Format
(PIDF) A data format for exchanging
presence information.

Presence integration An action that
occurs in a dual forking scenario in
which, when a call is answered from the
PBX telephone, Office Communicator
2007 R2 automatically sets the user’s
presence to the “In a Call” state.

Presentity An entity that provides pres-
ence information to a presence service.

Primary interop assembly (PIA) An
assembly that contains a signed set of
wrapper classes that enables you to call
unmanaged code from managed code.

Private Branch eXchange (PBX) A switch-
ing system for voice communication
that routes internal calls directly with-
out access to the PSTN. A PBX can be
a conventional phone network, a VolP
network, or a combination of the two.

PSTN Public Switched Telephone Network.

PSTN agent Used with the Deployment
Validation tool to simulate a Public
Switched Telephone Network (PSTN)
telephone.

Public Switched Telephone Network
(PSTN) The telephone system standard
that is used throughout the world.

Publicly routable IP address An IP address
that can be directly routed from outside
an organization'’s firewall to the perim-
eter network or the internal network.

Quality of Experience (QoE) A measurement
of the overall user experience of a par-
ticular communication. For example, in
a voice communication, QoE monitors
items such as echoes and background
noises (eg, hissing in the line). In Office
Communications Server 2007 R2, QoE
is monitored as part of the Monitoring
Server role.

Quality of Service (QoS) A metric that
reflects or predicts the subjectively
experienced quality. QoS is the cumulative
effect on user satisfaction of all imperfec-
tions that affect the service and is deter-
mined by statistics that are collected on a
media connection and information such as
bytes sent, packets sent, lost packets, jitter,
feedback, and round-trip delay.

Queue A logical list of calls that are
managed by the Response Group Service
until an action is taken on these calls. For
example, transfer the call to an agent
or a different destination. Typically, the
Response Group plays music-on-hold for
the calls in the queue.

RCC Remote Call Control.

Real-Time Audio (RTAudio) An advanced
speech codec that is designed for real-
time two-way Voice over IP (VolIP)

applications and is used by the A/V
Conferencing Server.

Real-Time Control Protocol (RTCP) A
network transport protocol, specified
in RFC 3550, that enables monitoring of
Real-Time Transport Protocol (RTP) data
delivery and provides minimal control
and Ildentification functionality. The
primary function of RTCP is to provide
quality-of-service information for RTP.

Real-Time Streaming Protocol (RTSP) A
protocol for use in streaming media
systems that allows a client to remotely
control a streaming media server,
specified by RFC 2326.

Real-Time Transport Protocol (RTP) A
network transport protocol that provides
end-to-end transport functions that are
suitable for applications that transmit
real-time data, such as audio and video,
as specified in RFC 3550.

Real-Time Video (RTVideo) An advanced
video codec that is designed for real-time
video applications and is used by the A/V
Conferencing Server.

REGISTER A SIP request that is used by a
SIP client to register the client address
with a SIP server.

Regular expressions Strings that are
used to describe or match sets of strings
according to certain syntax rules.

Remote Call Control (RCC) The ability

to send and receive calls on a desktop
phone by using Computer Supported
Telephony Applications (CSTA), such as
Office Communicator. With Remote Call
Control in Office Communicator 2007
R2, your phone system is integrated with
a Private Branch eXchange (PBX) system
and offers call forwarding features, but

Glossary

does not offer features such as ringing
an additional number or redirecting
unanswered calls.

Remote user An external user whose ac-
count has a corresponding User object
in the Active Directory Domain Services
(AD DS).

Reporting Services See Microsoft SQL
Server 2008 Reporting Services (SSRS).

Response Group Functionality that allows
for incoming calls to be queued and
routed to designated agents based on a
set of defined routing rules.

Response Group Configuration tool The
Web interface that is used to manage
the predefined templates. This is where
an administrator can set up a team rout-
ing workflow, including announcement
messages, working hours, questions and
options given to the caller, music-on-
hold, and to which queues to route calls.
This interface is also used by users who
are enabled as Response Group manag-
ers so as to manage specific Response
Group settings, such as working hours
and music-on-hold.

Response Group Deployment tool A
tool that is offered through the Web
component of Response Group Service
that enables administrators and Response
Group Managers to administer Response
Groups in a Web interface.

Response Group Manager A user who
is given the rights by the Response
Group administrator to manage specific
Response Group settings, such as busi-
ness hours and music-on-hold, by using
the Response Group Configuration tool.

Response Group Service A service
that is installed by default with Office

361

Glossary

Communications Server 2007 R2 that
enables administrators to create and
configure one or more small Response
Groups for routing and queuing
incoming phone calls to one or more
designated agents.

Response Group Service Contact Object
Tool (RGSCOT.exe) Command-line utility
that you can use to create and manage
Response Group Service Contact objects.

Response Group tab The Office
Communicator 2007 R2 tab that is used
by the normal agent to sign in and sign
out of Response Group groups.

Response Group templates Predefined
templates that simplify creating a new
Response Group. Templates define
functionality such as questions asked
to the caller, options given to the caller,
music-on-hold options, and configura-
tion of business hours and holidays.

Reverse number lookup (RNL) The
functionality of matching an incoming
E.164 number to an entry in the Global
Address List (GAL) or local Office Outlook
contacts.

Reverse proxy server A server in the
perimeter network that is required if
either of the following tasks are required:
enabling external users to download
meeting content or expand distribu-
tion groups, or enabling remote users to
download files from the Address Book
service. This can be a server that is run-
ning Internet Security and Acceleration
(ISA) Server or another reverse proxy
server.

RGSCOT.exe Response Group Service
Contact Object Tool.

Rich presence Enhanced presence features
that provide additional availability data,
including next-available-meeting timing
and out-of-office information.

RNL Reverse number lookup.

Route Helper tool Also known as
Enterprise Voice Route Helper, this is a
graphical user interface (GUI) tool that
is part of the Office Communications
Server 2007 R2 Resource Kit Tools. It
provides everything that is required to
create, modify, and analyze an Enterprise
Voice routing configuration to deploy
and maintain an Office Communications
Server Enterprise Voice solution. The tool
also simulates phone number normaliza-
tion done by the client when the user’s
location profile is specified.

RTCP Real-Time Control Protocol.
RTP Real-Time Transport Protocol.
RTSP Real-Time Streaming Protocol.
SAN Subject Alternative Name.

Schema The set of definitions for the
universe of objects that can be stored
in a directory. For each object class,
the schema defines which attributes an
instance of a class must have, which ad-
ditional attributes it can have, and which
other classes can be its parent object class.

SCP Service connection point.
SDP Session Description Protocol.

Security association (SA) An establish-
ment of shared security information be-
tween two user agents to enable them to
communicate securely.

Security Support Provider Interface
(SSPI) A common interface between
transport-level applications that allows

an application to use various security
models available on a computer or
network without changing the interface
to the security system.

Server pool A group that consists of mul-
tiple Lookup Servers and Channel Servers
that supports communication and the
sharing of data between servers, as well
as the implementation of optional load
balancing and failover.

Server role A logical grouping of features
and components in a software applica-
tion. Server roles that are new to Office
Communications Server 2007 R2 are
Application Sharing Conferencing Server,
Monitoring Server, and Group Chat
Server.

SERVICE A SIP request that is defined by
the SIP extensions and is used by a SIP
client to request a service from a server,
such as changing a user’s presence.

Service connection point (SCP) In Active
Directory, a marker that registers the
kind of service installed on the computer
that is joined to the Active Directory
forest. Used to determine which services
are running on every computer.

Service Level Agreement (SLA) A written
agreement that documents the required
levels of service as agreed on by the IT
service provider and the business or the
IT service provider and a third-party
provider.

Session The time period during which the
Group Chat client is connected to the
Group Chat server.

Session Description Protocol (SDP) A
protocol that is used to announce
sessions, manage session invitations, and
perform other kinds of initiation tasks

Glossary 363

for multimedia sessions, as specified in
RFC 3264.

Session Initiation Protocol (SIP) A signal-
ing protocol for Internet telephony.

Simple Object Access Protocol
(SOAP) Lightweight XML-based
protocol for exchanging information in a
decentralized, distributed environment.

Single sign on A feature that enables
users to sign in to Office Communications
Server 2007 R2 by using their Windows
credentials so that they do not have to
manage separate credentials.

SIP Session Initiation Protocol.

SIP address A URI that identifies an end
node in a Session Initiation Protocol (SIP)
network. The format of a SIP address is
identical to that of an e-mail address.

SIP/CSTA A gateway that connects to the
existing PBX or IP PBX that hosts a user’s
PBX or IP PBX phone. CSTA is an inter-
national standard that is set by Ecma
International to combine computers
that share resources with PBX or IP PBX
environments.

SIP domain A domain that is configured to
accept SIP traffic.

SIP element An entity that understands
the Session Initiation Protocol.

SIP INFO message A method for sending
call-related information to and from the
SIP/CSTA gateway.

SIPParser A protocol parser for Session
Initiation Protocol (SIP) that can be
plugged into Network Monitor for view-
ing nonencrypted SIP over Transmission
Control Protocol (TCP).

SIP proxy In a Session Initiation Protocol
network, a server that makes requests

Glossary

on behalf of other clients and routes SIP
requests to another entity that is closer
to the targeted user. SIP proxy is defined
in RFC 2161.

SIP registrar A server that accepts
REGISTER requests and puts the informa-
tion that it receives from those requests
into the location service for the domain
that it handles. SIP registrar is defined in
RFC 3261.

SIP trunking A mechanism that is used
by an enterprise to connect its voice
network to a service provider offering
Public Switched Telephone Network
(PSTN) origination, terminations, and
emergency services without deploy-
ing IP-PSTN gateways, with or without
Mediation Servers.

Smartphone A Windows Mobile
device that has telephony capability.
Smartphone includes both telephones
and Pocket PC devices that can function
as a telephone.

SNAT Source Network Address Translation.

Snooper A graphical user interface (GUI)
Resource Kit Tool that is used for summa-
rizing, searching, and viewing client and
server protocols and trace logs. This tool
also works for Office Communications
Server 2007 server logs.

SOAP Simple Object Access Protocol.

Softphone A multimedia application
that works with VolIP technology to
enable you to make calls directly from a
computer. A softphone is typically used
with a headset that is connected to the
sound card of the computer or with a
Universal Serial Bus (USB) telephone.

Source Network Address Translation
(SNAT) A process that involves rewriting

the source or destination addresses of IP
packets as they pass through a router or
a firewall.

Spim Spam over instant messaging.
Unsolicited bulk commercial instant
messages.

SRVLookup A tool that queries relevant
Domain Name System (DNS) Service
Record Locator records for the specified
domain. The tool is useful for federation
and login diagnostics.

SSO Single sign on.
SSPI Security Support Provider Interface.

SSRS SQL Server 2008 Reporting
Services.

Standard Edition server A serverin
the internal network running Office
Communications Server 2007 R2,
Standard Edition that hosts all of
the necessary services, including IM,
presence, and conferencing services as
well as the database, on a single server.

Subject Alternative Name (SAN) The
field on a digital certificate that provides
for a list of host names to be protected
by a single Secure Sockets Layer (SSL)
certificate.

Subject name (SN) The text-based field in
a certificate that identifies the name of
the user or server that it refers to.

SUBSCRIBE A SIP request that is used to
set up event notifications from the server.
SUBSCRIBE is used by clients to subscribe
to information that can change because
of updates. NOTIFY is used by the server
to notify clients about information that
has changed.

Subscriber access number A number
that is configured in a Private Branch

eXchange (PBX) that allows a subscriber to
access their mailbox over the telephone.

Subscription In the context of the data
that is stored for each user in the Office
Communications Server 2007 R2 data-
base, a subscription is a set of contacts
for which a user wants to receive pres-
ence updates. Presence updates occur
when one of the user’s contacts changes
state, such as when the contact signs in
to Office Communications Server or joins
a phone call.

System Center Operations Manager
Software that provides end-to-end
service management that is easy to
customize and extend for improved
service levels across your IT environment.

Tagged contact A contact in Office
Communicator 2007 R2 whose presence
status is displayed in a message when the
contact goes offline or online.

TDM Time Division Multiplexing.

Team Call A feature that was introduced
in Office Communications Server 2007
R2 that allows calls to be forwarded
from a team leader to an entire team.
Depending on the options that are
specified when the feature is configured,
phones of all of the team members will
ring until someone answers.

Telephony Conferencing Server An
Office Communications Server 2007
R2 conferencing server that enables
audio conference integration with Audio
Conferencing Providers (ACPs). It runs
as a separate process on the Standard
Edition server or Enterprise pool Front
End Server.

