
Chapter 2
Run! Devastator!
In chapter 1, we went through the hardware assembling procedure,

now it's the time to get it moving! In the following sessions, we will

show you how to set up a simple motor driving program step by

step.

Moving
mechanism

The mobility of the Devastator is realized by the motions of its motors on
each side. The motion of each motor follows the signal sent by the micro
controller.
To be more specific, 3 parameters are included in a signal, each determines
motor’s angular speed, rotation direction and corresponding time duration.

The angular speed determines how fast the motor drives the pedrails
The rotation direction determines the moving direction of the pedrail
The time duration determines how long a certain motion lasts

Three Parameters of Motor Motor State Motion State of Tank

TimeSpeed

30 r/s

Rotation Direction

How to steer the Devastator

The steering angle is determined by the speed difference between its two pedrails.

When both pedrails are driven at the same speed, our robot may either go straight forward or backward.

However, when speed of these two motors are inconsistent, the larger the difference is, the bigger its

steering angle will be.

Note: as motors are installed to be oriented in opposite directions, an anticlockwise rotation of the left

motor and a clockwise rotation of the right motor drives pedrails in the same direction.

Same speed of Motor
Pedrail moving in the same direction

Same speed of Motor
Pedrail moving in the opposite direction

Different speed of Motor

Go Straight

Around in Circles

Deflection Motion

CLOCKWISEANTICLOCKWISE

D

Steering mechanism

Wire up
components

As we have already finished the installation of the hardware part, all
what we need to do is to check if the circuit connection is correct.

Left_Motor

Battery Switch

Right_Motor

Circuit connection

Import library

A simple way to understand how libraries work is to think them as third party owned arsenals. When certain

types of weapons are needed, we don't have to build them by ourselves. Instead, all we need is to take the

storage list as reference and borrow whatever we need that exists in the list. Back to the concept of library,

similarly, once a library is included in our code, functions supported by this library can be utilized by simply

calling a few statements, which saves a lot of time and space. For instance, if we want to control our motor,

by calling statements from a motor control library, all we need is to enter these 3 parameters that we men-

tioned above in a preset format (we will go deep into this in the next session). Another advantage of using

libraries is that we don't even have to understand how exactly these codes work, all we care is their func-

tions and formats.

Alright! Let’s start importing libraries to the Arduino software.

Download the DFRobotEdison library in zip format from the link below

Import the library to our local Arduino software

Upload code Before hitting the upload button, we need to compile the code. To get
this done, libraries that we included in our code should be imported to
our local Arduino software first.

Once download is complete, go to the menu bar of Arduino software

and select Sketch > Include Library > Add .ZIP Library

Select the library file in zip format and click Open

Now it’s time to code. Let’s download a simple sample program first.

There you go! Now the library has been imported into the Arduino
software. To make sure it’s correctly imported, you can also go to
Sketch > Include Library and check if the name of the library is in
the list.

Upload testing
code

Sample code

#include <DFRobot.h>

#include <IIC1.h>

 DFrobotEdison L_Motor;

DFrobotEdison R_Motor;

void setup() {

 L_Motor.begin(M2); /*Initializes the motor drive*/

 R_Motor.begin(M1);

}

 void loop() {

 L_Motor.setDirection(CLOCKWISE); /*Motor clockwise rotation*/

 R_Motor.setDirection(CLOCKWISE);

 L_Motor.setSpeed(255); /*Motor speed*/

 R_Motor.setSpeed(255);

 delay(2000);

 L_Motor.stop(); /*Stop*/

 R_Motor.stop();

 delay(3000);

}

After all preparations are done, it’s the time to do some programing!
To begin with, open the Arduino IDE and enter following code.

If everything goes smoothly, our robot should be doing the following movements: in every 5 seconds,
it moves forward at its maximum speed for 2 seconds and then stops for 3 seconds.

For convenience, you may simply copy and paste the code to Arduino IDE. However, for beginners, we
recommend you to type the code manually so you would have a basic idea of the C language that we
use to program our robot. Need to mention that it is crucially important to pay attention on every single
character in the code. Any mistake would lead it fail to compile.

Before uploading the code, always remember to check that the correct board type (Intel® Edison) and
serial port (COM # port) have been selected, then click Verify below the menu bar.

Compiling in progress

Done!

The next step is to click “Upload” right next to “Verify”, then we
are all set!!

Code
Analysis

Include libraries
#include<DFRobot.h>
#include<IIC1.h>
In the beginning of the code, we need to include libraries by calling the #include
statement so their functions can be utilized by our program.
Define motor name
DFrobotEdison L_Motor;
DFrobotEdison R_Motor;
“DFrobotEdison” is the type of the variable predefined in the library
“DFRobot.h”. By defining the name L_Motor and R_Motor as “DFrobotEdison”
variables, we can set the motor to do functions supported by the library.
Initialize motor drive
void setup() {
 L_Motor.begin(M1); /*Initializes the motor drive*/
 R_Motor.begin(M2);
}
Inside the setup function, use the XXX.begin() statement to pair up motors to
motor driving ports.
Motion control
As L_Motor and R_Motor has been defined as “DFrobotEdison” variable, ac-
cording to its library, we can enter parameters in following formats to control
the motion of each motor.
Direction control
L_Motor.setDirection();
R_Motor.setDirection();
Enter CLOCKWISE or ANTICLOCKWISE into the bracket of in the statement
above to make the motor either go clockwise or anticlockwise.
Speed control
L_Motor.setSpeed();
R_Motor.setSpeed();
Enter an integer from 0-255 into the bracket in the statement above to control
the speed of the motor, while 255 corresponds to its maximum speed
Time duration
delay();
Enter an integer into the bracket in the above statement to set the time duration
in milliseconds.

Movement 1:

Reverse the direction of the left motor to switch the robot from going straight forward to moving round in a

cycle anticlockwise.

Movement 2:

Lower the speed of the left motor to switch the robot from going straight forward to going left forward

Examples By applying the statements above, program the following movements

L_Motor.setDirection(CLOCKWISE);

R_Motor.setDirection(CLOCKWISE);

L_Motor.setDirection(ANTICLOCKWISE);

R_Motor.setDirection(CLOCKWISE);

L_Motor.setSpeed(255);

R_Motor.setSpeed(255);

L_Motor.setSpeed(100);

R_Motor.setSpeed(255);