Telephony Conferencing Service A service
that runs on an Office Communications

Glossary

Server 2007 R2 Front End Server that en-
ables multiparty conferencing with PSTN
callers connecting through an Audio
Conference Provider (ACP).

Third-Party Control Protocol (TPCP) A
protocol developed by Microsoft to
remotely manage calls on a server
endpoint from a client endpoint. The
protocol enables a TPCP client to issue
commands to a TPCP server to create a
call between two endpoints or to answer
or deflect calls.

Third-party request A conference control
request that modifies the state of partici-
pants other than the participant who sent
the request.

Time Division Multiplexing (TDM) A
circuit-switched technology that converts
one or more voice streams into a single
stream for transmission.

Time-to-live (TTL) An interval that is
determined based on the registration
refresh interval or any other session tim-
ers in the dialogs that traverse the server.

TLS Transport Layer Security.
TPCP Third-Party Control Protocol.

TrackingDataWorkflowRuntimeService
Windows Runtime Service that provides
workflow instance-related storage in
memory for storing ActivityTrackingData
objects.

Transport Layer Security Provides a
mechanism for applications to com-
municate securely over IP networks.
See Mutual Transport Layer Security.

TTL Time-to-live.

UCMA Speech APl A server-grade speech
API that allows developers to build
multichannel speech recognition- and

366

Glossary

speech synthesis—enabled applications
using Microsoft state-of-the-art speech
technology.

UCMA Windows Workflow Activities
Activities that can be used to build
workflow-enabled speech and instant
messaging applications on Office
Communications Server.

UCMA Workflow APl A higher API
abstraction layer of the UCMA Core
and Speech APIs.

UDP User Datagram Protocol.

Unauthenticated user A user who has not
received a Session Initiation Protocol (SIP)
200 OK response from the server during
registration. Except for federated users,
all users start as unauthenticated and are
authenticated only after providing the
appropriate credentials to the server.

Unified Communications Agent Used
with the Deployment Validation tool to
simulate an Office Communicator 2007
R2 client.

Unified Communications AJAX APl API
to the Office Communicator Web Access
Server. The AJAX APl is based on the
AJAX programming model. This AJAX API
consists of a set of methods and events.
The methods are client requests to have
something done, such as querying the
presence of a user, setting the presence
of the caller, inviting a user to an instant
messaging conversation, and so on. The
events are the results of the method
invocations and are returned to the client
by the server. The methods and events
use XML for their data format.

Unified Communications Managed API
(UCMA) An endpoint API that allows
advanced developers to build and

integrate server applications into an
existing Office Communications Server
infrastructure.

Unified Communications Managed API
Core A managed-code platform that
provides access to and control over
instant messaging, telephony, audio/
video conferencing, and presence. It is
intended to support the development
of middle-tier applications target-
ing Office Communicator and Office
Communications Server 2007 R2.

Unified Messaging An application that
consolidates a user’s voice mail, fax, and
e-mail into one mailbox so that the user
needs to check only a single location for
messages, regardless of type. The
e-mail server is used as the platform for
all kinds of messages, making it unneces-
sary to maintain separate voice and
e-mail infrastructures.

Uniform Resource Identifier (URI) A
unique address for a resource on the
Internet. For example, a user might use
someone@domain.com as a SIP URI to
log on to a SIP server.

Universal group A security or distribution
group that can contain users, groups,
and computers from any domain in its
forest as members. A universal security
group can be granted rights and permis-
sions on resources in any domain in the
forest.

URI Uniform Resource ldentifier.

Usage name A friendly name that is as-
sociated with a telephone route to indi-
cate its intent or usage. For example, an
administrator may determine that the
following will be some of the usages in

the organization: "local,” "domestic long
distance,” or “international long distance.”

USB Audio Streaming audio over the
Universal Serial Bus (USB) link between
the computer and the phone in Paired
Mode. The call is homed on the
computer, but there is a minimal control
path from the phone to computer.

USB Human Interface Device (USB HID) A
protocol for sending and receiving
control messages from a Universal Serial
Bus (USB) device.

User agent client (UAC) A logical entity
that creates a new request and then uses
the client transaction state machinery
to send it. The role of UAC lasts only for
that transaction. If a process initiates a
request, it acts as a UAC for that transac-
tion. If a process receives a request later,
it assumes the role of a user agent server
for that transaction.

User Agent Server (UAS) A logical entity
that generates a response to a Session
Initiation Protocol (SIP) request. The
response either accepts, rejects, or
redirects the request. The role of the UAS
lasts only for that transaction. If a process
responds to a request, it acts as a UAS for
that transaction. If it initiates a request
later, it assumes the role of a user agent
client for that transaction.

User Datagram Protocol (UDP) A connec-
tionless TCP/IP protocol that corresponds
to the transport layer in the International
Standards Organization/Open Systems
Interconnect (ISO/OSI) reference model
and does not offer reliable delivery of
data.

User replicator (UR) A component of the
Office Communications Server service

Glossary 367

that synchronizes the database with
user information and global Office
Communications Server settings that are
stored in Active Directory.

User Services module A module that pro-
vides closely integrated instant messaging,
presence, and conferencing features that
are built on top of the SIP proxy.

Video negotiation The process in which
an endpoint that is proposing to send
video can determine the video capa-
bilities of the receiving endpoint before
sending the video stream.

Voice mail An application that automati-
cally answers calls and stores messages

for retrieval in the future.

Voice over IP (VoIP) Office
Communications Server 2007 R2 provides
the ability to do Voice over IP, which is
the basis of voice communication over
computer networks. With VolP, the audio
traffic is carried over the IP network in
contrast to Remote Call Control (RCC),
which is related to controlling the PBX
phone from a computer that is running
Office Communicator 2007 R2.

VoIP Voice over Internet Protocol.

Web Components Server A server in the
internal network that provides soft-
ware Web components that require
Internet Information Services (lIS)
to support Office Communications
Server 2007 R2. These Web compo-
nents include IS Virtual Directory setup
to support Address Book Server, the
Web Conferencing Server (download-
ing of meeting content), and the IM
Conferencing group expansion Web
service. It runs on each Standard Edition
server and, for Enterprise pools, either on

368 Glossary

the Front End Server (in a consolidated
configuration) or a dedicated server
that is running IIS (in an expanded
configuration).

Web Conferencing Edge Server A
server role that enables data collabora-
tion with external users. In the Office
Communications Server 2007 R2 consoli-
dated edge topology, this server role is
collocated on the same computer as the
Office Communications Server 2007 R2
Edge Server.

Web Conferencing Server A server
role that manages data collabora-
tion for online conferences. This server
role is available on a Standard Edition
server. In an Enterprise pool, it can be
collocated with the Front End Server and
A/V Conferencing Server, or it can be
deployed on a separate server.

Web Farm Services A collection of Internet
Information Services (lIS) servers or an IIS
server hosting content.

Web Service A server role for Group
Chat that is used to post files to group
channels.

WFP Windows Filtering Platform.

WEFP Presence Controls Controls that
provide applications with presence in-
formation for contacts. The information
is presented visually in a manner simi-
lar to Office Communicator 2007. The
controls also have context menu items
that launch Office Communicator dialog
boxes for IM and audio conversations.
The controls are implemented by using
the Office Communicator 2007 Software
Development Kit (SDK).

Windows Filtering Platform (WFP)
Platform that provides APIs for extending

the TCP/IP filtering architecture so that
it can implement packet filtering at all
levels of the TCP/IP protocol stack to help
protect services and support additional
services that inspect and filter TCP/IP
packets, such as Windows Firewall.

Windows Installer package An .msi file
that contains explicit instructions about
installing and removing specific applica-
tions. The company or developer who
produces the application provides the
Windows Installer package .msi file and
includes it with the application.

Windows Management Instrumentation
(WMI) Part of Windows that provides
fully integrated operating system
support for uniform system and
applications management. WMl is the
Microsoft implementation of Web-
based Enterprise Management (WBEM),
which is an industry initiative to develop
a standard technology for accessing
management information in an enter-
prise environment.

Windows Presentation Foundation
(WPF) Part of the WinFX platform
that introduces a new application type:
Web Browser Applications (WBAs). Web
Browser Applications are online-only
applications that run in the browser and
are not installed. These applications
execute in a security sandbox and
harness the power of the WPF platform
on the Web.

Windows Software Trace Pre-processor
(WPP) Part of the Windows operating
system that enables applications to easily
have a configurable high performance
logging infrastructure.

Windows Workflow Foundation (WF) A
technology platform for building

Glossary 369

workflow-enabled applications. The that provides services for persistence,
platform includes a set of tools for tracking, transaction management, and
designing and implementing workflows, more.

a programming model for controlling and
communicating with workflows, a rules
engine, a workflow execution engine,
and a set of workflow runtime services
for persistence, tracking, transaction
management, and more.

Working Hours Office Outlook Calendar
options that specify the hours that a
person is typically at work. Working
hours are used in advanced call handling
to determine call forwarding rules and
are also displayed as part of presence

Work Call Functionality that enables a information.
user to dial a number from the 2007 R2
release of Office Communicator Mobile
for Windows Mobile, but have the server
back end actually make the call.

WPF Windows Presentation Foundation.
XAML Extensible Application Markup
Language.

Workflow Runtime services Part of
the Windows Workflow Foundation

Index

A

A record (DNS), 246
A/V (audio/video) communications
APl support, 13
conference support, 195
configuring conferencing, 269-272
contextual collaboration, 6
creating calls, 191
MCU support, 184
Office Communicator Automation API,
23,87
troubleshooting failures, 313
UC support, 3
UCC API support, 27
UCMA Core API, 225
UCMA support, 16
A/V Conferencing Server
application development support,
219, 223
configuring, 269-272
AcceptCallActivity
Dequeue method, 117
functionality, 18, 126-127
properties, 127
access control entries (ACEs), 197, 205, 223
ACD (automatic call distributor)
UC challenges, 4
UCMA support, 11, 15
ACEs (access control entries), 197, 205, 223
acknowledgeSubscriber element (XML), 35
Active Directory Certificate Services
(AD CS), 221
Active Directory Domain Services.
See AD DS
Active Directory Domain Services Installation
Wizard, 229-233
Active Directory Users and Computers
snap-in, 224, 289
ActiveX control, 9

activities
call control, 126-128
call control communications events,
141-144
command, 137-141
custom, 18, 20, 113
dialog, 128-137
dialog communications events, 142,
144-147
general, 120-125
presence-related, 147-148
Activity class, 20
AD CS (Active Directory Certificate Services),
221
AD DS (Active Directory Domain Services)
application development support, 219
Contact object, 187, 221, 225, 285
creating user accounts, 273
managing networks, 221-223
preparing for UC, 237-245
TSE support, 285
User object, 221
AD DS domains
AD DS preparation, 223
joining servers, 249-251
preparing, 221, 244-245
verifying settings, 245
AD DS forests
assigning static IP addresses, 227-228
building, 226-237
installing domain CA, 234-237
preparing, 221-223, 242-243
promoting computers, 228-233
verifying DNS server role, 233
verifying settings, 244
AD DS preparation, 221-223
AD DS schemas
extending, 221, 238-239
verifying extended, 240-242
Add Roles Wizard, 253-254

371

372

addContact element (XML)

addContact element (XML), 35
addGroup element (XML), 35
Address Book Server, 262
administrative tools
installing, 224, 239-240
server role requirements, 224
alerts
Office Communicator Automation API, 23
outbound, 14
UCMA support, 11, 14
UCMA Workflow support, 19
AnswerCallActivity class, 44
anywhere access information, 8
APIs (application programming interfaces).
See also specific APIs
additional resources, 46
types supported, 8
application development. See also
programming applications
AD DS support, 221-223
application components, 219-221
building AD DS forest, 226-237
configuring components, 279-291
configuring DNS for automatic sign-in,
245-248
configuring UC user accounts, 272-278
deploying OCS Standard Edition, 226
installing/configuring OCS, 251-272
Office Communications Server roles,
223-224
Office Communicator Automation API,
224-225
preparing AD DS for UC, 237-245
setting up host computer, 248-251
UCMA Core API, 225
UCMA Workflow API, 225
validating server functionality, 278-279
application programming interfaces.
See APIs
application sharing
UC support, 7
UCC API support, 29
Application Sharing Server, 219, 224
ApplicationEndpoint class
BeginEstablish method, 188-189
creating calls, 191

creating instances, 183
enabling trusted applications, 285
EndEstablish method, 188-189
endpoint support, 187-189
functionality, 15
LocalEndpoint class and, 187
publishing presence, 198
UCMA support, 15
ApplicationEndpointSettings class, 188
ApplicationProvisioner.exe tool, 286
Approve action, 165-167
ArgumentException class, 328
ASR (automatic speech recognition). See
speech recognition
audio/video communications. See A/V
communications
Audio/Video Conferencing Server
application development support, 219, 223
configuring, 269-272
AudioVideoCall class
creating calls, 191
handling call flows, 193
handling incoming calls, 193
joining conferences, 197
AudioVideoFlowConfigurationRequested
event, 193
authentication
AD DS support, 221
Unified Communications AJAX API, 33-34
AuthenticationException class, 317
automated agents
UC opportunities, 7
UCMA support, 11, 14
UCMA Workflow support, 19
automatic call distributor. See ACD
automatic sign-in, 245-248
automatic speech recognition. See speech
recognition

B2BUAs (back-to-back user agents), 14
binding
conversations to endpoints, 184
outbound calls, 161-162
outbound IM calls, 168-169

blind transfers
BlindTransferActivity, 44, 126, 128
UCMA Workflow support, 21
BlindTransferActivity, 44, 126, 128
bots, query/response. See automated agents
breakpoints
running applications to, 298
setting, 297-298, 333
stepping through code execution, 299
business process communication
adding commands to dialog, 174-175
adding events to dialog, 175-177
additional resources, 179
approver's presence information,
154-157
building the application, 151-179
business value, 149-150
choice of technology, 150
code structure, 150
connecting to Office Communications
Server, 151-152
contacting approver by IM, 167-173
contacting approver by phone, 160-167
creating branches for modalities, 159-160
creating Communication Workflow
Project, 151
defined, 8
implementing branch logic, 155-157
running applications, 178-179
scenario, 149
test environment, 150
UC support, 7
UCMA Workflow support, 19
updating canBeContactedBranch, 158-177
updating cantBeContactedBranch,
157-158
user input to workflow instance, 152-154

C

CA (certificate authority)
application endpoints, 187
building AD DS forests, 227
installing domain CA, 234-237

calendaring, 7

Call class, 191

certificates

call control activities
functionality, 126-128
Speech Server Managed API, 19
UCMA support, 16
UCMA Workflow support, 19, 21
Unified Communications AJAX API, 32
call control communications event activities,
141-144
call deflection, 9, 32
call events, 177
call flows, 193-194
call routing, 14, 38
call state, 194
CallDisconnectedEventActivity, 142-143
CallOnHoldEventActivity, 142-143
CallOnHoldTimeoutEventActivity, 142, 144
CallProvider activity, 122-125
CallRetrievedEventActivity, 142, 144
calls. See also voice calls
conferences and, 195
creating, 191-192
defined, 191
handling incoming, 192-193
canBeContactedBranch
adding commands to dialog, 174-175
adding events to dialog, 175-177
contacting approver by IM, 167-173
contacting approver by phone, 160-167
creating branches for modalities, 159-160
disconnecting calls, 175
updating, 158-177
cantBeContactedBranch, 157-158
CategoryNotificationReceived event, 201
CCCP (Centralized Conference Center
Protocol), 28
certificate authority. See CA
Certificate Enrollment Wizard, 285
certificates
configuring 1IS, 266-268
host computers, 282
installing computer, 285
installing domain CA, 234-237
installing/configuring MTLS, 263-266
installing/configuring TLS, 263-266
modifying Program.cs, 152
verifying installation, 283-284

373

374 Certificates snap-in

Certificates snap-in, 283 CommunicationsWorkflowRuntimeService,
CFG files, 45 19, 21, 116-118
class ID (CLSID), 280 Communicator registry key, 50
ClientPlatformSettings class, 183-184 Communicator Web Access server role, 9
CLSID (class ID), 280 Communicator Web Access snap-in, 224
Code Activity, 20, 165 CommunicatorAPl.dll library, 24
CollaborationPlatform class CommunicatorPrivate.dll library, 24
creating applications, 183-186 compile-time errors, 293
creating/configuring, 185 Component Object Model. See COM
EndStartUp method, 185-186, 318 computer certificates, 285
functionality, 17 Computer Management console, 224,
publishing presence, 198 266-268
starting process, 185-186 Computer Supported Telephony Applications
COM (Component Object Model) (CSTA), 28
additional resources, 25, 85 Computers container, 223
API support, 7 Conditional Group Activity, 20
interface IDs definition file, 225 conference bridging, 14
Office Communicator Automation API, Conference class, 196
24, 224 conference element (XML), 35
UCC API support, 29 Conference element (XML), 37
COM interop service ConferenceFailureException class, 316
COM errors, 295, 310 conferences/conferencing
IMessengerAdvanced interface, 82 ConferenceServices class, 17
Messenger class, 50 defined, 195
Office Communicator Automation API, 225 joining, 184, 196-197
Comet mechanism, 33 managing, 14
COMException class, 293, 295, 306 multiparty sessions, 16
command activities, 137-141 recording calls, 14
command channel scheduling, 14, 184, 195-196
defined, 33 UCC API support, 29
Unified Communications AJAX API, 34 ConferenceSchedulelnformation class, 195
CommandActivity class, 45 ConferenceServices class, 17
commands Conferencing Server, 195
adding to dialog, 174-175 Configuration element (XML), 37
defined, 138 ConfigurationManager class, 185
communication events, 142 Configure Office Communications Servers
Communication Workflow Project, 151 Users Wizard, 276-278
CommunicationsSequenceActivity Configure Pool/Server Wizard,
binding outbound calls, 161-162 259-262
binding outbound IM calls, 168-169 ConnectionFailureException class,
call control communications event 317-318, 326
activities, 142 ConsecutiveNolnputsinstant-
CallProvider property, 168 MessagingEventActivity, 145-146
command activities and, 138, 140 ConsecutiveNolnputsSpeechEventActivity,

functionality, 120-125 45, 145

ConsecutiveNoRecognitionsInstant-
MessagingEventActivity, 145, 147
ConsecutiveNoRecognitions-
SpeechEventActivity, 45, 145-146
ConsecutiveSilencesInstant-
MessagingEventActivity, 145-147
ConsecutiveSilencesSpeechEventActivity,
145-146
contact lists
building, 23
displaying application-specific, 92-97
managing programmatically, 77-81
Office Communicator Automation API,
23,87
contact management
ContactGroupServices class, 17
IMessengerContacts interface, 26
retrieving information, 63-68
UC support, 7
UCC API support, 27
UCMA support, 16-17
working with information, 58-62
Contact object
AppplicationEndpoint class and, 15, 187
functionality, 15, 221
trusted applications, 225, 285
contactGroup element (XML), 36-37
ContactGroupServices class, 17
containers
adding ACEs, 223
Office Communications Server
support, 197
Containers element (XML), 37
context menus, displaying, 93-94
contextual collaboration
accepting application-specific
conversations, 104-108
additional resources, 110
application-specific contact lists, 92-97
business value, 90
choice of technology, 91
code structure, 92-108
defined, 6, 8, 87
Office Communicator Automation API, 24
overview, 87-90
scenario, 90

cwaRequests element (XML) 375

starting application-specific conversations,
97-104
test environment, 91
Conversation class
BeginEscalateToConference method, 196
functionality, 17
joining conferences, 196
session support, 191
CONVERSATION_TYPE enumeration, 83
conversations
accepting application-specific,
104-108
binding to endpoints, 184
Conversation class, 17
destroyed, 99-100
receiving notification, 99-100
receiving with IMessengerAdvanced,
105-108
retrieving IM text, 104
sending IM text, 100-104
starting, 81-84
starting application-specific, 97-104
testing applications, 108
troubleshooting failures, 327-330
UCMA support, 190-191
CSTA (Computer Supported Telephony
Applications), 28
custom activities
defined, 20
UCMA Workflow support, 18, 22, 113
custom presence
additional resources, 216
choice of technology, 206
code structure, 207
common scenario, 206
creating categories, 205-206
detailed code, 208-215
test environment, 207-208
Custom Tab, 9
CustomPresenceCategory class, 199
cwaEvents element (XML)
functionality, 35
subelements supported, 36-37
cwaRequests element (XML)
functionality, 34-35
subelements supported, 35-36

376

cwaResponses element (XML)

cwaResponses element (XML)
functionality, 35
subelements supported, 36

D

data channel
defined, 33
Unified Communications AJAX API, 34
database requirements, 224
DCPromo tool
assigning static IP addresses, 227
promoting computers, 228
debugging applications
additional resources, 339
best practices, 301
in UC platform, 293-301, 321-330
Office Communicator Automation API,
302-313
PublishSubscribeException example, 320
tools supported, 297-301
UCMA Core API, 314-330
UCMA Workflow, 330-338
Windows Workflow Foundation
support, 20
Decline action, 165-167
DeclineCallActivity class, 44
deleteContact element (XML), 35
deleteGroup element (XML), 35
DequeueCallActivity, 117
destroyed conversations, 99-100
DetectAnsweringMachineActivity
class, 44
device management, 30-31
DHCP (Dynamic Host Configuration
Protocol), 227
dialog activities
adding commands, 174-175
adding events, 175-177
functionality, 128-137
Speech Server support, 37, 45
UCMA Workflow support, 19
dialog communications event activities, 142,
144-147
Dialog Workflow Run Time, 42
DisconnectCallActivity, 44, 126-127, 175

disconnecting calls
DisconnectCallActivity, 44, 126-127, 175
UCMA Workflow support, 21
DLLs (dynamic-link libraries), 27
DMessengerEvents_
AppShutdownEventHandler event
handler, 54
DMessengerEvents_
OnContactFriendlynameChange-
EventHandler event handler, 64
DMessengerEvents_
OnContactListAddEventHandler event
handler, 78
DMessengerEvents_
OnContactListRemoveEventHandler
event handler, 79
DMessengerEvents_
OnContactPhoneChangeEventHandler
event handler, 65
DMessengerEvents_
OnContactStatusChangeEventHandler
event handler, 71
DMessengerEvents_
OnIMWindowCreatedEventHandler
event handler, 99
DMessengerEvents_
OnIMWindowDestroyedEventHandler
event handler, 99-100
DMessengerEvents_
OnMyFriendlyNameChangeEvent-
Handler event handler, 59
DMessengerEvents_OnMyPhoneChange-
EventHandler event handler, 60
DMessengerEvents_
OnMysStatusChangeEventHandler event
handler, 71
DMessengerEvents_OnSigninEventHandler
event handler, 53
DMessengerEvents_OnSignoutEventHandler
event handler, 54
DNS (Domain Name System)
application development support, 219
building AD DS forests, 227
configuring for automatic sign-in, 245-248
creating SRV record, 246-247
verifying records creation, 248

DNS Manager, 246-247
DNS servers
joining to domains, 249-251
verifying server role, 233
Domain Admins group
becoming a member, 252
installing server components, 251
managing networks, 222-223
trusted applications, 286
domain CA, 234-237
domain controllers
AD DS preparation, 221
building AD DS forests, 227
promoting computers, 228-233
static IP addresses, 227-228
Domain Controllers container, 223
domain functional levels, 221
Domain Name System. See DNS
domains. See AD DS domains
DTMF (dual-tone multifrequency)
prompting for input, 163-164
Speech Server support, 19, 38-39
UCMA Workflow support, 19
DtmfRecognizer class, 43
dual-tone multifrequency. See DTMF
Dynamic Host Configuration Protocol
(DHCP), 227
dynamic-link libraries (DLLs), 27

E
Edge Servers, 282, 292
e-mail, 6-7

Enable Office Communications Server
Users Wizard, 274-275
endpoints
ApplicationEndpoint class, 187-189
assigning user rights, 221
binding conversations, 184
defined, 17, 187
enabling, 30
handling incoming calls, 192
LocalOwnerPresence class, 17
Presence Subscription objects, 17
publishing presence, 205
registering, 205, 207

exception handling

subscribing to presence, 200
troubleshooting connection failures,
323-327
UCC API support, 29-30
UCMA support, 187-189
Unified Communications AJAX API, 33
UserEndpoint class, 189
workflows and, 118
Enhanced Presence feature (OCS), 14, 16
Enterprise Admins group, 222-223
Enterprise CA, 227
Enterprise IM, 6
enterprise telephony, 7
error codes
functionality, 294-295
SIP, 295-296
Error element (XML), 36
ETL files, 296
ETW (Event Tracing for Windows), 296
event handlers, registering, 192
event ID (eid), 35
Event Tracing for Windows (ETW), 296
events
adding to dialog, 175-177
adding to IM dialog, 176-177
adding to speech dialog, 176
call, 177
change notifications, 201
communication, 142
handling incoming, 194
exception classes
additional information, 317
overview, 294-295
UCMA Core API, 316-321
exception handling
catching custom exceptions,
335-338
COMException class, 293, 295
FaultHandlerActivity, 332-333
HRESULT error codes, 293
Office Communicator Automation API,
305-307
sources of errors/failures, 293-294
UCMA Core API, 316-321
UCMA Workflow, 332-333

377

378

Exchange Server

Exchange Server
presence information, 206
UC support, 5, 7
Extensible Application Markup Language.
See XAML
Extensible Markup Language. See XML

F

FailureResponseException class, 317, 328
FaultHandlerActivity, 332-333, 336-338
firewalls
application development support,
219, 249
starting OCS services, 268
Flow class, 191
forest functional levels, 221
forests. See AD DS forests
FormFillingDialog instance, 38
FormFillingDialogActivity class, 45
forms-based authentication, 33-34
FQDN (fully qualified domain name)
AD DS forests, 226
ApplicationEndpoint class, 188
modifying Program.cs, 152
Front End Server, 219, 223
fully qualified domain name. See FQDN

G

general activities, 120-125
GetAndConfirmActivity class, 45
GetPresenceActivity, 118, 147-148
global catalog servers, 221
Global Positioning System (GPS), 15,
206-207
Globally Routable User Agent URI.
See GRUU URI
globally unique identifier (GUID), 280
GoToActivity
functionality, 120, 122, 125
Speech Server support, 45
TargetActivityName property, 125
UCMA Workflow support, 21
GPS (Global Positioning System), 15, 206-207
grammar, 18, 134

Grammar class, 43

grammar files, 42

groups
ContactGroupServices class, 17
IMessengerGroup interface, 26
IMessengerGroups interface, 26
managing, 16-17

GRUU (Globally Routable User Agent) URI
ApplicationEndpoint class, 188
endpoint support, 187
modifying Program.cs, 152
trusted applications, 285
UCMA considerations, 15

GUID (globally unique identifier), 280

H

hardware requirements, 224
HelpCommandActivity class, 45
Hidden Markov Model (HMM), 17
HMM (Hidden Markov Model), 17
HMM-based Speech Synthesis (HTS), 17
hold events, 21
host computers
certificates, 282
installing computer certificates, 285
joining servers to domains, 249-251
setting up, 248-251
verifying certificate installation,
283-284
host name resolution, 251
HRESULT error code
functionality, 293-295
Office Communicator Automation API,
305-307
HTS (HMM-based Speech Synthesis), 17
HTTP SSL, 249
HTTPS (Hypertext Transfer Protocol Simple)
TLS/MTLS certificates, 263
Unified Communications AJAX API,
33-34
HttpWebRequest API, 32
Hypertext Transfer Protocol Simple (HTTPS)
TLS/MTLS certificates, 263
Unified Communications AJAX API,
33-34

|ApplicationHost interface, 19

ICE (Interactive Connectivity Establishment),

9,28
IDisposable interface, 103
IfElse Activity, 20, 159, 335
IHostedSpeechApplication interface, 19
IID (interface ID), 280
[IS (Internet Information Services), 34, 249
IS certificates, 266—268
IM (instant messaging)
adding commands to dialog, 175
adding events, 176-177
APl support, 9, 13
asking questions, 136
binding outbound calls, 168-169
conference support, 195
contacting approver, 167-173
contextual collaboration, 6
creating calls, 191
introductory messages, 169
MCU support, 184
Office Communicator Automation API,
23,87
placing outbound calls, 167-173
recognizing input, 170
retrieving text from conversations, 104
sending text to conversations, 100-104
server roles and, 219
UC support, 3-4, 6-7
UCC API support, 27, 29
UCMA Core API, 225
UCMA support, 14-15
UCMA Workflow support, 19, 21, 116
Unified Communications AJAX API, 32
IMessenger interface, 25
IMessenger? interface, 25
IMessenger3 interface, 26
IMessengerAdvanced interface
creating conversations, 98
functionality, 26
receiving application-specific
conversations, 105-108
StartConversation method, 82—-84, 98,
101, 310
starting conversations, 81-84

InstantMessagingQuestionAnswerActivity 379

IMessengerContactAdvanced interface
accessing presence information, 68-76
functionality, 26
PresenceProperties property, 69-70, 73, 75
retrieving contact information, 63-68

IMessengerContacts interface
Counts property, 77
functionality, 26, 310
[tem method, 77
Remove method, 78, 80
working with contact lists, 77-81

IMessengerConversationWndAdvanced

interface
functionality, 26
History property, 107-108
HWND property, 102, 106
notification of destroyed conversations,
100
notification of new conversations, 99
sending IM text to conversations, 100-104
SendText method, 100

IMessengerGroup interface, 26

IMessengerGroups interface, 26

IMessengerPrivate interface, 26

incoming calls
handling, 192-193
Office Communicator Automation API, 23
UCMA Workflow support, 19

incoming events, 194

initiateSession element (XML), 34-35

instant messaging. See IM

InstantMessagingCall class, 191

InstantMessagingCommandActivity
functionality, 137, 141
properties supported, 141

InstantMessagingFlowConfiguration-

Requested event, 193-194

InstantMessagingHelpCommandActivity,

137,141

InstantMessagingQuestionAnswerActivity
functionality, 129, 135
IsDataTrackingEnabled property, 119
properties supported, 135-136
RecognitionResult property, 119
setting prompts, 132, 135-136
TrackingDataWorkflowRuntimeService, 119

380

InstantMessagingStatementActivity

InstantMessagingStatementActivity
functionality, 129, 134
IsDataTrackingEnabled property, 119
properties supported, 134
sending introductory messages, 169
setting prompts, 135
TrackingDataWorkflowRuntimeService,

119
integrated Windows authentication, 33-34

Interactive Connectivity Establishment (ICE),

9,28
Interactive Voice Response. See IVR
interface ID (IID), 280
Internet Information Services (IIS), 34, 249
Internet Protocol. See IP
introductory messages, 163, 169
InvalidOperationException class,
318, 323,328
InvokeWorkflowActivity class, 45
IP (Internet Protocol)
building AD DS forests, 227
contextual collaboration, 6
Speech Server support, 40
IPSEC Driver, 249
IQueryForm registry entry, 248, 292
IServiceProvider interface, 119
IVR (Interactive Voice Response)
Speech Server support, 38, 40, 42
UC challenges, 4
UC opportunities, 7
UCMA support, 11, 14
UCMA Workflow support, 19

L

language packs, installing, 291
load balancing, 15, 219
local users
checking status, 51-52
destroyed conversations, 99-100
displaying information, 58-62
LocalEndpoint class, 187
LocalOwnerPresence class
creating applications, 184
functionality, 17
subscribing to presence, 200

locationProfiles element (XML), 37
log files
examining, 304-305
Office Communicator Automation API,
304-305
troubleshooting common operational
failures, 311-313
Logon element (XML), 35

M

MakeCallActivity class, 44
Marshal class, 50, 57, 82, 103
mashup, 32
Mayo, Chris, 87
MCUs (multipoint control units), 184, 195
media handling
defined, 28
UCC API support, 28-31
MediaFlowState enumeration, 194
MenuActivity class, 45
Message Queuing (MQ), 249
MessageParsingException class, 317
MessageReceived event, 194
messages
asynchronous processing, 184
introductory, 163, 169
UCMA Workflow support, 21
Messenger class
accessing presence information, 68-76
AddContact method, 77, 80
AppShutdown event, 54
assembly initialization failures, 307
AutoSignin method, 53, 57
displaying local user information, 58-62
functionality, 25-26, 49-50
get_MyPhoneNumber property, 60
GetContact method, 63, 67, 73
MyContacts property, 77
MyFriendlyName property, 59
MyServicelD property, 63
MySigninName property, 59
MyStatus property, 51-52, 57
OnContactFriendlyNameChange
event, 64
OnContactListAdd event, 78

OnContactListRemove event, 79
OnContactPhoneChange event, 65
OnContactStatusChange event, 71
OnIMWindowCreated event, 99
OnIMWindowDestroyed event, 99-100
OnMyFriendlyNameChange event, 59
OnMyPhoneChange event, 60
OnMysStatusChange event, 71
OnSignin event, 53
OnSignout event, 54
retrieving contact information, 63-68
Signin method, 52
SignOut method, 54, 57
working with contact lists, 77-81
MessengerPriv class, 26
Microsoft Dynamics, 6
Microsoft Exchange Server. See Exchange
Server
Microsoft Management Console. See MMC
Microsoft Office, 6, 23
Microsoft Office Communications Server.
See Office Communications Server
Microsoft Office Communications Server
2007 R2 Deployment Wizard
accessing, 238-239, 254, 259, 263
Application Configuration page, 256
Component Service Account For This
Standard Edition Server page, 256
Deploy Standard Edition Server page,
255, 263, 268, 278
Directory Location Of Schema Files page,
239
Domain Preparation Information page,
244
Domain Preparation Wizard Has
Completed Successfully page, 244
Forest Preparation Wizard Has Completed
Successfully page, 243
Location For Database Files page, 257
Location For Server Files page, 256
Location Of Universal Groups page, 243
Main Service Account For Standard Edition
Server page, 256
Prepare Active Directory For Office
Communications Server page,
238, 242, 244

Microsoft.SpeechServer.Recognition namespace

Ready To Deploy Server page, 258
Ready To Prepare Domain page, 244
Ready To Prepare Forest page, 243
Ready To Prepare Schema page, 239
Schema Preparation Wizard Has
Completed Successfully page, 239
Select Location To Store Global Settings
page, 243
SIP Domain User For Default Routing
page, 243
starting page, 238
Validate Pool Or Server Functionality
page, 279
Web Farm FQDNs page, 257
Welcome To The Certificate Wizard
page, 264
Welcome To The Configure Pool/Server
Wizard page, 259
Welcome To The Deploy Server Wizard
page, 256
Welcome To The Domain Preparation
Wizard page, 244
Welcome To The Forest Preparation
Wizard page, 243
Welcome To The Schema Preparation
Wizard page, 239
Welcome To The Start Services Wizard
page, 269
Microsoft Office Communicator. See Office
Communicator
Microsoft Office Outlook, 87-90, 206
Microsoft SharePoint, 6, 23
Microsoft SpeechServer.Dialog
namespace, 44
Microsoft Visual Basic, 20
Microsoft Visual Studio. See Visual Studio
Microsoft Windows, 6
Microsoft.Rtc.Collection namespace, 16
Microsoft.Rtc.Workflow.dll library, 23
Microsoft.Rtc.Workflow.Toolbox.dll library, 23
Microsoft.Speech namespace, 18
Microsoft.SpeechServer namespace, 44
Microsoft.SpeechServer.Dialog
namespace, 44
Microsoft.SpeechServer.Recognition
namespace, 45

381

382

Microsoft.SpeechServer.Recognition.SrgsGrammar namespace

Microsoft.SpeechServer.Recognition.
SrgsGrammar namespace, 18, 45
Microsoft.SpeechServer.Synthesis
namespace, 45
MIDL command, 225, 280
MISTATUS enumeration, 51-52
MMC (Microsoft Management Console)
Active Directory Users and Computers
snap-in, 224
Certificates snap-in, 283-284
Communicator Web Access snap-in, 224
Computer Management console, 224
Office Communications Server snap-in,
224
opening, 283
Response Group Server snap-in, 224
Monitoring Agent service, 269
Monitoring server role, 269
MPHONE_TYPE enumeration, 60
MQ (Message Queuing), 249
MTLS (Mutual Transport Layer Security)
application endpoints, 187
enabling connections, 281-282
installing/configuring certificates,
263-266
UCMA support, 184
MultipartContentException class, 317
multipoint control units (MCUs), 184, 195
Mutual Transport Layer Security. See MTLS
MyPersona control, 92-93

N

Name Control, 9
namespaces, 43-45
NavigatbleListActivity class, 45
network management, 221-223
New Object User Wizard, 273
New Project dialog box, 114-115, 151
notifications
receiving for destroyed conversations,
99-100
receiving for event changes, 201
receiving for new conversations, 99
UCMA support, 11, 14
UCMA Workflow support, 19

NTLM (Windows authentication), 33-34
NTLMSSP (NTLM Security Support
Provider), 249

(0

OCSLogger tool
enabling logging, 300
functionality, 293, 296-297
installing, 314
starting, 314
OCSTracer tool, 314
OfferAnswerException class, 316
Office Communications Server
AD DS preparation, 222-223
AD DS support, 221
additional resources, 292
APl support, 9
application development support, 220
configuring connection, 151-152
configuring users, 276-278
container support, 197
enabling connections, 281
enabling users, 273-275
Enhanced Presence feature, 14, 16
installing administrative tools, 224,
239-240
joining to domains, 249-251
registering endpoints, 205
server roles, 223-224
setting up host computer, 248-251
UC support, 5
validating functionality, 278-279
verifying host name resolution, 251
verifying replication of users, 275
Office Communications Server 2007 Speech
Server. See Speech Server 2007
Office Communications Server Certificate
Wizard, 264-266
Office Communications Server Installation
Wizard, 240-242
Office Communications Server Logging Tool.
See OCSLogger tool
Office Communications Server Standard
Edition
building AD DS forest, 226-237

configuring, 251-272

configuring DNS for automatic sign-in,
245-248

configuring IIS certificates, 266-268

configuring UC user accounts, 272-278

deploying, 226

installing, 251-272

installing/configuring TLS/MTLS
certificates, 263-266

preparing AD DS for UC, 237-245

setting up host computer, 248-251

starting services, 268-269

validating server functionality, 278-279

Office Communicator

additional resources, 85, 204

application development support, 220

determining if running, 50

displaying local user information,
58-62

enabling tracing, 296

functionality, 3

installing, 280

Office Outlook support, 87-90

publishing contact presence, 68-76

retrieving contact information, 63-68

signing in, 49-53

signing out, 54-58

starting conversations, 81-84

subscribing to contact presence, 68-76

working with contact list, 77-81

Office Communicator Automation API

accepting application-specific
conversations, 104-108

additional resources, 85, 110, 292

application architecture, 24-25

application development support, 220,
224-225

application-specific contact lists, 92-97

business value, 90

choice of technology, 91

code structure, 92-108

configuring, 280-281

considerations, 24

debugging applications, 302-313

displaying local user information, 58-62

downloading, 224

Personalist control 383

enabling tracing, 302-305
error codes supported, 294
examining log files, 304-305
examining Windows Event Log, 304
functionality, 9, 23, 87
generating class/interface IDs, 280-281
handling exceptions, 305-307
installing SDK, 280
Messenger class support, 49-50
object model, 25-26
publishing contact presence, 68-76
retrieving contact information, 63-68
scenarios, 23, 90
signing in to Office Communicator, 49-53
signing out of Office Communicator,
54-58
starting application-specific conversations,
97-104
starting conversations, 81-84
subscribing to contact presence, 68-76
test environment, 91
troubleshooting applications, 307-313
working with contact list, 77-81
Office Communicator Web Access client,
32-33
operating system requirements, 224
OperationFailureException class, 317
OperationTimeoutException class, 317, 328
outbound alerts, 14
outbound phone calls
binding, 161-162
binding IM calls, 168-169
creating, 21
OutboundCallActivity, 118, 126-128, 161
placing IM call to approver, 167-173
placing to approver, 160-167
Outbound Sequential Workflow Console
Application project template, 114, 151
OutboundCallActivity, 118, 126-128, 161

P

PBX (Private Branch eXchange), 3, 40
Personalist control
displaying context menus, 93-94
functionality, 92-93

384

phone calls

phone calls. See voice calls
PIA (primary interop assembly), 225, 309
PKI (public key infrastructure), 219
pollFailed element (XML), 36
presence information
API support, 9
approver's, 154-157
custom presence, 205-215
defined, 5
Enhanced Presence feature (OCS), 14
implementing branch logic, 155-157
LocalOwnerPresence class, 17

Office Communicator Automation API,

23-24
publishing, 68-76, 197-200
publishing with UCMA, 205-215
querying for, 21, 205
RemotePresence class, 17
subscribing to, 68-76, 198, 200-202
troubleshooting failures, 312
UCMA Core API, 225
UCMA Workflow support, 19
Unified Communications AJAX API, 32
WPF Presence Controls, 92-97
Presence Subscription object, 17
PRESENCE_PROPERTY enumeration,
69-70
PresenceNotificationReceived event,
202
presence-related activity, 118, 147-148

PresenceResult object, 148
presenceSubscriptionState element (XML),

37

primary interop assembly (PIA), 225, 309
Private Branch eXchange. See PBX
private CA, 227

Program.cs file, 151-152

programming applications

Office Communicator Automation
API, 91

publishing contact presence, 68-76

retrieving contact information, 63-68

signing in to Office Communicator,
49-53

signing out of Office Communicator,
54-58

starting conversations, 81-84
subscribing to contact presence, 68-76
testing process, 108
working with contact information,
58-62
working with contact list, 77-81
project templates
accessing, 114
Inbound Sequential Workflow Console
Application, 114
installing, 114
Outbound Sequential Workflow Console
Application, 114, 151
prompt database, 42
prompting
for actions, 170
for DTMF input, 163-164
InstantMessagingQuestionAnswerActivity,
132,135-136
InstantMessagingStatementActivity, 135
SpeechQuestionAnswerActivity, 131-133
SpeechStatementActivity, 129-130
protocol analysis tool, 296
PSTN (Public Switched Telephone
Network), 3
public key infrastructure (PKI), 219
Public Switched Telephone Network
(PSTN), 3
publishing
contact presence, 68-76
LocalOwnerPresence class, 17
troubleshooting failures, 312
UCC API support, 27, 30-31
Unified Communications AJAX API, 32
user presence, 197-200
publishRawCategories element (XML), 35
publishSelfPresence element (XML), 35
PublishSubscribeException class, 317-318,
320

Q

guery/response bots. See automated agents
querying for presence information, 21, 205
queryPresence element (XML), 35
QuestionAnswerActivity class, 45

R

Real-time Transport Control Protocol
(RTCP), 28
Real-time Transport Protocol. See RTP
RealTimeException class, 295, 316, 318
Recognition class, 18
Recognizer class, 43
RecordAudioActivity class, 44
RecordMessageActivity class, 44
RegisterException class, 295, 317, 323
RegisterForincomingCall event,
192-193
registry keys, 50
Remote Procedure Call (RPC), 249
remote users, 17
RemotePresence class
creating applications, 184
functionality, 17
subscribing to presence, 202
RepeatCommandActivity class, 45
request ID (rid), 35
requestAccepted element (XML), 36
requestCancelled element (XML), 36
requestFailed element (XML), 36
requestRejected element (XML), 36
requestSucceeded element (XML), 36
Response Group Server snap-in, 224
retrieve events, 21
reverse proxy, 219
RMCAST Protocol Driver, 249
root domain controller, 227
routing, 11, 16
RPC (Remote Procedure Call), 249
RTCP (Real-time Transport Control
Protocol), 28
RTCUniversalServerAdmins security
group
becoming a member, 252
installing server components, 220
trusted applications, 286
RTP (Real-time Transport Protocol)
Speech Server support, 40
UCC API support, 28
rules engine, 20
run-time exceptions, 294

session management

S

SALT (Speech Application Language Tags)
creating IVR application, 40
dialog flows, 37
Speech Server support, 19, 37, 43
UC support, 11
SALT interpreter, 42
SaltInterpreterActivity class, 45
SAM (Security Account Manager), 249
scheduling conferences, 14, 184,
195-196
Schema Admins security group, 222
Schema Preparation Wizard, 239
schemas
AD DS, 221-222
Unified Communications AJAX API, 34
Search element (XML), 35
searchResult element (XML), 37
Secure Real-time Transport Protocol
(SRTP), 28
Secure Sockets Layer (SSL), 263
Security Account Manager (SAM), 249
selfPresence element (XML), 37
selfRawCategories element (XML), 37
SequentialWorkflowActivity, 119
Server Manager, 253-254
server roles
AD DS, 221
additional information, 219
administrative tools, 224
database requirements, 224
hardware requirements, 224
IM support, 219
Office Communications Server, 219-220,
223-224
operating system requirements, 224
ServerPlatformSettings class,
183-184
ServerPolicyException class, 317, 328
SES (Speech Engine Services), 42
Session Initiation Protocol. See SIP
session management
call support, 191
UCC API support, 30-31
Unified Communications AJAX API, 34

385

386

SetTaskStatusActivity class

SetTaskStatusActivity class, 45
SetupSE.exe. See Microsoft Office
Communications Server 2007 R2
Deployment Wizard
Short Message Service. See SMS
signaling
defined, 28
Speech Server support, 40
UCC API support, 28
signing in
an endpoint, 323
configuring DNS, 245-248
to Office Communicator, 49-53
troubleshooting failures, 312
signing out, 54-58
Simple Object Access Protocol (SOAP), 32
SIP (Session Initiation Protocol)
ApplicationEndpoint class, 188
endpoint support, 187
error codes, 295-296
functionality, 13
modifying Program.cs, 152
Office Communicator Automation
API, 24
publishing presence information, 198
Speech Server support, 40
trusted applications, 285
UCC API support, 27-29
UCMA support, 11, 13, 15-16
SMS (Short Message Service), 4, 15
Snooper tool, 296-297, 300-301
SOAP (Simple Object Access Protocol), 32
softphones, 40
Speech Application Language Tags.
See SALT
speech dialog
adding commands, 174-175
adding events, 176
Speech Dialog Workflow Activities, 37
Speech Engine Services (SES), 42
speech recognition
handling grammars, 18
Speech Server support, 38, 40
UCMA support, 11, 17
UCMA Workflow support, 19

Speech Server 2007
application architecture, 40-43
considerations, 40
Conversational Grammar Builder, 39
Developer Edition, 37-46
functionality, 11
lexicon tools, 39
Prompt Recording and Editing tool, 39
scenarios, 38—39
tuning tools, 39
UCMA Workflow support, 225
Speech Server Managed API
dialog flows, 37
functionality, 38, 42
namespace support, 43-45
object model, 43
UC support, 11
speech synthesis
HMM-based, 17
Speech Server support, 38-39
UCMA support, 11, 16
UCMA Workflow support, 19
Speech Synthesis Markup Language
(SSML), 45
SpeechCommandActivity
functionality, 137-139
properties supported, 140
SpeechCompositeActivity class, 45
SpeechEventActivity class, 45
SpeechEventsActivity class, 45
SpeechHelpCommandActivity, 137,
140-141
SpeechQuestionAnswerActivity
command activities and, 138, 140
functionality, 129-130
IsDataTrackingEnabled property, 119
properties supported, 130-131
RecognitionResult property, 119
setting prompts, 131-133

TrackingDataWorkflowRuntimeService, 119

SpeechRecognizer class, 19, 43

SpeechRepeatCommandActivity, 137, 141

SpeechSequenceActivity class, 45

SpeechSequentialWorkflowActivity class,
43, 45

SpeechStatementActivity
functionality, 129
IsDataTrackingEnabled property, 118-119
properties supported, 129
setting prompts, 129-130
TrackingDataWorkflowRuntimeService,

119
TurnStarting event, 130

SpeechSynthesizer class, 38

SPI URIs
ApplicationEndpoint class, 188
endpoint support, 187
joining conferences, 196
modifying Program.cs, 152
UCMA support, 15

SQL (Structured Query Language), 219

SQL Server database, 207

SQLCMD tool, 207

SRTP (Secure Real-time Transport

Protocol), 28

SRV record (DNS)
creating, 246-247
functionality, 246
verifying creation, 248

SSL (Secure Sockets Layer), 263

SSML (Speech Synthesis Markup

Language), 45

Start Services Wizard, 269

state engine, 21

StateChanged event, 193-194

StatementActivity class, 45

static IP addresses, 227-228

Structured Query Language (SQL), 219

subscribePresence element (XML), 35

Subscribers element (XML), 36

subscribing
to contact presence, 68-76
to user presence, 198, 200-202
UCC API support, 27, 30-31
Unified Communications AJAX API, 32

surveys, 11

Synthesis class, 18

Synthesizer class, 43

System.Runtime.InteropServices namespace,

306
System.Speech namespace, 18

tracing, enabling

T

TCP (Transmission Control Protocol), 189
TCP/IP Protocol Driver, 249
technology
business process communication, 150
contextual collaboration, 91
custom presence, 206
UCMA, 206
telephony
API support, 13
enterprise, 7
Speech Server support, 40
UCC API support, 28
UCMA Core API, 225
Telephony Interface Manager Connector
(TIMC), 40
TelephonySession class, 43
terminateSession element (XML), 34-35
testing
application development and, 220
application-specific conversations, 108
business process communication, 150
contextual collaboration applications, 91
custom presence, 207-208
UCMA, 207-208
text-to-speech (TTS)
Speech Server support, 40
UCMA support, 11, 17
TIMC (Telephony Interface Manager
Connector), 40
TLS (Transport Layer Security)
enabling connections, 281-282
endpoint support, 189, 214
installing/configuring certificates,
263-266
TlsFailureException class, 317, 321
touch-tone input, 19
tracing, enabling
Office Communicator, 296
Office Communicator Automation API,
302-305
overview, 296
UCMA applications, 314-316
UCMA Core API, 296, 314-316
UCMA Workflow, 296, 330-332

387

388 TrackingDataWorkflowRuntimeService

TrackingDataWorkflowRuntimeService, 19, functionality, 9-10, 27
21,116, 119-120 object model, 29-31
Transmission Control Protocol (TCP), 189 presence considerations, 206
Transport Layer Security. See TLS scenarios, 27
troubleshooting applications UCMA (Unified Communications Managed
additional resources, 339 API)
application initialization failures, 321-322 additional resources, 46, 110, 179, 204,
assembly initialization failures, 307-309 216, 292
best practices, 301 APl architecture, 16-17
COM interop errors, 310 availability, 15
common operational failures, 311-313 call flows, 190-191
conversation failures, 327-330 choice of technology, 206
endpoint connection failures, 323-327 code structure, 207
ETL file support, 296 CollaborationPlatform class, 184-186
Office Communicator Automation API, common scenario, 206
307-313 conferences, 195-197
trusted applications conversations, 190-191
enabling, 283, 285-290 creating applications, 183-184
UCMA Core API, 225 creating calls, 191-194
trusted service entry (TSE), 285-286 creating categories, 205-206
try/catch blocks, 295, 307, 317 custom activities, 18
TSE (trusted service entry), 285-286 custom presence, 205-215
TTS (text-to-speech) debugging applications, 295, 321-330
Speech Server support, 40 detailed code, 208-215
UCMA support, 11, 17 enabling tracing, 314-316
turn, 130 endpoints, 187-189
extensibility, 15
U functionality, 13
-~ o installing SDK, 114, 148, 281-282
UC (Unified Communications) Media stack, 16
additional resources, 12, 292 object model, 17-18
chall'eng.es, 4-5 publishing presence, 197-200
conflgur.mg user' accpunts, 272-278 scalability, 9, 14
debugging applications, 293-301 scenarios, 14
defined, 3 SIP support, 11, 13, 15-16
goal, 3 subscribing to presence, 200-202

opportunities, 5-7 test environment, 207-208

platform overview, 7 workflow architecture, 22
preparing AD DS, 237-245 UCMA Core API
stepping through workflow, 333-335

s S ; additional information, 225
UCC (Unified Communications Client) API

application development support,

additional resources, 46 220 225
application architecture, 28-29 configluring 281-290
application development support, 220 debugging applications, 314-330

considerations, 28) enabling tracing, 296, 314-316
error codes documentation, 295 exception classes, 316-321

functionality, 16
handling exceptions, 316-321
workflow architecture, 22
UCMA Speech API
functionality, 16-17
UCMA Workflow support, 19
workflow architecture, 22
UCMA Workflow APl and Workflow
Activities
additional resources, 148
application development support,
220, 225
business process communication, 19
call control activities, 126-128
call control communications event
activities, 141-144
command activities, 137-141
configuring, 291
considerations, 21
custom activities, 20, 113
debugging applications, 330-338
dialog activities, 128-137
dialog communications event activities,
144-147
enabling tracing, 296, 330-332
functionality, 11, 18, 21-22, 111
general activities, 120-125
handling exceptions, 332-333
infrastructure, 21
object model, 22-23
persistence considerations, 21
presence-related activity, 118, 147-148
project templates, 114-115
scenarios, 19
selecting workflow language, 115
support restrictions, 20
Windows Workflow Activities, 11
Windows Workflow Foundation, 20-21
workflow architecture, 22
Workflow Runtime Services, 113-114,
116-120
UCMA Workflow Runtime Services. See
Workflow Runtime Services
UnhandledExceptionManager class, 320
Unified Communications. See UC

Visual Studio

Unified Communications AJAX API
additional resources, 46
application architecture, 33-34
considerations, 32-33
functionality, 9, 32
presence considerations, 206
scenarios, 32
XML elements, 35
Unified Communications Managed API.
See UCMA
Uniform Resource Locators (URLs), 34
unsubscribePresence element (XML), 35
updateContact element (XML), 35
updateContainer element (XML), 35
updateGroup element (XML), 35
URLs (Uniform Resource Locators), 34
user accounts
configuring, 272-278
enabling, 273-275
verifying replication, 275
User object, 221
user presence. See presence information
user rights, 221
UserEndpoint class
creating calls, 191
creating instances, 183
endpoint support, 189, 207
functionality, 15
LocalEndpoint class and, 187
publishing presence, 198
UCMA support, 15
UserEndpointSettings class, 189
userPresence element (XML), 37
userRawCategories element (XML), 37
Users container, 223

\'

ValidatorActivity class, 45
Visual Studio
building contextual collaboration solution,
92-108
documented exception types, 318
Microsoft.Rtc. Workflow.Toolbox.dll
library, 23

389

390

Visual Studio Debugger

MIDL command support, 280
Speech Server support, 40
UC support, 6
UCMA Workflow support, 225
Visual Studio Debugger, 297-301, 308
Visual Studio Workflow Designer
additional resources, 46
functionality, 115, 335
voice calls. See also incoming calls;
outbound phone calls
accepting, 21
multiple, 21
music on hold functionality, 14
Office Communicator Automation API, 24
Speech Server support, 44
troubleshooting failures, 313
UCC API support, 29
voice mail, 7
Voice over Internet Protocol (VolP), 40
voice recognition, 11
VoiceXML (VXML)
additional resources, 46
creating application, 40
dialog flows, 37
Speech Server support, 19, 37, 40, 43
UC support, 11
VoiceXML interpreter, 42
VoiceXMLinterpreterActivity class, 45
VolP (Voice over Internet Protocol), 40
VXML (VoiceXML)
additional resources, 46
creating application, 40
dialog flows, 37
Speech Server support, 19, 37, 40
UC support, 11

w

W3C (World Wide Web Consortium), 37
Web Components Server
application development support, 219, 224
configuring IIS certificates, 266-268
Web conferencing
conference support, 195
configuring, 269-272
UC support, 7

Web Conferencing Server
application development support,
219, 223
configuring, 269-272
Web Server (1IS) server role
installing, 251, 253-254
Speech Server support, 42
While activity, 20, 121
Windows Event Log
examining, 269
Office Communicator Automation API,
304
trace statements, 293
Windows Firewall, 249, 268
Windows Management Instrumentation
(WMI), 249
Windows Presentation Foundation (WPF),
92,110
Windows Server
AD DS preparation, 221
building AD DS forest, 226
joining servers to domains, 250-251
promoting computers, 228-233
server role support, 220
UCMA Core API, 225
UCMA support, 14
Windows Vista, 226
Windows Workflow Activities, 20, 111.
See also UCMA Workflow API
Windows Workflow Foundation
additional resources, 20-21, 46, 148
functionality, 20-21
handling exceptions, 332
Speech Server support, 37
UCMA Workflow support, 11, 18, 113,
225, 291
workflow architecture, 22
Windows XP, 226
WMI (Windows Management
Instrumentation), 249
Workflow Runtime Services
CommunicationsWorkflowRuntimeService,
19, 21, 116-118
functionality, 19, 22, 113-114, 116-120
TrackingDataWorkflowRuntimeService, 19,
21, 116, 119-120

Workflowl.xoml file, 151
Workflowl.xoml.cs file, 151
WorkflowPersistenceService class, 21
workflows. See also UCMA Workflow API
and Workflow Activities
activities and, 20
allowing user input, 152-154
creating, 20
debugging, 20
endpoints and, 118
persistence considerations, 21
rules engines, 20
stepping through, 333-335
Windows Workflow Foundation, 20
World Wide Web Consortium (W3C), 37
WPF (Windows Presentation Foundation),
92,110

XMLHTTPRequest API 391

WPF Presence Controls
functionality, 92
MyPersona control, 92-93
Personalist control, 92-93

X

XAML (Extensible Application Markup
Language)
functionality, 20
MyPersona control, 93, 95
XML (Extensible Markup Language)
custom presence support, 207
presence information, 5
Unified Communications AJAX API,
32-37
XMLHTTPRequest API, 32-33

About the Authors

Rui Maximo is a senior technical writer in the Office Communications Group. He has worked
on different aspects of the Microsoft Office Communications Server product suite (manage-
ment, migration, topology, VolP, Communicator Web Access) and shipped Microsoft Live
Communications Server 2003, Live Communications Server 2005 (the original version and
the SP1), and Office Communications Server 2007 as a lead program manager and program
manager. With 13 years of experience at Microsoft, Rui has been fortunate to work in diverse
roles (program management, software engineering, and technical writer) and various products
(including Microsoft Windows, Windows Mobile, and Microsoft Office), primarily focusing

on security. Prior to Microsoft, Rui worked at IBM as a software tester and at Brigham Young
University as a UNIX administrator. Rui holds a master’s degree in mathematics, specializing
in abstract algebra and cryptography. You can reach him at ruim@ruimaximo.com. Please
send your comments!

Kurt De Ding is a senior programming writer in the Office Communications Group.

As the pioneering member of the SDK documentation team, he was instrumental in

the initial design, authoring, and delivery of the SDK documentation for the Microsoft
Unified Communications APIs, including Microsoft Office Communicator Automation API,
Unified Communications Client API, Unified Communications Managed APl v 1.0, and Unified
Communications AJAX API, as well as Live Meeting Service API. Before joining the Office
Communications Group, Kurt had worked on various Microsoft technologies, including
Windows CE SDK, Windows Platform SDK, and Microsoft SQL Server SDK.

Vishwa Ranjan is a program manager in the Unified Communications Group. Most recently,
Vishwa has worked on the Unified Communications Platform APl Workflow Activities, which
is available as part of Office Communications Server 2007 R2. Previously, he worked on
Microsoft Speech Server 2004 and Office Communications Server 2007 Speech Server. He
has more than 7 years of experience as a software design engineer in test, a technical lead,
and a program manager.

Chris Mayo is a technical evangelist in the Developer and Platform Evangelism group.

Chris focuses on the Unified Communications products (Office Communications Server
2007 R2, Office Communicator 2007 R2, and Microsoft Exchange Server 2007) and plat-
form software development kits (SDKs), working with the Office Communications Group
since the early betas of Office Communications Server 2007. Chris has been with Microsoft
for 8 years as an evangelist working with the developer and independent software vendor
communities. Chris has experience as both a writer for developer publications and a public
speaker at professional events, such as the Professional Developers Conference and TechEd.
Prior to joining Microsoft, Chris served as a developer and architect in the IT departments of
Fortune 500 companies in the retail and finance industries. Keep up with Chris at his Unified
Communications Development blog at http://blogs.msdn.com/cmayo/.

Oscar Newkerk is a Unified Communications Architect at Unify Square Inc. working in the
area of Unified Communications, with an emphasis on integrating and enhancing business
processes with collaboration technologies. With 14 years of experience at Microsoft, Oscar
worked in various roles and groups within the company. Most recently, he was a technical
evangelist in the Unified Communications Group, helping the developer community to plan,
design, develop, and deploy solutions that integrate with Office Communications Server.
Prior to Microsoft, Oscar worked for Digital Equipment Corporation as a software specialist
and in software engineering in the areas of systems and network management. Oscar holds a
bachelor of science degree in physics from Guilford College and holds patents in the areas of
systems management and speech recognition.

Albert Kooiman is a member of the Unified Communications Marketing team and has

been responsible for product management of the Unified Communications Developer
Platform since the group was created in 2006. He works on both Exchange Server and Office
Communications Server. With 14 years of experience in the telecommunications and speech
technology industry, Albert has been involved in a wide range of projects encompassing the
broad spectrum of Unified Communications solutions currently in the market. Albert holds

a master’s degree of the Medical Faculty of the University of Amsterdam, specializing in
medical informatics.

Mark Parker is a programming writer in the Office Communications Group. Most

recently, Mark was responsible for the Unified Communications Managed API 2.0 Core

SDK documentation and part of the Unified Communications Managed API 1.0 SDK
documentation. Before joining the Office Communications Group, Mark worked as a writer
on the Speech Server 2007 documentation team and was a lead programming writer on the
Windows Device Driver Kit documentation team. Prior to Microsoft, Mark taught mathematics
and a number of programming languages at Shoreline Community College. Mark holds a
master of science degree in mathematics.

	Cover

	Copyright page

	Contents at a Glance
	Table of Contents
	Foreword
	Acknowledgments
	Personal Acknowledgments

	Introduction
	Why We Wrote This Book
	What This Book Is About
	Who This Book Is For
	Companion Content
	Hardware and Software Requirements
	Servers
	Client Computers

	Database Requirements
	Office Communications Server 2007 R2
	Administrative Tools
	Development Tools
	Sample Test Topology

	Find Additional Content Online
	Support for This Book
	Questions and Comments

	Part I: Understanding Unified Communications
	Chapter 1: Microsoft Unified Communications
	Unified Communications: Challenges and Opportunities
	Challenges in Unified Communications
	Opportunities in Unified Communications

	The Unified Communications Platform
	Unified Communications APIs
	Summary
	Additional Resources

	Chapter 2: Microsoft Unified Communications APIs Foundation
	Unified Communications Managed API 2.0
	Scenarios
	Considerations
	API Architecture
	Object Model

	UCMA 2.0 Workflow API
	Scenarios
	Windows Workflow Foundation
	Considerations
	Workflow Architecture
	Object Model

	Office Communicator Automation API
	Scenarios
	Considerations
	Application Architecture
	Object Model

	Unified Communications Client API
	Scenarios
	Considerations
	Application Architecture
	The UCC API Object Model

	Unified Communications AJAX API
	Scenarios
	Considerations
	Application Architecture
	XML Model

	Office Communications Server 2007 Speech Server Developer Edition
	Scenarios
	Considerations
	Application Architecture

	Summary
	Additional Resources

	Part II: Office Communicator Automation API
	Chapter 3: Programming a Microsoft Office Communicator Automation API Application
	Signing In to and Out of Office Communicator
	Using the Messenger Class
	Determining Whether Office Communicator Is Running
	Checking Local User Status
	Signing In to Office Communicator
	Signing Out of Office Communicator
	Putting It All Together

	Working with Contact Information and Contact Presence
	Displaying Local User Information
	Retrieving Contact Information
	Publishing and Subscribing to Contact Presence
	Putting It All Together

	Working with the Office Communicator Contact List
	Putting It All Together

	Starting Conversations
	Using the IMessengerAdvanced Interface
	Putting It All Together

	Summary
	Additional Resources

	Chapter 4: Embedding Contextual Collaboration
	Introduction to Contextual Collaboration
	Scenario
	Business Value
	Choice of Technology
	Test Environment
	Overall Code Structure
	Displaying Application-Specific Contact Lists
	Starting Application-Specific Conversations
	Accepting Application-Specific Conversations

	Summary
	Additional Resources

	Part III: Unified Communications Managed API Workflow
	Chapter 5: Unified Communications Managed API (UCMA) Workflow
	UCMA Workflow
	Using Project Templates
	Selecting a Workflow Language
	Using Workflow Designer
	Workflow Runtime Services
	General Activities
	Call Control Activities
	Dialog Activities
	Command Activities
	Call Control Communications Event Activities
	Dialog Communications Event Activities
	Presence-Related Activity

	Summary
	Additional Resources

	Chapter 6: Business Process Communication
	Scenario
	Business Value
	Choice of Technology
	Overall Code Structure
	Test Environment
	Building the Application
	Task 1: Create a New Communication Workflow Project
	Task 2: Configure the Application to Connect to Office Communications Server
	Task 3: Allow User Input to the Workflow Instance
	Task 4: Get the Approver’s Presence Information
	Task 5: Implement Branching Logic Based on the Approver’s Presence
	Task 6: Update cantBeContactedBranch
	Task 7: Update canBeContactedBranch

	Summary
	Additional Resources

	Part IV: Unified Communications Managed API
	Chapter 7: Structure of a UCMA Application
	Creating a UCMA Application
	CollaborationPlatform
	Endpoints
	Conversation, Call, and Call Flow
	Creating Calls
	Conferences
	Publish and Subscribe to Presence

	Summary
	Additional Resources

	Chapter 8: Publishing Custom Presence with UCMA
	Creating Custom Presence Categories
	Common Custom Presence Application Scenario
	Choice of Technology
	Overall Code Structure
	Test Environment
	Detailed Code
	Summary
	Additional Resources

	Part V: Debugging, Tuning, and Deploying Unified Communications Applications
	Chapter 9: Preparing the UC Development Environment
	UC Application Development Environment Components
	AD DS for Managing a Network
	Office Communications Server Roles
	UC APIs

	Deploying Office Communications Server Standard Edition
	Building an AD DS Forest
	Preparing AD DS for UC
	Configuring DNS for Automatic Sign-In
	Setting Up the Office Communications Server Host Computer
	Installing and Configuring Office Communications Server Standard Edition
	Configuring UC User Accounts
	Validating Server Functionality

	Configuring Application Development Components
	Configuring the Office Communicator Automation API
	Configuring UCMA Core
	Configuring UCMA Workflow

	Summary
	Additional Resources

	Chapter 10: Debugging a Unified Communications Application
	Debugging in the UC Platform
	Sources of Errors and Failures
	Error Codes and Exception Classes
	Session Initiation Protocol Error Codes
	Tracing
	Debugging Tools for UC Applications
	Best Practice for Debugging or Troubleshooting a UC Application

	Debugging Office Communicator Automation API Applications
	Enabling Tracing
	Handling Exceptions Using HRESULT Error Codes
	Troubleshooting Office Communicator Automation API Applications

	Debugging UCMA Core Applications
	Enabling Tracing
	Handling Exceptions Using the UCMA Core Exception Model
	Debugging UCMA Core Applications

	Debugging UCMA Workflow Applications
	Enabling Tracing
	Handling Exceptions Using the Fault Handler Activity
	Debugging UCMA Workflow Applications

	Summary
	Additional Resources

	Glossary
	Index
	About the Authors
	Rui Maximo
	Kurt De Ding
	Vishwa Ranjan
	Chris Mayo
	Oscar Newkerk
	Albert Kooiman
	Mark Parker

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ARA <FFFE270633062A062E062F0645062000470630064706200027064406250639062F0627062F0627062A0620004406250646063406270621062000450633062A0646062F0627062A062000410064006F0062006500200050004400460020004A064506430646062000270644062A06390627064506440620004506390647062706200048062A062A063606450646062000390644062706450627062A0620002A0645064A064A063206200048063106480627062806370620002A063406390628064A06290620004806250634062706310627062A062000450631062C0639064A062906200048063906460627063506310620002A0641062706390644064A0629062000480637062806420627062A062E0020004A06450643064606200041062A062D062000450633062A0646062F0627062A0620005000440046002000270644064506460634062306290620002806270633062A062E062F062706450620004100630072006F0062006100740020004806410064006F00620065002000520065006100640065007200200037002E003000200023064806200023062D062F062B062E0029000D000A00>
 /CHS <FEFF4F7F75288FD94E9B8BBE7F6E6765521B5EFA7684002000410064006F006200650020005000440046002065876863517759078F8552A95DE55177FF0C53735305542B68077B7E30018D8594FE63A530014E667B7E30014EA44E9251437D20548C56FE5C423002521B5EFA76840020005000440046002065874EF653EF4EE54F7F75280020004100630072006F0062006100740020548C002000410064006F00620065002000520065006100640065007200200037002E00300020621666F49AD87248672C676562535F003002>
 /CHT <FEFF4F7F752890194E9B8A2D5B9A5EFA7ACB7684002000410064006F006200650020005000440046002065874EF651775099535452A95DE55177FF0C53735305542B6A197C6430018D8590237D50300166F87C6430014E9252D551437D20548C57165C6430025EFA7ACB76840020005000440046002065874EF653EF4EE54F7F75280020004100630072006F0062006100740020548C002000410064006F00620065002000520065006100640065007200200037002E00300020621666F49AD87248672C958B555F3002>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200073006E00610064006E006F00200070015900ED0073007400750070006E00FD0063006800200064006F006B0075006D0065006E0074016F002000410064006F006200650020005000440046002C0020006B00740065007200E90020006F00620073006100680075006A00ED00200074006100670079002C00200068007900700065007200760061007A00620079002C0020007A00E1006C006F017E006B0079002C00200069006E0074006500720061006B007400690076006E00ED0020007000720076006B0079002000610020007600720073007400760079002E00200056007900740076006F01590065006E00E900200064006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000410064006F00620065002000520065006100640065007200200037002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /DAN <FEFF004200720075006700200064006900730073006500200069006E0064007300740069006C006C0069006E006700650072002000740069006C0020006100740020006F0070007200650074007400650020006C0065007400740069006C006700E6006E00670065006C006900670065002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E007400650072002C002000640065007200200069006E006400650068006F006C0064006500720020006B006F006400650072002C002000680079007000650072006C0069006E006B0073002C00200062006F0067006D00E60072006B00650072002C00200069006E0074006500720061006B007400690076006500200065006C0065006D0065006E0074006500720020006F00670020006C00610067002E0020004400650020006F007000720065007400740065006400650020005000440046002D0064006F006B0075006D0065006E0074006500720020006B0061006E002000E50062006E00650073002000690020004100630072006F00620061007400200065006C006C006500720020004100630072006F006200610074002000520065006100640065007200200037002E00300020006F00670020006E0079006500720065002E>
 /DEU <FEFFFEFF00560065007200770065006E00640065006E0020005300690065002000640069006500730065002000450069006E007300740065006C006C0075006E00670065006E0020007A0075006D002000450072007300740065006C006C0065006E00200076006F006E0020007A0075006700E4006E0067006C0069006300680065006E002000410064006F006200650020005000440046002D0044006F006B0075006D0065006E00740065006E0020006D0069007400200054006100670073002C002000480079007000650072006C0069006E006B0073002C0020004C006500730065007A00650069006300680065006E002C00200069006E0074006500720061006B0074006900760065006E00200045006C0065006D0065006E00740065006E00200075006E00640020004500620065006E0065006E002E002000450072007300740065006C006C007400650020005000440046002D0044006F006B0075006D0065006E007400650020006B00F6006E006E0065006E0020006D006900740020004100630072006F00620061007400200075006E0064002000410064006F00620065002000520065006100640065007200200037002E00300020006F0064006500720020006800F600680065007200200067006500F600660066006E00650074002000770065007200640065006E002E>
 /ENU (Use these settings to create accessible Adobe PDF documents that include tags, hyperlinks, bookmarks, interactive elements, and layers. Created PDF documents can be opened with Acrobat and Adobe Reader 7.0 and later.)
 /ESP <FEFF005500740069006C0069006300650020006500730074006100200063006F006E0066006900670075007200610063006900F3006E0020007000610072006100200063007200650061007200200064006F00630075006D0065006E0074006F0073002000500044004600200061006300630065007300690062006C00650073002000640065002000410064006F00620065002000710075006500200069006E0063006C007500790061006E0020006500740069007100750065007400610073002C002000680069007000650072007600ED006E00630075006C006F0073002C0020006D00610072006300610064006F0072006500730020006400650020007000E100670069006E0061002C00200065006C0065006D0065006E0074006F007300200069006E00740065007200610063007400690076006F007300200079002000630061007000610073002E002000530065002000700075006500640065006E00200061006200720069007200200064006F00630075006D0065006E0074006F00730020005000440046002000630072006500610064006F007300200063006F006E0020004100630072006F006200610074002C002000410064006F00620065002000520065006100640065007200200037002E003000200079002000760065007200730069006F006E0065007300200070006F00730074006500720069006F007200650073002E>
 /FRA <FEFF005500740069006C006900730065007A00200063006500730020006F007000740069006F006E007300200070006F0075007200200063007200E900650072002000640065007300200064006F00630075006D0065006E00740073002000410064006F006200650020005000440046002000610063006300650073007300690062006C0065007300200064006F007400E90073002000640065002000620061006C0069007300650073002C00200064002700680079007000650072006C00690065006E0073002C0020006400650020007300690067006E006500740073002C00200064002700E9006C00E9006D0065006E0074007300200069006E007400650072006100630074006900660073002000650074002000640065002000630061006C0071007500650073002E0020004C0065007300200064006F00630075006D0065006E0074007300200050004400460020006F006200740065006E00750073002000730027006F0075007600720065006E0074002000640061006E00730020004100630072006F006200610074002000650074002000410064006F00620065002000520065006100640065007200200037002E00300020002800650074002000760065007200730069006F006E007300200075006C007400E900720069006500750072006500730029002E>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003C003C103BF03C303C003B503BB03AC03C303B903BC03B1002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003C403B1002003BF03C003BF03AF03B1002003C003B503C103B903BB03B103BC03B203AC03BD03BF03C503BD002003B503C403B903BA03AD03C403B503C2002C002003C503C003B503C103C303C503BD03B403AD03C303B503B903C2002C002003C303B503BB03B903B403BF03B403B503AF03BA03C403B503C2002C002003B103BB03BB03B703BB03B503C003B903B403C103B103C303C403B903BA03AC002003C303C403BF03B903C703B503AF03B1002003BA03B103B9002003B503C003AF03C003B503B403B1002E002003A403B1002003AD03B303B303C103C603B10020005000440046002003C003BF03C5002003B403B703BC03B903BF03C503C103B303BF03CD03BD03C403B103B9002003BC03C003BF03C103BF03CD03BD002003BD03B1002003B103BD03BF03B903C703B803BF03CD03BD002003BC03B5002003C403BF0020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200037002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B7002E>
 /HEB <FEFF05d405e905ea05de05e905d5002005d105e705d105d905e205d505ea002005d005dc05d4002005dc05d905e605d905e805ea002005de05e105de05db05d9002000410064006f006200650020005000440046002005e005d205d905e905d905dd002005d405db05d505dc05dc05d905dd002005ea05d205d905dd002c002005e705d905e905d505e805d9002d05e205dc002c002005e105d905de05e005d905d505ea002c002005e805db05d905d105d905dd002005d005d905e005d805e805d005e705d805d905d105d905d905dd002005d505e905db05d105d505ea002e002005de05e105de05db05d90020005000440046002005e905e005d505e605e805d5002005e005d905ea05df002005dc05e405ea05d505d7002005d1002d0020004100630072006f006200610074002005d505d1002d002000410064006f00620065002000520065006100640065007200200037002e0030002005d505d205e805e105d005d505ea002005de05ea05e705d305de05d505ea002005d905d505ea05e8002e>
 /HUN <FEFF004100200062006500E1006C006C00ED007400E10073006F006B0020006800610073007A006E00E1006C0061007400E100760061006C0020006300ED006D006B00E9006B00650074002C002000680069007600610074006B006F007A00E10073006F006B00610074002C0020006B00F6006E00790076006A0065006C007A0151006B00650074002C00200069006E0074006500720061006B007400ED007600200065006C0065006D0065006B00650074002000E900730020007200E90074006500670065006B00650074002000740061007200740061006C006D0061007A00F300200068006F007A007A00E1006600E900720068006500740151002000410064006F00620065002000500044004600200064006F006B0075006D0065006E00740075006D006F006B0061007400200068006F007A0068006100740020006C00E9007400720065002E002000410020006C00E90074007200650068006F007A006F00740074002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061007A002000410064006F00620065002000520065006100640065007200200037002E003000200061006C006B0061006C006D0061007A00E10073006F006B006B0061006C002C0020007600610067007900200061007A002000610074007400F3006C0020006B00E9007301510062006200690020007600650072007A006900F3006B006B0061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /ITA <FEFF005500740069006C0069007A007A006100720065002000710075006500730074006500200069006D0070006F007300740061007A0069006F006E00690020007000650072002000630072006500610072006500200064006F00630075006D0065006E00740069002000410064006F0062006500200050004400460020006100630063006500730073006900620069006C0069002000630068006500200069006E0063006C00750064006F006E006F0020007400610067002C0020006C0069006E006B00200069007000650072007400650073007400750061006C0069002C0020007300650067006E0061006C0069006200720069002C00200065006C0065006D0065006E0074006900200069006E007400650072006100740074006900760069002000650020006C006900760065006C006C0069002E002000C800200070006F00730073006900620069006C006500200061007000720069007200650020006900200064006F00630075006D0065006E007400690020005000440046002000630072006500610074006900200063006F006E0020004100630072006F00620061007400200065002000410064006F00620065002000520065006100640065007200200037002E003000200065002000760065007200730069006F006E006900200073007500630063006500730073006900760065002E>
 /JPN <FEFF30BF30B0300130CF30A430D130FC30EA30F330AF30013057304A308A300130A430F330BF30E930AF30C630A330D6306A89817D20300130EC30A430E430FC3092542B308030A230AF30BB30B730D630EB306A002000410064006F0062006500200050004400460020658766F830924F5C62103059308B306B306F30013053308C3089306E8A2D5B9A30924F7F75283057307E305930024F5C62103055308C305F00200050004400460020306F0020004100630072006F0062006100740020304A30883073002000410064006F00620065002000520065006100640065007200200037002E003000204EE5964D3067958B304F30533068304C3067304D307E30593002>
 /KOR <FEFFD0DCADF8002C0020D558C774D37CB9C1D06C002C0020CC45AC08D53C002C0020B300D654D6150020C694C18C0020BC0F0020B808C774C5B4AC000020D3ECD568B418C5B40020C788C5B40020C0ACC6A9C790AC000020C27DAC8C0020C561C138C2A4D5600020C2180020C788B294002000410064006F0062006500200050004400460020BB38C11CB97C0020C791C131D558B824BA740020C774B7ECD55C0020C124C815C7440020C0ACC6A9D569B2C8B2E4002E0020C774C6400020AC19C7400020C635C158C7440020C0ACC6A9D558C5EC0020C791C131B41C00200050004400460020BB38C11CB2940020004100630072006F0062006100740020BC0F002000410064006F00620065002000520065006100640065007200200037002E00300020C774C0C1C5D0C11C0020C5F40020C2180020C788C2B5B2C8B2E4002E>
 /NLD (Gebruik deze instellingen om toegankelijke Adobe PDF-documenten met labels, hyperlinks, bladwijzers, interactieve elementen en lagen te maken. U kunt gemaakte PDF-documenten openen met Acrobat en Adobe Reader 7.0 en hoger.)
 /NOR <FEFF004200720075006B00200064006900730073006500200069006E006E007300740069006C006C0069006E00670065006E0065002000740069006C002000E50020006F0070007000720065007400740065002000740069006C0067006A0065006E00670065006C006900670065002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E00740065007200200073006F006D00200069006E006E00650068006F006C0064006500720020006B006F006400650072002C002000680079007000650072006B006F0062006C0069006E006700650072002C00200062006F006B006D00650072006B00650072002C00200069006E0074006500720061006B007400690076006500200065006C0065006D0065006E0074006500720020006F00670020006C00610067002E0020004F0070007000720065007400740065006400650020005000440046002D0064006F006B0075006D0065006E0074006500720020006B0061006E002000E50070006E00650073002000690020004100630072006F0062006100740020006F0067002000410064006F00620065002000520065006100640065007200200037002E00300020006F0067002000730065006E006500720065002E>
 /POL <FEFF005A006100200070006F006D006F00630105002000740079006300680020007500730074006100770069006501440020006D006F017C006E0061002000740077006F0072007A0079010700200142006100740077006F00200064006F0073007401190070006E006500200064006F006B0075006D0065006E00740079002000410064006F006200650020005000440046002C0020007A006100770069006500720061006A0105006300650020007A006E00610063007A006E0069006B0069002C002000680069007000650072014201050063007A0061002C0020007A0061006B014200610064006B0069002C00200065006C0065006D0065006E0074007900200069006E0074006500720061006B007400790077006E00650020006900200077006100720073007400770079002E0020005500740077006F0072007A006F006E006500200077002000740065006E002000730070006F007300F3006200200064006F006B0075006D0065006E0074007900200050004400460020006D006F017C006E00610020006F007400770069006500720061010700200077002000700072006F006700720061006D0061006300680020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200037002E00300020006900200069006300680020006E006F00770073007A00790063006800200077006500720073006A006100630068002E>
 /PTB <FEFF00550073006500200065007300740061007300200063006F006E00660069006700750072006100E700F5006500730020007000610072006100200063007200690061007200200064006F00630075006D0065006E0074006F007300200061006300650073007300ED00760065006900730020005000440046002000410064006F00620065002000710075006500200069006E0063006C00750065006D00200074006100670073002C002000680079007000650072006C0069006E006B0073002C0020006D00610072006300610064006F007200650073002C00200065006C0065006D0065006E0074006F007300200069006E0074006500720061007400690076006F007300200065002000630061006D0061006400610073002E0020004F007300200064006F00630075006D0065006E0074006F00730020005000440046002000630072006900610064006F007300200070006F00640065006D0020007300650072002000610062006500720074006F007300200063006F006D0020004100630072006F00620061007400200065002000410064006F00620065002000520065006100640065007200200037002E00300020006F007500200070006F00730074006500720069006F007200650073002E>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610063006300650073006900620069006c00650020006300610072006500200069006e0063006c007500640020007400610067007500720069002c002000680069007000650072006c0069006e006b007500720069002c002000730065006d006e0065002000640065002000630061007200740065002c00200065006c0065006d0065006e0074006500200069006e0074006500720061006300740069007600650020015f0069002000730074007200610074007500720069002e00200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f0062006100740020015f0069002000410064006f00620065002000520065006100640065007200200037002e0030002c002000700072006500630075006d0020015f00690020006300750020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043D0430044104420440043E0439043A043800200434043B044F00200441043E043704340430043D0438044F00200434043E044104420443043F043D044B0445002000410064006F006200650020005000440046002D0434043E043A0443043C0435043D0442043E0432002C00200441043E0434043504400436043004490438044500200442043504330438002C002004330438043F0435044004410441044B043B043A0438002C002004370430043A043B04300434043A0438002C00200438043D0442043504400430043A044204380432043D044B04350020044D043B0435043C0435043D0442044B0020043800200441043B043E0438002E00200421043E043704340430043D043D044B04350020005000440046002D0434043E043A0443043C0435043D0442044B0020043C043E0436043D043E0020043E0442043A0440044B043204300442044C002004410020043F043E043C043E0449044C044E0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200037002E00300020043800200431043E043B043504350020043F043E04370434043D043804450020043204350440044104380439002E>
 /SUO <FEFF004B00E40079007400E40020006E00E40069007400E4002000610073006500740075006B0073006900610020006C0075006F0064006500730073006100730069002000680065006C00700070006F006B00E400790074007400F600690073006900E4002000410064006F0062006500200050004400460020002D0064006F006B0075006D0065006E007400740065006A0061002C0020006A006F0074006B0061002000730069007300E4006C007400E4007600E400740020006B006F006F00640069006D00650072006B0069006E007400F6006A00E4002C002000680079007000650072006C0069006E006B006B0065006A00E4002C0020006B00690072006A0061006E006D00650072006B006B0065006A00E4002C002000760075006F0072006F007600610069006B0075007400740065006900730069006100200065006C0065006D0065006E007400740065006A00E40020006A00610020007400610073006F006A0061002E002000410073006500740075007300740065006E0020006100760075006C006C00610020006C0075006F0064007500740020005000440046002D0064006F006B0075006D0065006E00740069007400200076006F00690020006100760061007400610020004100630072006F0062006100740020006A0061002000410064006F00620065002000520065006100640065007200200037002E0030003A006C006C0061002000740061006900200075007500640065006D006D0061006C006C0061002000760065007200730069006F006C006C0061002E>
 /SVE <FEFF0041006E007600E4006E00640020006400650020006800E4007200200069006E0073007400E4006C006C006E0069006E006700610072006E00610020006600F60072002000610074007400200073006B0061007000610020006C00E4007400740069006C006C006700E4006E0067006C006900670061002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E007400200073006F006D00200069006E006E0065006800E5006C006C006500720020007400610067006700610072002C002000680079007000650072006C00E4006E006B00610072002C00200062006F006B006D00E40072006B0065006E002C00200069006E0074006500720061006B007400690076006100200065006C0065006D0065006E00740020006F006300680020006C0061006700650072002E00200044006500200064006F006B0075006D0065006E007400200064007500200073006B00610070006100720020006B0061006E002000F600700070006E00610073002000690020004100630072006F0062006100740020006F00630068002000410064006F00620065002000520065006100640065007200200037002E003000200065006C006C00650072002000730065006E006100720065002E>
 /TUR <FEFF0130006D006C00650072002C002000680069007000650072002000620061011F006C00610072002C002000790065007200200069006D006C006500720069002C002000650074006B0069006C0065015F0069006D006C0069002000F6011F0065006C006500720020007600650020006B00610074006D0061006E006C006100720020006900E7006500720065006E0020006500720069015F0069006C006500620069006C00690072002000410064006F006200650020005000440046002000620065006C00670065006C0065007200690020006F006C0075015F007400750072006D0061006B0020006900E70069006E00200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E0020004F006C0075015F0074007500720075006C0061006E0020005000440046002000620065006C00670065006C0065007200690020004100630072006F006200610074002000760065002000410064006F00620065002000520065006100640065007200200037002E003000200076006500200073006F006E00720061006B00690020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f002000410064006f006200650020005000440046002d0434043e043a0443043c0435043d044204560432002c0020044f043a04560020043c045604410442044f0442044c00200442043504330438002c002004330456043f04350440043f043e04410438043b0430043d043d044f002c002004370430043a043b04300434043a0438002c00200456043d0442043504400430043a044204380432043d045600200435043b0435043c0435043d044204380020043900200448043004400438002e0020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004320020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200037002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive true
 /IncludeLayers true
 /IncludeProfiles true
 /MultimediaHandling /EmbedAll
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

